
10.  Maxwell. Darrigol (2000), Chap 4. 

James Clerk Maxwell 
(1831-1879) 

1873.  Treatise on Electricity and Magnetism. 

1856.  "On Faraday's Lines of Force". 
•  Intended to obtain mathematical expression of Faraday's field concept. 

•  Distinction between "intensity" (force) and "quantity" (flux). 

•  Two circuit laws:  ∇× H = j and E = −∂A/∂t. 

1861.  "On Physical Lines of Force". 
•  Mechanical model based on vortical nature of magnetism. 

•  Current = motion of idle wheels; charge = accumulation of idle wheels. 

•  Displacement current, full Maxwell's equations, velocity of light. 

1865.  "Dynamical Theory of the Electromagnetic Field". 
•  Replaced vortex model with dynamical justification of field equations. 

•  Potential A as reduced momentum of magnetic field. 

•  Light as electromagnetic wave. 



A.  Letter to Thomson (1854). 

• According to Faraday... 

! Electric current lines (in same direction) 
attract laterally and extend longitudinally. 

! Magnetic lines repel laterally and contract 
longitudinally. 

Observed Symmetry: 

(1)  Lateral attraction between current lines has same 
effect as longitudinal contract in magnetic lines. 

(2)  Lateral repulsion between magnetic lines has same 
effect as longitudinal extension in current lines. 

• "Quantity" = lateral measure of power, call it a. 

• "Intensity" = longitudinal measure of power, call it α. 

• Now:  Express (1) and (2) in terms of quantities and 
intensities... 

*N. Wise (1979) "The Mutual Embrace of Electricity and Magnetism", Science 203, 1310-1318. 
Replace magnet with current coil. 

* 



Suppose: 
•  Measure of longitudinal contraction of mag line = sum of mag intensity αm along line. 
•  Measure of lateral attraction of electric lines (ae) = # of elec lines that cross unit area. 

•  But (Wise 1979): 

!  Mag quantity am (lateral repulsion of mag lines) should depend on size and shape of 
current loop, not just current. 

!  "Current around the edge" can't be current intensity αe (longitudinal extension) 
summed around edge, since am has no relation to αe. 

• (1) can now be expressed by ("Ampère's Law"): 

Theorem 1.  The magnetic intensity summed 
around a closed loop is measured by the 
total quantity of current through the loop.      

αm ⋅d l!∫ = ae ⋅dS∫∫
αm 

ae 

• What about (2)?  Analog of Ampère's Law would be: 

Theorem 2.  The magnetic quantity 
through any surface is measured by 
the "current around its edge". 

(current ?) ⋅d l!∫ = am ⋅dS∫∫
? 

am 



B.  "On Faraday's Lines of Force" (1856). 

• Assume:  Some intensity of the appropriate kind exists to complete the 
symmetry for Theorem 2; call it the "electro-tonic intensity". 

"We may conceive of the electro-tonic state at any point of 
space as a quantity determinate in magnitude and direction, 
and we may represent the electro-tonic condition of a portion 
of space by any mechanical system which has at every point 
some quantity, which may be a velocity, a displacement, or a 
force, whose direction and magnitude correspond to those of 
the supposed electro-tonic state.  This representation involves 
no physical theory, it is only a kind of artificial notation."  

• Now:  Re-express Theorem 2 as Faraday's Law:  Electromotive force is the 
variation in time of "electro-tonic intensity". 



Details: 

!  Adopt Thomson's heat analogy; replace heat with "imaginary incompressible fluid". 

!  a ⋅ dS = fluid quantity across surface element dS, a = fluid current. 

!  α ⋅ d l = fluid intensity along line element d l, α = moving force. 

• Then:  Ampère's Law can be expressed by ∇×αm = ae.  

• And:  Faraday's Law can be expressed by αe ⋅d l!∫ =−
d
dt

am ⋅dS∫∫ .

E ⋅d l!∫ =−
d
dt

B ⋅dS∫∫How? 
!  According to Stokes's theorem,   

      
α ⋅d l!∫ = (∇×α) ⋅dS∫∫ .

!  So:    
      
αm ⋅d l!∫ = (∇×αm) ⋅dS∫∫ = ae ⋅dS∫∫ .

