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28 Physics and chance

sudden change of the motion into one in which macroscopic convection
of the fluid sets in. If one carefully controls the experiment, the convection
takes the form of the creation of stable hexagonal convection cells that
transmit heat from the hotter to the cooler plate by a stable, steady-state,
flow of heated matter. More complex situations. can be generated by
using solutions of a variety of chemicals that can chemically combine
with one another and dissociate chemically from one another. Here, by
varying chemical concentrations, temperatures, and so on, one can gen-
erate cases of steady-state flow, of oscillatory behavior with repetitive
order both in space and in time, or of bifurcation in which the system
jumps into one or another of a variety of possible self-sustaining flows,
and so on.

There is at least some speculative possibility that the existence of such
“self-organizing” phenomena as those described may play an important
role in biological phenomena (biological clocks as generated by oscilla-
tory flows, spatial organization of an initially spatially homogeneous mass
by random change into a then self-stabilizing spatially inhomogeneous
organization, and so on).

II. Kinetic theory

1. Early kinetic theory

Just as the theory of heat as internal energy continued to be speculated
on and espoused, even during the period in which the substantival-
caloric theory dominated the scientific consensus, so throughout the caloric
period there appeared numerous speculations about just what kind of
internal motion constituted that energy that took the form of heat. Here,
the particular theory of heat offered was plainly dependent upon one’s
conception of the micro-constitution of matter. Someone who held to a
continuum account, taking matter as continuous even at the micro-level,
might think of heat as a kind of oscillation or vibration of the matter.
Even an advocate of discreteness — of the constitution of matter out of
discrete atoms ~ would have a wide variety of choices, especially be-
cause the defenders of atomism were frequently enamored of complex
models in which the atoms of matter were held in place relative to one
another by surrounding clouds of aether or something of that sort.

As early as 1738, D. Bernoulli, in his Hydrodynamics, proposed the
model of a gas as constituted of microscopic particles in rapid motion.
Assuming their uniform velocity, he was able to derive the inverse rela-
tionship of pressure and volume at constant temperature. Furthermore,
he reflected on the ability of increasing temperature to increase pressure
at a constant volume (or density) of the gas, and indicated that the
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square of the velocity of the moving particles, all taken as having a
common identical velocity, would be proportional to temperature. Yet
the caloric theory remained dominant throughout the eighteenth century.

The unfortunate indifference of the scientific community to Bernoulli’s
work was compounded by the dismaying tragi-comedy of Herepath and
Waterston in the nineteenth century. In 1820, W. Herepath submitted a
paper to the Royal Society, again deriving the ideal gas laws from the
model of independently moving particles of a fixed velocity. He identi-
fied heat with internal motion, but apparently took temperature as pro-
portional to particle velocity instead of particle energy. He was able to
offer qualitative accounts of numerous familiar phenomena by means of
this model (such as change of state, diffusion, and the existence of sound
waves). The Royal Society rejected the paper for publication, and al-
though it appeared elsewhere, it had little influence. (]J. Joule later read
Herepath’s work and in fact published a piece explaining and defending
it in 1848, a piece that did succeed, to a degree, in stimulating interest
in Herepath’s work.)

J. Waterston published a number of his ideas in a similar vein in a
book in 1843. The contents of the kinetic ideas were communicated to
the Royal Society in 1845. The paper was judged “nothing but nonsense”
by one referee, but it was read to the Society in 1846 (although not by
Waterston, who was a civil servant in India), and an abstract was pub-
lished in that year. Waterston gets the proportionality of temperature
to square of velocity right, understands that in a gas that is a mixture
of particles of different masses, the energy of each particle will still be
the same, and even (although with mistakes) calculates on the model
the ratio of specific heat at constant pressure to that at constant volume.
The work was once again ignored by the scientific community.

Finally, in 1856, A. Kronig's paper stimulated interest in the kinetic
theory, although the paper adds nothing to the previous work of Bermoulli,
Herepath, Waterston, and Joule. Of major importance was the fact that
Kronig’s paper may have been the stimulus for the important papers of
Clausius in 1857 and 1858. Clausius generalized from Krénig, who had
idealized the motion of particles as all being along the axes of a box, by
allowing any direction of motion for a particle. He also allowed, as Kronig
and the others did not, for energy to be in the form of rotation of the
molecular particles or in vibrational states of them, as well as in energy
of translational motion. Even more important was his resolution of a
puzzle with the kinetic theory. If one calculates the velocity to be ex-
pected of a particle, it is sufficiently high that one would expect particles
released at one end of a room to be quickly found at the other. Yet the
diffusion of one gas through another is much slower than one would
expect on this basis. Clausius pointed out that the key to the solution was
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in molecular collisions, and introduced the notion of mean free path —
the average distance a molecule could be expected to travel between
one collision and another.

The growing receptiveness of the scientific community to the kinetic
theory was founded in large part, of course, on both the convincing
quantitative evidence of the interconvertibility of heat and overt me-
chanical energy with the conservation of their sum, and on the large
body of evidence for the atomic constitution of matter coming from other
areas of science (chemistry, electro-chemistry, and so on).

2. Maxuwell

In 1860, J. Maxwell made several major contributions to kinetic theory.
In this paper we find the first language of a sort that could be interpreted
in a probabilistic or statistical vein. Here for the first time the nature of
possible collisions between molecules is studied, and the notion of the
probabilities of outcomes treated. (What such reference to probabilities
might mean is something we will leave for Section II,5 of this chapter.)
Although earlier theories generally operated on some assumption of
uniformity with regard to the velocities of molecules, Maxwell for the
first time takes up the question of just what kind of distribution of veloci-
ties of the molecules we ought to expect at equilibrium, and answers it
by invoking assumptions of probabilistic nature.

