Assignment #3. Due Thurs Feb 18.

- 1. Explain why each of the following are true claims about **PLC**.
 - (a) For any wffs A, B, if $A \vDash B$ and $B \vDash C$, then $A \vDash C$.

(<u>*Hint*</u>: This says "If A tautologically entails B, and B tautologically entails C, then A tautologically entails C." To prove it, assume that A tautologically entails B, and B tautologically entails C. Then try to show that from this it follows that A tautologically entails C. To do this, you need to apply the definition of tautological entailment.)

- (b) For any wffs A, B, if $A \models \neg B$, then it's not the case that $A \models B$.
- (c) For any wffs A, B, if $\vDash (A \lor B)$ and $\vDash \neg (A \land B)$, then $A \vDash \neg B$ and $\neg B \vDash A$.

(*Hint*: This says "If $(A \lor B)$ is a tautology and $(A \land B)$ is a contradiction, then *A* tautologically entails $\neg B$ and $\neg B$ tautologically entails *A* (*i.e.*, *A* and $\neg B$ are truth-functionally equivalent).

- 3. Recall that the corresponding conditional of an argument in **PLC** is a conditional *wff* whose consequent is the conclusion and whose antecedent is the conjunction of all the premises. Determine whether the following arguments in **PLC** are tautologically valid by evaluating their corresponding conditionals.
 - (a) $(\neg \mathsf{P} \land \mathsf{Q}) \therefore \neg (\mathsf{P} \land \mathsf{Q})$
 - (b) $P, \neg P \therefore Q$