∇×H = J 

• Now:  Since the fluid is incompressible, ∇⋅ am = 0. 

• Which means:  am = ∇×α0, for some α0.  Call it the electrotonic intensity! 

B = ∇×A 

      
α0 ⋅d l!∫ = (∇×α0) ⋅dS∫∫ = am ⋅dS∫∫ .• Thus: 

αe =−
∂α

0

∂t
.• And:  Faraday's Law becomes

E = −∂A/∂t 

The symmetric analog of 
Ampère's Law:  The magnetic 
quantity through any surface 
is measured by the electrotonic 
intensity around its edge.  



C.  "On Physical Lines of Force" (1861). 

• Recall:  Magnetic lines repel laterally and contract longitudinally. 

! Suppose:  There are vortices along magnetic lines. 

! Then:  Centrifugal forces would cause vortices to expand laterally and 
contract longitudinally. 

Task:  Derive expression for stresses in a fluild that produce these effects 

σij = −pδij + µHiHj 

• And:  Force f due to stresses is divergence of stress tensor: 

f = (∇ ⋅ µH)H + (∇ ×  H) ×  µH + m∇(H 
2/2) − ∇p  

• Maxwell identifies: 
!  H, µH = magnetic intensity and magnetic quantity."

!  1st term = force on magnetic poles (regions of non-zero ∇ ⋅ µH). 

!  2nd term = force on electric currents (regions of non-zero ∇ ×  H). 

• Let:  p = pressure; µ = density of medium; H = angular velocity of vortex. 

• Then:  Stresses (force per area) are encoded in stress tensor: 



• Question:  How can correspondence between non-zero ∇ ×  H and existence of 
currents be represented? 

• Answer:  Idle wheels! 

•  Electric current flows from A to B. 

•  Vortices gh set in anti-clockwise motion (+). 

•  Particles pq set in clockwise rotation (�) and 
move right-to-left, forming an induced current. 

•  If resistence of medium halts induced current, 
then rotating particles pq act on next row of 
vortices kl, which will rotate anti-clockwise (+). 

•  If primary current AB stops, vortices gh will 
stop rotating, but momentum of vortices kl will 
cause particles pq to move from left to right, in 
direction of primary current. 

•  If this current is resisted by medium, the 
motion of vortices beyond pq will stop. 

When two contiguous vortices do not rotate 
at same speed, idle-wheel particles must shift. 

• Maxwell shows:  (Flux of idle-wheel particles) = ∇ ×  (angular velocity of vortices). 

• This mechanical result suggests electromagnetic result j = ∇ ×  H (Ampère's 
Law) if we identify current density j with idle-wheel particle flux. 



How to understand Maxwell's mechanical result 

 (Flux of idle-wheel particles) = ∇ ×  (angular velocity of vortices) 

•  Recall:  The curl ∇ ×  F of a vector field F(x, y, z) measures the rate of change of 
F(x, y, z) in a direction transverse (perpendicular) to the direction of F(x, y, z). 
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• Angular velocity vector field 
changes in transverse direction. 

• So:  ∇×ω(x, y, z) ≠ 0. 
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•  Non-zero curl indicates a "rotation" 
in the vector field ω(x, y, z). 

•  Paddle wheel test:  Paddle wheel 
spins if and only if field has non-
zero change in transverse direction. 

•  Important:  The "rotation" in ω(x, y, z) encoded in its curl is not responsible for 
the rotation of the vortices! 
!  Rotation of a vortex is encoded in a particular value of ω(x, y, z) (i.e., one 

particular vector ω located at some point). 



• Suppose:  Tangential force T of particles on vortices 
results in torque. 

• Recall:  (torque) = d/dt(angular momentum) 

• And:  angular momentum of vortices = µH. 

• Now:  Tangential force of vortices on particles is electromotive force E = −T. 

• So:  ∇ ×  E = −∂µH/∂t. 

• Maxwell shows:  (torque) = ∇ ×  (tangential force T) 

What about Faraday's Law? 