Maxwell realizes that even if the speeds of all molecules were the
same at one instant, this distribution would soon end, because in collision
the molecules would “on average” not end up with identical speeds. He
then asks what the distribution of speeds ought to be taken to be. The
basic assumptions he needs to derive his result are that in collisions, all
directions of impact are equally likely, and the additional posit that for
any three directions at right angles to one another, the distribution law
for the components of velocity will be identical. This is equivalent to the
claim that the components in the y and z directions are “probabilistically
independent” of the component in the x direction. From these assump-
tions he is able to show that “after a great number of collisions among
a great number of identical particles,” the “average number of particles
whose velocities lie among given limits” will be given by the famous
Maxwell law:

Number of molecules with velocities between v and v + dv =
Av? exp(—v¥/ bdv

It is of historical interest that Maxwell may very well have been influ-
enced by the recently published theory of errors of R. Adrian, K. Gauss,
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and A. Quetelet in being inspired to derive the law. Maxwell is also
aware that his second assumption, needed to derive the law, is, as he
puts it in an 1867 paper, “precarious,” and that a more convincing
derivation of the equilibrium velocity distribution would be welcome.

But the derivation of the equilibrium velocity distribution law is not
Maxwell’s only accomplishment in the 1860 paper. He also takes up
the problem of transport. If numbers of molecules change their density
from place to place, we will have transport of mass. But even if density
stays constant, we can have transfer of energy from place to place by
molecular collision, which is heat conduction, or transfer of momentum
from place to place, which is viscosity. Making a number of “randomness”
assumptions, Maxwell derives an expression for viscosity. His derivation
contained flaws, however, and was later criticized by Clausius.

An improved theory of transport was presented by Maxwell in an 1866
paper. Here he offered a general theory of transport, a theory that once
again relied upon “randomness” assumptions regarding the initial condi-
tions of the interaction of molecules on one another. And he provided
a detailed study of the result of any such molecular interaction. The
resulting formula depends upon the nature of the potential governing
molecular interaction, and on the relative velocities of the molecules,
which, given non-equilibrium, have an unknown distribution. But for a
particular choice of that potential — the so-called Maxwell potential, which
is of inverse fifth power in the molecular separation — the relative velocities
drop out and the resulting integrals are exactly solvable. Maxwell was
able to show that the Maxwell distribution is one that will be stationary
— that is, unchanging with time, and that this is so independently of the
details of the force law among the molecules. A symmetry postulate on
cycles of transfers of molecules from one velocity range to another allows
him to argue that this distribution is the unique such stationary distri-
bution. Here, then, we have a new rationale for the standard equilibrium
distribution, less “precarious” than that offered in the 1860 paper.

The paper then applies the fundamental results just obtained to a
variety of transport problems: heat conduction, viscosity, diffusion of one
gas into another, and so on. The new theory allows one to calculate from
basic micro-quantities the values of the “transport coefficients,” numbers
introduced into the familiar macroscopic equations of viscous flow, heat
conduction, and so on by experimental determination. This allows for a
comparison of the results of the new theory with observational data,
although the difficulties encountered in calculating exact values in the
theory, both mathematical and due to the need to make dubious as-
sumptions about micro-features, and the difficulties in exact experimen-
tal determination of the relevant constants, make the comparison less
definitive than one would wish.
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3. Boltzmann

In 1868, L. Boltzmann published the first of his seminal contributions to
kinetic theory. In this piece he generalizes the equilibrium distribution
for velocity found by Maxwell to the case where the gas is subjected to
an external potential, such as the gravitational field, and justifies the
distribution by arguments paralleling those of Maxwell’s 1866 paper.

In the second section of this paper he presents an alternative deri-
vation of the equilibrium distribution, which, ignoring collisions and
kinetics, resorts to a method reminiscent of Maxwell’s first derivation. By
assuming that the “probability” that a molecule is to be found in a region
of space and that momentum is proportional to the “size” of that region,
the usual results of equilibrium can once again be reconstructed.

In a crucially important paper of 1872, Boltzmann takes up the prob-
lem of non-equilibrium, the approach to equilibrium, and the “explana-
tion” of the irreversible behavior described by the thermodynamic Second
Law. The core of Boltzmann’s approach lies in the notion of the distri-
bution function f(x,2) that specifies the density of particles in a given
energy range. That is, f(2x,?) is taken as the number of particles between
some specified value of the energy x and x + dx. He seeks a differential
equation that will specify, given the structure of this function at any time,
its rate of change at that time.

The distribution function will change because the molecules collide
and exchange energy with one another. So the equation should have a
term telling us how collisions effect the distribution of energy. To derive
this, some assumptions are made that essentially restrict the equation to
a particular constitution of the gas and situations of it. For example, the
original equation deals with a gas that is, initially, spatially homogene-
ous. One can generalize out of this situation by letting f be a function
of position as well as of energy and time. If one does so, one will need
to supplement the collision term on the right-hand side of the equation
by a “streaming” term that takes account of the fact that even without
collisions the gas will have its distribution in space changed by the motion
of the molecules unimpeded aside from reflection at the container walls.
The original Boltzmann equation also assumes that the gas is sufficiently
dilute, so that only interactions of two particles at a time withone another
need be considered. Three and more particle collisions/interactions need
not be taken into account. In Section 111,6,1 1 will note attempts at gen-
eralizing beyond this constraint.

