Semantic Rules for QL^f

- (Q0) For atomic *wff A* (*n*-place predicate followed by *n* terms):
 - (a) If n = 0, then $A \Rightarrow_q T$ if the q-value of A is true. Otherwise $A \Rightarrow_q F$.

(b) If n > 0, then A ⇒_q T if the *n*-tuple formed by taking, in order, the references under q (objects in the domain) of the terms in A is an element of the q-value of A (the extension of the predicate in A). Otherwise A ⇒_q F.

- (Q0⁺) An atomic *wwf* of the form $t_1 = t_2$ is true under q just if the terms t_1 and t_2 are assigned the same objects by q.
- (Q1) For any wff A: $\neg A \Rightarrow_q T$ if $A \Rightarrow_q F$. Otherwise $\neg A \Rightarrow_q F$.

(Q2)	For wffs A, B:
	$(A \land B) \Rightarrow_q T$ if both $A \Rightarrow_q T$ and $B \Rightarrow_q T$. Otherwise $(A \land B) \Rightarrow_q F$.
(Ω^{2})	

(Q3) For wffs A, B: $(A \lor B) \Rightarrow_q F$ if both $A \Rightarrow_q F$ and $B \Rightarrow_q F$. Otherwise $(A \lor B) \Rightarrow_q T$. (Q4) For wffs A, B:

$$(A \supset B) \Rightarrow_a F \text{ if } A \Rightarrow_a T \text{ and } B \Rightarrow_a F. \text{ Otherwise } (A \supset B) \Rightarrow_a T.$$

- (Q5) For wffs A, B, $(A \equiv B) \Rightarrow_q T$ if $A \Rightarrow_q T$ and $B \Rightarrow_q T$, or if $A \Rightarrow_q F$ and $B \Rightarrow_q F$; otherwise $(A \equiv B) \Rightarrow_q F$.
- (Q6) For wff C(...v...v...) with variable v free, $\forall vC(...v...v...) \Rightarrow_q T$ if $C(...v...v...) \Rightarrow_{q^+} T$ for every v-variant q^+ of q. Otherwise $\forall vC(...v...v...) \Rightarrow_q F$.
- (Q7) For wff C(...v...v...) with variable v free, $\exists v C(...v...v...) \Rightarrow_q T$ if $C(...v...v...) \Rightarrow_{q^+} T$ for at least one v-variant q^+ of q. Otherwise $\exists v C(...v...v...) \Rightarrow_q F$.

Some Results

(V1)	If a <i>q</i> -valuation <i>q</i> makes $\forall vC(vv)$ true, then, if <i>c</i> is a constant in <i>q</i> 's vocabulary, then
	q makes $C(cc)$ true. If c is not a constant in q's vocabulary, then there is an extension q^+ of q with a vocabulary that contains c and that makes $C(cc)$ true. (If a q valuation makes a universal quantifier wiff true, it makes all its instances true, too)
(-)	<i>q</i> -valuation makes a universal quantifier wij true, it makes all its instances true, too.)
(V2)	If a q-valuation q makes $\exists vC(vv)$ true, and c is a constant that does not occur in q's
	vocabulary, then there is an extension q^+ of q with a vocabulary that contains c and that
	makes C(cc) true. (If a q-valuation makes an existential quantifer wff true, then it
	has an extension that makes an instance of the existential wff true, too.)
(V3)	If a <i>q</i> -valuation makes $\neg \forall v C(vv)$ true, then it also makes $\exists v \neg C(vv)$ true.
(V4)	If a <i>q</i> -valuation makes $\neg \exists v C(vv)$ true, then it also makes $\forall v \neg C(vv)$ true.
(V5)	Suppose a q-valuation q has a vocabulary V that does not contain the constant c; and
	suppose q^+ is an extension of q that assigns to c some object in the domain. Let W be a
	wff using symbols in V. Then if $W \Rightarrow_q T$, then $W \Rightarrow_{q^+} T$. (Extending a q-valuation to

cover a new constant c doesn't affect the truth values of wffs that do not contain c.)