      
E ⋅d l!∫ = (∇×E) ⋅dS∫∫ =−

d
dt

µH ⋅dS∫∫

• And:  This is Faraday's Law (via Stokes' Theorem): 



Recap #1: 

• Ampère's Law:  j = ∇ ×  H.  The current flux of idle wheels causes spatial 
changes in transverse directions of rotational velocities of vortices. 

• Faraday's Law:  −∂µH/∂t = ∇ ×  E.  Changes in angular momentum of 
vortices cause spatial changes in transverse directions of the tangential 
forces that vortices impart on idle-wheels. 

• Problem:  Limited to closed currents:  ∇ ⋅ j = ∇ ⋅ (∇ ×H) = 0.
• Now:  For ρ = charge density, conservation of charge requires (continuity 

equation):  ∇ ⋅ j + ∂ρ/∂t = 0. 

• And this reduces to:  ∂ρ/∂t = 0. 

• Which entails:  No charge accumulation. 

• So:  Vortex model, as it stands, can't be applied to electrostatics. 



How to understand Maxwell's continuity equation 

 ∇ ⋅  j + ∂ρ/∂t = 0. 

•  Recall:  The divergence ∇ ⋅ F of a vector field F(x, y, z) measures the rate of 
change of F(x, y, z) in the direction of F(x, y, z). 

   
∇ ⋅F =

∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z

•  Zero divergence means same amount of F leaves an 
infinitesimal volume dV as amount that enters it. 

negative divergence positive divergence 

•  So:  Continuity equation means that if more 
current j leaves dV than enters it (∇ ⋅  j > 0), 
then amount of charges within dV decreases.  If 
more current enters dV than leaves it (∇ ⋅  j < 0), 
then amount of charges inside dV increases. 

dV 

•  If ∇ ⋅ j = 0, then same amount of current enters 
dV as leaves it; which occurs if all currents are 
closed. 

∂ρ/∂t < 0 

j 

∂ρ/∂t > 0 

j 

dV 

•  Positive/negative divergence means more/less F 
leaves dV than enters it. 



• Example of electrostatics:  Charging a capacitor. 
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� •  Ampère's Law j = ∇ ×  H entails a closed 
circuit and no charge accumulation:  

 ∇ ⋅ j = 0,   ∂ρ/∂t = 0. 

•  Can't apply to charging capacitor with 
open circuit and charge accumulation: 

 ∇ ⋅ j≠ 0,   ∂ρ/∂t ≠ 0. 
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•  Need an additional term in Ampère's Law 

to "close the circuit": 
    j = ∇ ×  H + X 

•  Then:  ∇ ⋅ j = ∇ ⋅ (∇ ×H) + ∇ ⋅ X 

   = ∇ ⋅ X 

•  So:  Need to find a form for X such that 
 ∇ ⋅ X ≠ 0.  



Displacement Current:  How to Apply Vortex Model to Electrostatics 

• Suppose:  Tangential action T of particles on vortices 
causes an elastic deformation in medium. 

• Let:  Average displacement δ = −εE,    ε = constant. 

• Then:  Particles in contact with vortices will be displaced in a direction 
opposite to electromotive force E = −T. 

"The undulatory theory of light requires us to ad-
mit this kind of elasticity in the luminiferous me-
dium, in order to account for transverse vibra-
tions.  We need not be surprised if the magneto-
electric medium possesses the same property."  

• Then:  Relation between flux of particles and angular velocity of vortices is 

  J = ∇ ×  H + ∂δ/∂t 

• So:  ∇ ⋅ J = ∂/∂t(∇ ⋅ δ). 
• And:  This entails Maxwell's continuity equation, provided ∇ ⋅ δ = −ρ. 



• The charging capacitor example again: 
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= + 

∇ ×  H −∂εE/∂t 

• The role of the displacement current term (−∂εE/∂t) is to cancel out the part 
of the ∇×H term in the space between the plates. 

• Idea: 

(a)  Magentic field H gives rise to a complete (closed) current through the 
wire and the space between the plates. 

(b)  Electric field E gives rise to a reverse current between the places. 

(c)  The actual conduction current is the sum of (a) and (b). 



• Moreover:  Speed of transverse waves in the medium = (k/m)1/2. 
!  k = transverse elasticity = 1/(4π 2ε). 