In order to know how the energy distribution will change with time,
we need to know how many molecules of one velocity will meet how
many molecules of some other specified velocity (and at what angles) in
any unit of time. The fundamental assumption Boltzmann makes here
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is the famous Stosszablansatz, or Postulate with Regard to Numbers
of Collisions. One assumes the absence of any “correlation” among
molecules of given velocities, or, in other words, that collisions will be
“totally random.” At any time, then, the number of collisions of molecules
of velocity v, and v, that meet will depend only on the proportion of
molecules in the gas that have the respective velocities, the density of the
gas, and the proportion of volume swept out by one of the molecules.
This — along with an additional postulate that any collision is matched
by a time-reverse collision in which the output molecules of the first
collision would, if their directions were reversed, meet and generate as
output molecules that have the same speed and reverse direction of the
input molecules of collisions of the first kind (a postulate that can be
somewhat weakened to allow “cycles” of collisions) — gives Boltzmann
his famous kinetic equation:

[%] = [@3ofaQo@lo, - vl K - fufD
at coll

Here the equation is written in terms of velocity, rather than in terms
of energy, as it was expressed in Boltzmann’s paper. What this equation
describes is the fraction of molecules with velocity v,, f; changing over
time. A molecule of velocity v, might meet a molecule of velocity v, and
be knocked into some new velocity. On the other hand, molecules of
velocities v] and v; will be such that in some collisions of them there will
be the output of a molecule of velocity v,. The number f, gives the
fraction of molecules of velocity v,, and the numbers f7, and f; give the
respective fractions for molecules of velocities v and v;. The term 6(Q)
is determined by the nature of the molecular collisions, and rest of the
apparatus on the right-hand side is designed to take account of all the
possible ways in which the collisions can occur (because of the fact that
molecules can collide with their velocities at various angles from one
another).

The crucial assumption is that the rate of collisions in which a mol-
ecule of velocity v; meets one of velocity v,, f(v,,v,), is proportional to
the product of the fraction of molecules having the respective velocities,
so that it can be written as f(2,)f(v,). The two terms, f; f{ and —f, f;,
on the right-hand side of the equation can then be shown to characterize
the number of collisions that drive molecules into a particular velocity
range from another velocity range, and the number of those that delete
molecules from that range into the other, the difference being the net
positive change of numbers of molecules in the given range.

Introducing the Maxwell-Boltzmann equilibrium velocity distribution
function into the equation immediately produces the result that it is
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stationary in time, duplicating Maxwell’s earlier rationalization of this
distribution by means of his transfer equations.

But how can we know if this standard equilibrium distribution is the
only stationary solution to the equation? Knowing this is essential to
justifying the claim that the discovery of the kinetic equation finally
provides the micro-mechanical explanation for the fundamental fact of
thermodynamics: the existence of a unique equilibrium state that will
be ceaselessly and monotonically approached from any non-equilibrium
state. It is to justifying the claim that the Maxwell-Boltzmann distribution
is the unique stationary solution of the kinetic equation that Boltzmann
turns.

To carry out the proof, Boltzmann introduces a quantity he calls E. The
notation later changes to H, the standard notation, so we will call it that.
The definition of His arrived at by writing f(x,?) as a function of velocity:

H= [d*uyfw,) log fu,)

Intuitively, H is a measure of how “spread out” the distribution in
velocities of the molecules is. The logarithmic aspect of it has the virtue
that the total spread-outness of two independent samples proves to be
the sum of their individual spreads. Boltzmann is able to show this as
long as f(z,t) obeys the kinetic equation,

dH/dt £ 0

and that dH/dt = 0 only when the distribution function has its equilib-
rium form. Here, then, is the needed proof that the equilibrium distribu-
tion is the uniquely stationary solution to the kinetic equation.

4. Objections to kinetic theory

The atomistic-mechanistic account of thermal phenomena posited by the
kinetic theory received a hostile reception from a segment of the scien-
tific community whose two most prominent members were E. Mach and
P. Duhem. Their objection to the theory was the result of two program-
matic themes, distinct themes whose difference was not always clearly
recognized by their exponents.

One theme was a general phenomenalistic-instrumentalistic approach
to science. From this point of view, the purpose of science is the pro-
duction of simple, compact, lawlike generalizations that summarize the
fundamental regularities among items of observable experience. This view
of theories was skeptical of the postulation of unobservable “hidden”
entities in general, and so, not surprisingly, was skeptical of the postulation



Historical sketch 35

of molecules and their motion as the hidden ground of the familiar
phenomenological laws of thermodynamics.

The other theme was a rejection of the demand, common especially
among English Newtonians, that all phenomena ultimately receive their
explanation within the framework of the mechanical picture of the world.
Here the argument was that the discovery of optical, thermal, electric,
and magnetic phenomena showed us that mechanics was the appropriate
scientific treatment for only a portion of the world’s phenomena. From
this point of view, kinetic theory was a misguided attempt to assimilate
the distinctive theory of heat to a universal mechanical model.

There was certainly confusion in the view that a phenomenalistic-
instrumentalistic approach to theories required in any way the rejec-
tion of atomism, which is, after all, a theory that can be given a
phenomenalistic-instrumentalistic philosophical reading if one is so in-
clined. Furthermore, from the standpoint of hindsight we can see that the
anti-mechanistic stance was an impediment to scientific progress where
the theory of heat was concerned. It is only fair to note, however, that
the anti-mechanist rejection of any attempt to found electromagnetic theory
upon some mechanical model of motion in the aether did indeed turn
out to be the route justified by later scientific developments.

More important, from our point of view, than these philosophical-
methodological objections to the kinetic theory were specific technical
objections to the consistency of the theory’s basic postulates with the
mechanical theory of atomic motion that underlay the theory. The first
difficulty for kinetic theory, a difficulty in particular for its account of the
irreversibility of thermal phenomena, seems to have been initially noted
by Maxwell himself in correspondence and by W. Thomson in publica-
tion in 1874. The problem came to Boltzmann’s attention through a point
made by J. Loschmidt in 1876—77 both in publication and in discussion
with Boltzmann. This is the so-called Umkebreinwand, or Reversibility
Objection.

