Semantic Rules for $\mathbf{Q L}^{f}$

(Q0) For atomic wff A (n-place predicate followed by n terms):
(a) If $n=0$, then $A \Rightarrow_{q} \mathrm{~T}$ if the q-value of A is true. Otherwise $A \Rightarrow_{q} \mathrm{~F}$.
(b) If $n>0$, then $A \Rightarrow_{q} \mathrm{~T}$ if the n-tuple formed by taking, in order, the references under q (objects in the domain) of the terms in A is an element of the q-value of A (the extension of the predicate in A). Otherwise $A \Rightarrow_{q} \mathrm{~F}$.
$\left(\mathrm{Q} 0^{+}\right)$An atomic $w w f$ of the form $t_{1}=t_{2}$ is true under q just if the terms t_{1} and t_{2} are assigned the same objects by q.
(Q1) For any wff A : $\neg A \Rightarrow_{q} \mathrm{~T}$ if $A \Rightarrow_{q} \mathrm{~F}$. Otherwise $\neg A \Rightarrow_{q} \mathrm{~F}$.
(Q2) For $w f f s A, B$:
$(A \wedge B) \Rightarrow_{q} \mathrm{~T}$ if both $A \Rightarrow_{q} \mathrm{~T}$ and $B \Rightarrow_{q} \mathrm{~T}$. Otherwise $(A \wedge B) \Rightarrow_{q} \mathrm{~F}$.
(Q3) For $w f f s A, B$:
$(A \vee B) \Rightarrow_{q} \mathrm{~F}$ if both $A \Rightarrow_{q} \mathrm{~F}$ and $B \Rightarrow_{q} \mathrm{~F}$. Otherwise $(A \vee B) \Rightarrow_{q} \mathrm{~T}$.
(Q4) For $w f f s A, B$:
$(A \supset B) \Rightarrow_{q} \mathrm{~F}$ if $A \Rightarrow_{q} \mathrm{~T}$ and $B \Rightarrow_{q} \mathrm{~F}$. Otherwise $(A \supset B) \Rightarrow_{q} \mathrm{~T}$.
(Q5) For wffs $A, B,(A \equiv B) \Rightarrow_{q} \mathrm{~T}$ if $A \Rightarrow_{q} \mathrm{~T}$ and $B \Rightarrow_{q} \mathrm{~T}$, or if $A \Rightarrow_{q} \mathrm{~F}$ and $B \Rightarrow_{q} \mathrm{~F}$; otherwise $(A \equiv B) \Rightarrow_{q} \mathrm{~F}$.
(Q6) For $w f f C(\ldots v . . . v \ldots)$ with variable v free, $\forall v C(\ldots v . \ldots \nu \ldots) \Rightarrow_{q} \mathrm{~T}$ if $C(\ldots v \ldots \nu \ldots) \Rightarrow_{q^{+}} \mathrm{T}$ for every v-variant q^{+}of q. Otherwise $\forall v C(\ldots \nu \ldots \nu \ldots) \Rightarrow_{q} \mathrm{~F}$.
(Q7) For $w f f C\left(\ldots v \ldots \nu_{\ldots}\right)$ with variable v free, $\exists v C(\ldots \nu \ldots \nu \ldots) \Rightarrow_{q} \mathrm{~T}$ if $C(\ldots v \ldots \nu \ldots) \Rightarrow_{q^{+}} \mathrm{T}$ for at least one v-variant q^{+}of q. Otherwise $\exists v C(\ldots v \ldots \nu \ldots) \Rightarrow_{q} \mathrm{~F}$.

Some Results

(V1) If a q-valuation q makes $\forall v C(\ldots v \ldots v \ldots)$ true, then, if c is a constant in q 's vocabulary, then q makes $C(\ldots c \ldots c \ldots)$ true. If c is not a constant in q 's vocabulary, then there is an extension q^{+}of q with a vocabulary that contains c and that makes $C(\ldots c \ldots c \ldots)$ true. (If a q-valuation makes a universal quantifier wff true, it makes all its instances true, too.)
(V2) If a q-valuation q makes $\exists v C(\ldots v \ldots \nu . .$.$) true, and c$ is a constant that does not occur in q 's vocabulary, then there is an extension q^{+}of q with a vocabulary that contains c and that makes $C(\ldots c . .$.$) true. (If a q-valuation makes an existential quantifer wff true, then it$ has an extension that makes an instance of the existential wff true, too.)
(V3) If a q-valuation makes $\neg \forall v C(\ldots v \ldots \nu . .$.$) true, then it also makes \exists v \neg C\left(\ldots v \ldots \nu_{\ldots}\right)$ true.
(V4) If a q-valuation makes $\neg \exists v C(\ldots \nu \ldots \nu . .$.$) true, then it also makes \forall v \neg C(\ldots v \ldots v . .$.$) true.$
(V5) Suppose a q-valuation q has a vocabulary V that does not contain the constant c; and suppose q^{+}is an extension of q that assigns to c some object in the domain. Let W be a wff using symbols in V. Then if $W \Rightarrow_{q} \mathrm{~T}$, then $W \Rightarrow_{q^{+}} \mathrm{T}$. (Extending a q-valuation to cover a new constant c doesn't affect the truth values of wffs that do not contain c.)