!  m = density of medium = µ/4π 2. 

• So:  Speed of transverse waves in vacuum = (1/ε0µ0)1/2. 

• And:  This is equal to (rough) estimates of the speed of light in vacuum! 

"We can scarcely avoid the inference that light consists 
in the transverse undulations of the same medium which 
is the cause of electric and magnetic phenomena."   

Recap #2: 

• Ampère's Law:  J = ∇ ×  H + ∂δ/∂t.  The current flux of idle 
wheels causes spatial changes in transverse directions of rotational 
velocities of vortices, and displacements of idle wheels due to elastic 
deformations of medium. 

• Faraday's Law:  −∂µH/∂t = ∇ ×  E.  Changes in angular momen-
tum of vortices cause spatial changes in transverse directions of the 
tangential forces that vortices impart on idle-wheels. 



"The conception of a particle having its motion connected with that of a 
vortex by perfect rolling contact may appear somewhat awkward.  I do 
not bring it forward as a mode of connexion existing in nature, or even as 
that which I would willingly assent to as an electrical hypothesis.  It is 
however a mode of connexion which is mechanically conceivable, and 
easily investigated, and it serves to bring out the actual mechanical con-
nexions between the known electro-magnetic phenomena; so that I ven-
ture to say that any one who understands the provisional and temporary 
character of this hypothesis, will find himself rather helped than hindered 
by it in his search after the true interpretation of the phenomena."    

How seriously did Maxwell take the vortex model? 

"The nature of this mechanism 
is to the true mechanism what 
an orrery is to the solar system."    



D.  "Dynamical Theory of the Electromagnetic Field" (1865). 

• Recall:  Faraday's Law E = −∂A/∂t,     (A = electrotonic intensity). 

• Suggests:  A is the momentum associated with the flow of idle-wheel particles 
(in analogy with Newton's 2nd Law:  F = dp/dt). 

• Then:  Faraday's Law is 
   

E ⋅d l∫ = − d
dt

A ⋅d l∫ .

• What about Ampère's Law? 

! In vortex model:  Current = flow of idle-wheel particles. 

! In new generalized theory:  Adopt Faraday's concept of current as a 
variation or transfer of polarization.  

"I am trying to form an exact mathematical expression 
for all that is known about electromagnetism without 
the aid of hypothesis."  (Letter to H. R. Droop, 1861.)    

• Now:  Generalize away from specific vortex model.  Suppose "circuit 
momentum" is line integral of "electromagnetic momentum" A. 



• Let:  The polarization (electric displacement) D = the displacement of 
electricity in molecules of a dielectric. 

• Related to electromotive force by:  E = D/ε. 

!  Same as "On Physical Lines of Force", but: 
 "In the old theory, what Maxwell called the 'displacement current' was −∂εE/∂t and 
contributed to the conduction current.  In the new theory, the displacement current 
became a contribution to a divergenceless total current."  (Darrigol, pg. 161.) 

• And:  Ampère's Law becomes ∇ ×  H = j + ∂εE/∂t. 

• Total current then is:  J = ∂D/∂t + j 
!  j = rate at which electricity passes from one molecule to another 
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1861 Vortex model formulation of Ampère's Law:   J = ∇×H − ∂εE/∂t 

•  Last term represents actual displacement of idle-wheels, in direction opposite of initial 
flow, due to elastic reaction of ether on vortices. 

New 1865 formulation of Ampère's Law:   ∇×H = j + ∂εE/∂t 
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∇×H +∂εE/∂t 

•  Contemporary presentation:  A magnetic field H is induced by a current j and/or a 
changing electric field E. 



• Let:  The polarization (electric displacement) D = the displacement of 
electricity in molecules of a dielectric. 

• Related to electromotive force by:  E = D/ε. 

!  Same as "On Physical Lines of Force", but: 
 "In the old theory, what Maxwell called the 'displacement current' was −∂εE/∂t and 
contributed to the conduction current.  In the new theory, the displacement current 
became a contribution to a divergenceless total current."  (Darrigol, pg. 161.) 

• And:  Ampère's Law becomes ∇ ×  H = j + ∂εE/∂t. 