Boltzmann’s H-Theorem seems to say that a gas started in any non-
equilibrium velocity distribution must monotonically move closer and
closer to equilibrium. Once in equilibrium, a gas must stay there. But
imagine the micro-state of a gas that has reached equilibrium from some
non-equilibrium state, the gas energetically isolated from the surround-
ing environment during the entire process. The laws of mechanics
guarantee to us that a gas whose micro-state consists of one just like the
equilibrium gas — except that the direction of motion of each constituent
molecule is reversed — will trace a path through micro-states that are
each the “reverse” of those traced by the first gas in its motion toward
equilibrium. But because H s indifferent to the direction of motion of the
molecules and depends only upon the distribution of their speeds, this
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b

.

S(b) > S(a)

S(b") > S(a)

Figure 2-1. Loschmidt’s reversibility argument. Let a system be started in
micro-state a and evolve to micro-state b. Suppose, as is expected, the entropy
of state b, S(b) is higher than that of state a, S(a). Then, given the time-reversal
invariance of the underlying dynamical laws that govern the evolution of the
system, there must be a micro-state b’, that evolves to a micro-state a’ and such
that the entropy of b’, S(b”), equals that of b and the entropy of a’ equals that
of a, S(a’), (as Boltzmann defines statistical entropy). So for each “thermo-
dynamic” evolution in which entropy increases, there must be a corresponding
“anti-thermodynamic” evolution possible in which entropy decreases.

means that the second gas will evolve, monotonically, away from its
equilibrium state. Therefore, Boltzmann’s H-theorem is incompatible with
the laws of the underlying micro-mechanics. (See Figure 2-1.)

A second fundamental objection to Boltzmann’s alleged demonstration
of irreversibility only arose some time after Maxwell and Boltzmann had
both offered their “reinterpretation” of the kinetic theory to overcome the
Reversibility Objection. In 1889, H. Poincaré proved a fundamental
theorem on the stability of motion that is governed by the laws of
Newtonian mechanics. The theorem only applied to a system whose
energy is constant and the motion of whose constituents is spatially
bounded. But a system of molecules in a box that is energetically isolated
from its environment fits Poincaré’s conditions. Let the system be started
at a given time in a particular mechanical state. Then, except for a
“vanishingly small” number of initial states (we shall say what this means
in Section 3,I,3), the system will eventually evolve in such a way as to
return to states as close to the initial state as one specifies. Indeed, it will
return to an arbitrary degree of closeness an unbounded number of
times. (See Figure 2-2.)

In 1896, E. Zermelo applied the theorem to generate the
Wiederkebreinwand, or Recurrence Objection, to Boltzmann's mechani-
cally derived H-Theorem. The H-Theorem seems to say that a system
started in non-equilibrium state must monotonically approach equilib-
rium. But, according to Poincaré’s Recurrence Theorem, such a system,
started in non-equilibrium, if it does get closer to equilibrium, must at
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Figure 2-2. Poincaré recurrence. We work in phase-space

where a single point represents the exact microscopic state E p

of a system at a given time — say the position and velocity of \
every molecule in a gas. Poincaré shows for certain systems, !
such as a gas confined in a box and energetically isolated e

from the outside world, that if the system starts in a certain

microscopic state o, then, except for a “vanishingly small” number of such initial
states, when the system’s evolution is followed out along a curve p, the system
will be found, for any small region E of micro-states around the original micro-
state o to return to a micro-state in that small region E. Thus, “almost all” such
systems started in a given state will eventually return to a microscopic state “very
close” to that initial state.

some point get back to a state mechanically as close to its initial state as
one likes. But such a state would have a value of H as close to the initial
value as one likes as well. Hence Boltzmann’s demonstration of neces-
sary monotonic approach to equilibrium is incompatible with the funda-
mental mechanical laws of molecular motion.

5. The probabilistic interpretation of the theory

The result of the criticisms launched against the theory, as well as of
Maxwell’s own critical examination of it, was the development by Maxwell,
Boltzmann, and others of the probabilistic version of the theory. Was this
a revision of the original theory or merely an explication of what Clausius,
Maxwell, and Boltzmann had meant all along? It isn’t clear that the ques-
tion has any definitive answer. Suffice it to say that the discovery of the
Reversibility and Recurrence Objections prompted the discoverers of the
theory to present their results in an enlightening way that revealed more
clearly what was going on than did the original presentation of the theory.

As we relate what Maxwell, Boltzmann, and others said, the reader will
find himself quite often puzzled as to just how to understand what they
meant. The language here becomes fraught with ambiguity and concep-
tual obscurity. But it is not my purpose here either to lay out all the
possible things they might have meant, or to decide just which of the
many understandings of their words we ought to attribute to them. Again,
I doubt if there is any definitive answer to those questions. We shall
be exploring a variety of possible meanings in detail in Chapters 5, 6,
and 7.

Throughout this section it is important to keep in mind that what was
primarily at stake here was the attempt to show that the apparent con-
tradiction of the kinetic theory with underlying micro-mechanics could
be avoided. That is not the same thing at all as showing that the theory
is correct, nor of explaining why it is correct. We will see here, however,
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how some of the fundamental problems of rationalizing belief in the
theory and of offering an account as to why it is correct received their
early formulations.

Maxwell’s probabilism. In a train of thought beginning around 1867,
Maxwell contemplated the degree to which the irreversibility expressed
by the Second Law is inviolable. From the new kinetic point of view, the
flow of heat from hot to cold is only the mixing of molecules faster on
the average with those slower on the average. Consider a Demon cap-
able of seeing molecules individually approaching a hole in a partition
and capable of opening and closing the hole with a door, his choice
depending on the velocity of the approaching molecule. Such an imagined
creature could sort the molecules into fast on the right and slow on the
left, thereby sorting a gas originally at a common temperature on both
sides into a compartment of hot gas and a compartment of cold gas. And
doing this would not require overt mechanical work, or at least not the
amount of this demanded by the usual Second Law considerations. From
this and related arguments, Maxwell concludes that the Second Law has
“only a statistical certainty.”