• Now:  For conductor moving with velocity v, Faraday's Law entails: 

  E = −∂A/∂t + v ×  (∇ ×  A) − ∇ψ,      ψ = "electric potential" 

• Total current then is:  J = ∂D/∂t + j 
!  j = rate at which electricity passes from one molecule to another 

• Combine with Ampere's Law to get: 

     
εµ
∂2B
∂t 2

=∇2B !  Wave equation for "magnetic induction" B = µH. 
!  Propagation speed = (1/εµ)1/2. 



E.  Treatise on Electricity and Magnetism (1873). 

Key Concepts 

• Polarization = a state of constraint of a dielectric such that each portion 
of it acquires equal and opposite properties on two opposite sides. 

• Electric charge = spatial discontinuity of polarization; occurs at the 
limit between a polarized dielectric and a conductor. 

• Electric current = rate of transfer of polarization (thus always closed). 

• Force = intensity. 

! H = magnetic force. 

! E = electric force. 

• Flux = quantity. 

! B = µH = magnetic flux density (or "magnetic induction"). 

! D = εE = electric flux density ("electric induction", "polarization", 
"displacement"). 



Misunderstandings 

1.  Max says:  Polarization of a portion of a dielectric is "a displacement of 
electricity". 

! Means:  A portion of a dielectric, if separate from the rest, presents 
opposite charges at two opposite extremes. 

! Doesn't mean:  An electrically charged substance is displaced. 

2.  Maxwell says:  "The motions of electricity are like those of an incompressible 
fluid." 

! Means:  The closed nature of total current makes it analogous to the flow 
of an incompressible fluid. 

! Doesn't mean:  Electricity is an incompressible fluid. 



"General Equations for the Electromagnetic Field" (Treatise, Chap. IX, Vol. II) 
A = electromagnetic momentum  H = magnetic force  ψ = electric scalar potential 
B = magnetic induction  M = intensity of magnetization  Ψ = magnetic scalar potential 
J = total electric current  j = current of conduction  ε = dielectric inductive capacity 
D = electric displacement ρ = electric density  µ = magnetic inductive capacity 
E = electromotive force  m = density of magnetic 'matter'  v = velocity 
f = mechanical force  σ = conductivity for electric currents 

1.  B = ∇ ×  A  Equations of magnetic induction (A). 
2.  ∇ ⋅ B = 0  Condition on B, due to (1). 
3.  E = ∂A/∂t + v×(∇×A)−∇ψ Equations of electromotive force (B). 
4.  f = J × B − ρ∇ψ −m∇Ψ  Equations of mechanical force (C). 
5.  B = H + M  Equations of magnetization (D). 
6.  ∇ ×  H = J  Equations of electric currents (E). 
7.  D = εE  Equation of electric displacement (F). 
8.  j = σE  Equation for current of conduction (Ohm's Law) (G). 
9.  J = j + ∂D/∂t  Equation of the total current (H); which can also be 

written as J = (σ + ε∂/∂t)E (I). 
10. ∇ ⋅ D = ρ  Equation for the electric volume-density (J); and an 

equation for electric surface-density (K). 
11. B = µH  Equation of induced magnetization (L). 
12. ∇ ⋅ M = m  Equation for the magnetic volume-density. 
13. H = −∇Ψ  Equation for H when J = 0. 



"[These equations] may be combined so as to eliminate some 
of these quantities, but our objective at present is not to 
obtain compactness in the mathematical formulae, but to 
express every relation of which we have any knowledge.  To 
eliminate a quantity which expresses a useful idea would be 
rather a loss than a gain in this stage of our enquiry."  

Key Characteristics of Maxwell's Theory 

• Essentially macroscopic:  basic concepts of field, charge, and current have 
macroscopic meanings; treats matter and ether as single continuous medium 
with macroscopic properties. 

• Recognizes that a more detailed microscopic picture of the connection 
between ether and matter is needed. 

Maxwell's Innovations 

• New geometrization of Faraday's and Thomson's field concepts. 

• Distinction between quantity and intensity. 

• Concept of displacement current. 

• Unification of optics, electricity, and magnetism. 