Whether a Maxwell Demon could really exist, even in principle,
became in later years a subject of much discussion. L. Brillouin and
L. Szilard offered arguments designed to show that the Demon would
generate more entropy in identifying the correct particles to pass through
and the correct particles to block than would be reduced by the sorting
process, thereby saving the Second Law from the Demon’s subversion.
Later, arguments were offered to show that Demon-like constructions
could avoid that kind of entropic increase as the result of the Demon’s
process of knowledge accrual.

More recently, another attack had been launched on the very possibility
of an “in principle” Maxwell Demon. In these works it is argued that after
each molecule has been sorted, the Demon must reset itself. The idea is
that the Demon, in order to carry out its sorting act, must first register in
a memory the fact that it is one sort of particle or the other with which
it is dealing. After dealing with this particle, the Demon must “erase” its
memory in order to have a blank memory space available to record the
status of the next particle encountered. R. Landauer and others have
argued that this “erasure” process is one in which entropy is generated
by the Demon and fed into its environment. It is this entropy generation,
they argue, that more than compensates for the entropy reduction
accomplished by the single act of sorting.

In his later work, Maxwell frequently claims that the irreversibility
captured by the Second Law is only “statistically true” or “true on the
average.” At the same time he usually seems to speak as though the
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notions of randomness and irregularity he invokes to explain this are
only due to limitations on our knowledge of the exact trajectories of the
“in principle” perfectly deterministic, molecular motions. Later popular
writings, however, do speak, if vaguely, in terms of some kind of under-
lying “objective” indeterminism.

Boltzmann’s probabilism. Stimulated originally by his discussions
with Loschmidt, Boltzmann began a process of rethinking of his and
Maxwell’s results on the nature of equilibrium and of his views on the
nature of the process that drives systems to the equilibrium state. Various
probabilistic and statistical notions were introduced without it being always
completely clear what these notions meant. Ultimately, a radically new
and curious picture of the irreversible approach of systems (and of “the
world”) toward equilibrium emerged in Boltzmann’'s writings.

One paper of 1877 replied specifically to Loschmidt’s version of the
Reversibility Objection. How can the H-Theorem be understood in
light of the clear truth of the time reversibility of the underlying micro-
mechanics?

First, Boltzmann admits, it must be clear that the evolution of a system
from a given micro-state will depend upon the specific micro-state that
serves to fix the initial conditions that must be introduced into the equa-
tions of dynamical evolution to determine the evolution of the system.
Must we then, in order to derive the kinetic equation underlying the
Second Law of Thermodynamics, posit the existence of specific, special
initial conditions for all gases? Boltzmann argues that we can avoid this
by taking the statistical viewpoint. It is certainly true that every individual
micro-state has the same probability. But there are vastly more micro-
states corresponding to the macroscopic conditions of the system being
in (or very near) equilibrium than there are numbers of micro-states
corresponding to non-equilibrium conditions of the system. If we choose
initial conditions at random, then, given a specified time interval, there
will be many more of the randomly chosen initial states that lead to a
uniform, equilibrium, micro-state at the later time than there will be
initial states that lead to a non-equilibrium state at the later time. It is
worth noting that arguments in a similar vein had already appeared in a
paper of Thomson’s published in 1874.

In his 1877 paper, Boltzmann remarks that “one could even calculate,
from the relative numbers of different state distributions, their probabili-
ties, which might lead to an interesting method for the calculation of
thermal equilibrium.” He develops this idea in another paper also pub-
lished in 1877.

Here the method familiar to generations of students of elementary
kinetic theory is introduced. One divides the available energy up into
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small finite intervals. One imagines the molecules distributed with so-
and-so many molecules in each energy range. A weighing factor is intro-
duced that converts the problem, instead, into imagining the momentum
divided up into the equal small ranges. One then considers all of the
ways in which molecules can be placed in the momentum boxes, always
keeping the number of molecules and the total energy constant. Now
consider a state defined by a distribution, a specification of the number
of molecules in each momentum box. For a large number of particles
and boxes, one such distribution will be obtained by a vastly larger
number of assignments of molecules to boxes than will any other such
distribution. Call the probability of a distribution the number of ways it
can be obtained by assignments of molecules to boxes. Then one distri-
bution is the overwhelmingly most probable distribution. Let the number
of boxes go to infinity and the size of the boxes go to zero and one
discovers that the energy distribution among the molecules correspond-
ing to this overwhelmingly probable distribution is the familiar Maxwell-
Boltzmann equilibrium distribution. (See Figure 2-3.)

It is clear that Boltzmann’s method for calculating the equilibrium dis-
tribution here is something of a return to Maxwell’s first method and
away from the approach that takes equilibrium to be specified as the
unique stationary solution of the kinetic equation. As such it shares
“precariousness” with Maxwell’s original argument. But more has been
learned by this time. It is clear to Boltzmann, for example, that one must
put the molecules into equal momentum boxes, and not energy boxes as
one might expect, in order to calculate the probability of a state. His
awareness of this stems from considerations of collisions and dynamics
that tell us that it is only the former method that will lead to stationary
distributions and not the latter. And, as we shall see in the next section,
Boltzmann is also aware of other considerations that associate probabil-
ity with dynamics in a non-arbitrary way, considerations that only be-
come fully developed shortly after the second 1877 paper appeared.

Combining the definition of H introduced in the paper on the kinetic
equation, the calculated monotonic decrease of H implied by that
equation, the role of entropy, S, in thermodynamics (suggesting that S in
some sense is to be associated with —H), and the new notion of prob-
ability of a state, W, Boltzmann writes for the first time the equation that
subsequently became familiar as § = —K logW. The entropy of a macro-
state is determined simply by the number of ways in which the macro-
state can be obtained by arrangements of the constituent molecules of
the system. As it stands, much needs to be done, however, to make this
“definition” of entropy fully coherent.

One problem — by no means the only one — with this new way of
viewing things is the use of “probability.” Botzmann is not oblivious to
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Figure 2-3. Boltzmann entropy. Box A (and Box B) represent all possible
values of position x and momentum p a molecule of gas might have. This “mo-
lecular phase space” is divided up into small sub-boxes. In the theory, these sub-
boxes are of small size relative to the size of the entire molecular phase space
but large enough so that many molecules will generally be in each box for any
reasonable micro-state of the gas. An arrangement of molecules into boxes like
that of Fig. A can be obtained by many permutations of distinct molecules into
boxes. But an arrangement like that of Fig. B can be obtained only by a much
smaller number of permutations. So the Boltzmann entropy for arrangement A is
much higher than that for arrangement B. The equilibrium momentum distribu-
tion (the Maxwell-Boltzmann distribution) corresponds to the arrangement that
is obtainable by the maximum number of permutations, subject to the constraints
that total number of molecules and total energy of molecules remain constant.

the ambiguities latent in using that term. As early as 1881 he distin-
guished between “probability” as he means it, taking that to be “the time
during which the system possesses this condition on the average,” and
as he takes Maxwell to mean it as “the ratio of the number of [innumer-
able similarly constituted systems] which are in that condition to the total
number of systems.” This is an issue to which we will return again and
again.

Over the years, Boltzmann’s account of irreversibility continues to
evolve, partly inspired by the need to respond to critical discussion of his
and Maxwell’s ideas, especially in England, and partly due to his own
ruminations on the subject. To what extent can one stand by the new,
statistical reading of the H-Theorem, now taken to be read as describing
the “overwhelmingly probable” course of evolution of a system from
“less probable” states to “more probable” states? Once again, we are
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using states here not to mean micro-states, all of which are taken as
equally probable, but states defined by numbers of particles in a given
momentum range.

Most disturbing to this view is a problem posed by E. Culverwell in
1890. Boltzmann’s new statistical interpretation of the H-Theorem seems
to tell us that we ought to consider transitions from micro-states corres-
ponding to a non-equilibrium macro-condition to micro-states corres-
ponding to a condition closer to equilibrium as more “probable” than
transitions of the reverse kind. But if, as Boltzmann would have us be-
lieve, all micro-states have equal probability, this seems impossible. For
given any pair of micro-states, S;, S,, such that S, evolves to S, after a
certain time interval, there will be a pair S;, S — the states obtained by
reversing the directions of motion in the respective original micro-states
while keeping speeds and positions constant — such that S; is closer to
equilibrium than §7, and yet S; evolves to S over the same time interval.
So “anti-kinetic” transitions should be as probable as “kinetic” transitions.

Some of the discussants went on to examine how irreversibility was
introduced into the kinetic equation in the first place. Others suggested
that the true account of irreversibility would require some kind of “fric-
tion” in the system, either in form of energy of motion of the molecules
interchanging with the aether or with the external environment.

In a letter of 1895, Boltzmann gave his view of the matter. This re-
quired, once again, a reinterpretation of the meaning of his kinetic equa-
tion and of its H-Theorem, and the introduction of several new hypotheses
as well. These latter hypotheses, as the reader will discern, are of an
unexpected kind, and, perhaps, unique in their nature in the history of
science.

In this new picture, Boltzmann gives up the idea that the value of H
will ever monotonically decrease from an initial micro-state. But it is still
true that a system, in an initial improbable micro-state, will probably be
found at any later time in a micro-state closer to equilibrium. As Culverwell
himself points out, commenting on Boltzmann’s letter, the trick is to
realize that if we examine the system over a vast amount of time, the
system will nearly always be in a close-to-equilibrium state. Although it
is true that there will be as many excursions from a close-to-equilibrium
micro-state to a state further from equilibrium as there will be of the
reverse kind of transition, it is still true that giver a micro-state far from
equilibrium as the starting point, at a later time we ought to expect the
system to be in a micro-state closer to equilibrium. (See Figure 2-4.)

But the theory of evolution under collision is now time-symmetric! For
it will also be true that given a micro-state far from equilibrium at one
time, we ought, on probabilistic grounds, to expect it to have been closer
to equilibrium at any given past time. The theory is also paradoxical in



Historical sketch 43

Smax

\'s vV vV

Ssystem .

Figure 2-4. Time-symmetric Boltzmann picture. In this picture of the world,
it is proposed that an isolated system “over infinite time” spend nearly all the
time in states whose entropy S, is close to the maximum value S, — that is,
in the equilibrium state. There are random fluctuations of the system away from
equilibrium. The greater the fluctuation of a system from equilibrium, the less
frequently it occurs. The picture is symmetrical in time. If we find a system far
from equilibrium, we ought to expect that in the future it will be closer to
equilibrium. But we ought also to infer that in the past it was also closer to
equilibrium.

that it tells us that equilibrium is overwhelmingly probable. Isn’t this a
curious conclusion to come to in a world that we find to be grossly
distant from equilibrium?

Boltzmann takes up the latter paradox in his 1895 letter. He attributes
to his assistant, Dr. Schuetz, the idea that the universe is an eternal
system that is, overall, in equilibrium. “Small” regions of it, for “short”
intervals of time will, improbably, be found in a state far from equilib-
rium. Perhaps the region of the cosmos observationally available to us is
just such a rare fluctuation from the overwhelmingly probable equilib-
rium state that pervades the universe as a whole.

It is in 1896 that Zermelo’s application of the Poincaré Recurrence
Theorem is now invoked to cast doubt on the kinetic explanation of
irreversibility and Boltzmann responds to two short papers of Zermelo’s
with two short pieces of his own. Boltzmann’s 1896 paper points out that
the picture adopted in the 1895 letter of a system “almost always” near
equilibrium but fluctuating arbitrarily far from it, each kind of fluctuation
being the rarer the further it takes the system from equilibrium, is per-
fectly consistent with the Poincaré Recurrence Theorem.

The 1897 paper repeats the picture of the 1896 paper, but adds the
cosmological hypothesis of Dr. Schuetz to it. In this paper, Boltzmann
makes two other important suggestions. If the universe is mostly in
equilibrium, why do we find ourselves in a rare far-from-equilibrium
portion? The suggestion made is the first appearance of a now familiar
“transcendental” argument: Non-equilibrium is essential for the existence
of a sentient creature. Therefore a sentient creature could not find itself
existing in an equilibrium region, probable as this may be, for in such
regions no sentience can exist.

Even more important is Boltzmann’s answer to the following obvious
question: If the picture presented is now time-symmetrical, with every
piece of the path that represents the history of the system and that slopes
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toward equilibrium matched by a piece sloping away from equilibrium
to non-equilibrium, then why do we find ourselves in a portion of the
universe in which systems approach equilibrium from past to future?
Wouldn’t a world in which systems move from equilibrium to non-
equilibrium support sentience equally well? Here the response is one
already suggested by a phenomenological opponent of kinetic theory,
Mach, in 1889. What we mean by the future direction of time is the
direction of time in which our local region of the world is headed toward
equilibrium. There could very well be regions of the universe in which
entropic increase was counter-directed, so that one region had its entropy
increase in the direction of time in which the other region was moving
away from equilibrium. The inhabitants of those two regions would each
call the direction of time in which the entropy of their local region was
increasing the “future” direction of time! The combination of cosmological
speculation, transcendental deduction, and definitional dissolution in these
short remarks has been credited by many as one of the most ingenious
proposals in the history of science, and disparaged by others as the last,
patently desperate, ad hoc attempt to save an obviously failed theory.
We shall explore the issue in detail in Chapters 8 and 9, even if we will
not settle on which conclusion is correct.

6. The origins of the ensemble approach and of ergodic theory

There is another thread that runs through the work of Maxwell and
Boltzmann that we ought to follow up. As early as 1871, Boltzmann
describes a mechanical system, a particle driven by a potential of the
form +(ax*+ by?), where a/b is irrational, where the path of the point
in phase space that represents the motion of the particle will “go through
the entire surface” of the phase space to which the particle is confined
by its constant total energy. Here, by phase space we mean that abstract
multiple dimensional space each point of which specifies the total position-
momentum state of the system at any time. Boltzmann suggests that the
motion of the point representing a system of interacting molecules in a
gas, especially if the gas is acted upon by forces from the outside, will
display this same behavior:

The great irregularity of thermal motion, and the multiplicity of forces that act on
the body from the outside, make it probable that the atoms themselves, by virtue
of the motion that we call heat, pass through all possible positions and velocities
¢onsistent with the equation of kinetic energy. (See Figure 2-5.)

Given the truth of this claim, one can then derive such equilibrium
features as the equipartition of energy over all available degrees of free-
dom in a simple way. Identify the equilibrium value of a quantity with
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Figure 2-5. The Ergodic Hypothesis. Let a system be started in any micro-
state, represented by point a in the phase space. Let b represent any other micro-
state possible for the system. The Ergodic Hypothesis posits that at some future
time or other, the system started in state a will eventually pass through state b
as well. But the posit is in fact provable false.

its average over an infinite period of time, in accordance with Boltzmann’s
general approach of thinking of the “probability” of the system being in
a given phase as the proportion of time the system spends in that phase
over vast periods of time. If the system does indeed pass through every
phase in its evolution, then it is easy to calculate such infinite time aver-
ages by simply averaging over the value of the quantity in question for
each phase point, weighting regions of phase points according to a
measure that can easily be derived. (We will see the details Chapter 5.)
Here we see Boltzmann’s attempt to eliminate the seeming arbitrariness
of the probabilistic hypotheses used earlier to derive equilibrium features.

Maxwell, in a very important paper of 1879, introduces a new method
of calculating equilibrium properties that, he argues, will give a more
general derivation of an important result earlier obtained by Boltzmann
for special cases. The methods of Boltzmann’s earlier paper allowed one
to show, in the case of molecules that interact only upon collision, that
in equilibrium the equipartition property holds. This means that the total
kinetic energy available to the molecules of the gas will be distributed in
equal amounts among the “degrees of freedom” of motion available to
the molecules. Thus, in the case of simple point molecules all of whose
energy of motion is translational, the x, y, and z components of velocity
of all the molecules will represent, at equilibrium, the same proportion
of the total kinetic energy available to the molecules. Maxwell proposes
a method of calculating features of equilibrium from which the equiparti-
tion result can be obtained and that is independent of any assumption
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about the details of interaction of the molecules. It will apply even if
they exert force effects upon one another at long range due to potential
interaction.

Suppose we imagine an infinite number of systems, each compatible
with the macroscopic constraints imposed on a given system, but having
every possible micro-state compatible with those macroscopic constraints.
We can characterize a collection of possible micro-states at a time by a
region in the phase-space of points, each point corresponding to a given
possible micro-state. If we place a probability distribution over those
points at a time, we can then speak of “the probability that a member of
the collection of systems has its micro-state in a specified region at time
t.” With such a probability distribution, we can calculate the average
value, over the collection, of any quantity that is a function of the phase
value (such as the kinetic energy for a specified degree of freedom). The
dynamic equations will result in each member of this collection or en-
semble having its micro-state evolve, corresponding to a path among the
points in phase-space. In general, this dynamic evolution will result in
the probability that is assigned to a region of phase points changing with
time, as systems have their phases move into and out of that region.

There is one distribution for a given time, however, that is such that
the probability assigned to a region of phase points at a time will not
vary as time goes on, because the initial probability assigned at the initial
time to any collection of points that eventually evolves into the given
collection will be the same as the probability assigned the given collec-
tion at the initial time. So an average value of a phase-function computed
with this probability distribution will remain constant in time. If we iden-
tify equilibrium values with average values over the phase points, then
for this special probability assignment, the averages, hence the attributed
equilibrium values, will remain constant. This is as we would wish, be-
cause equilibrium quantities are constant in time. This special probability
assignment is such that the average value of the energy per degree of
freedom is the same for each degree of freedom, so that our identifica-
tion results in derivation of the equipartition theorem for equilibrium that
is dependent only upon the fundamental dynamical laws, our choice of
probability distribution, and our identification of equilibrium values with
averages over the ensemble. But the result is independent of any particu-
lar force law for the interaction of the molecules. (See Figure 2-6.)

Maxwell points out very clearly that although he can show that the
distribution he describes is one that will lead to constant probabilities
being assigned to a specified region of the phase points, he cannot
show, from dynamics alone, that it is the only such stationary distribu-
tion. One additional assumption easily allows that to be shown. The
assumption is that “a system if left to itself . . . will, sooner or later, pass
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Figure 2-6. Invariant probability distribution. The space T represents all
possible total micro-states of the system, each represented by a point of the
space. A probability distribution is assigned over the space. In a time At, the
systems whose points were originally in T ™' (A) have evolved in such a way that
their phase points have moved to region A. Only if, for each “measurable” A, the
total probability assigned to T~! (A) is equal to that of A will a specified region
of the phase space have a constant probability assigned to it as the systems
evolve.

through every phase consistent with the energy.” (How all this works we
will see in detail in Chapter 5.)

Furthermore, Maxwell asserts, the encounters of the system of articles
with the walls of the box will “introduce a disturbance into the motion
of the system, so that it will pass from one undisturbed path to another.”
He continues:

It is difficult in a case of such extreme complexity to arrive at a thoroughly
satisfactory conclusion, but we may with considerable confidence assert that
except for particular forms of the surface of the fixed obstacle, the system will
sooner or later, after a sufficient number of encounters pass through every phase
consistent with the equation of energy.

Here we have introduced the “ensemble” approach to statistical me-
chanics, considering infinite collections of systems all compatible with
the macroscopic constraints but having their micro-states take on every
possible value. And we have the identification of equilibrium quantities
with averages over this ensemble relative to a specified probability
assigned to any collection of micro-states at a given time. We also have
another one of the beginnings of the ergodic theory, that attempt to
rationalize, on the basis of the constitution of the system and its dynamical
laws, the legitimacy of the choice of one particular probability distribution
over the phases as the right one to use in calculating average values.
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In the 1884 paper, Boltzmann takes up the problem of the calculation
of equilibrium values (a paper in which the term “ergodic” appears for
the first time). Here he studies the differences between systems that will
stay confined to closed orbits in the available region of phase space, and
those that, like the hypothesized behavior of the swarm of molecules in
a gas, will be such that they will wander all over the energetically available
phase space, “passing through all phase points compatible with a given
energy.” In 1887 he utilizes the Maxwellian concept of an ensemble of
macroscopically similar systems whose micro-states at a time take on
every realizable possibility and the Maxwellian notion of a “stationary”
probability distribution over such a micro-state.

The justifiable roles of (1) collections of macroscopically similar sys-
tems whose micro-states take on every realizable value, of (2) probability
distributions over such collections, of stationary such probability distri-
butions, of (3) the identification of equilibrium values with averages of
quantities that are functions of the micro-state according to such prob-
ability measures, and of (4) the postulates that rationalize such a model
by means of some hypothesis about the “wandering of a system through
the whole of phase space allowed by energy” become, as we shall see,
a set of issues that continue to plague the foundations of the theory.

III. Gibbs’ statistical mechanics

1. Gibbs’ ensemble approach

J. Gibbs, in 1901, presented, in a single book of extraordinary compact-
ness and elegance, an approach to the problems we have been discuss-
ing that although taking off from the ensemble ideas of Boltzmann and
Maxwell, presents them in a rather different way and generalizes them in
an ingenious fashion.

Gibbs emphasizes the value of the methods of calculation of equilib-
rium quantities from stationary probability distributions reviewed in the
last section. He looks favorably on the ability of this approach to derive
the thermodynamic relations from the fundamental dynamical laws with-
out making dubious assumptions about the details of the inter-molecular
forces. He is skeptical that at the time, enough is known about the
detailed constitution of gases out of molecules to rely on hypotheses
about this constitution, and his skepticism is increased by results, well
known at the time, that seem in fact to refute either the kinetic theory or
the standard molecular models. In particular, the equipartition theorem
for energy gives the wrong results even for the simple case of diatomic
molecules. Degrees of freedom that ought to have their fair share of the
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energy at equilibrium seem to be totally ignored in the sharing out of
energy that actually goes on. This is a problem not resolved until the
underlying classical dynamics of the molecules is replaced by quantum
mechanics.

In Gibbs’ method we consider an infinite number of systems all having
their micro-states described by a set of generalized positions and momenta.
As an example, a monatomic gas with # molecules can be described by
6n such coordinates, 3 position and 3 momentum coordinates each for
each point molecule. In a space whose dimensionality is the number of
these positions and momenta taken together, a point represents a single
possible total micro-state of one of the systems. Given such a micro-state
at one time, the future evolution of the system having that micro-state is
given by a path from this representative point, and the future evolution
of the ensemble of systems can be viewed as a flow of points from those
representing the systems at one time to those dynamically determined to
represent the systems at a later time.

Suppose we assign a fraction of all the systems at a given time to a
particular collection of phase points at that time. Or, assign to each
region of phase points the probability that a system has its phase in
that region at the specified time. In general, the probability assigned
to a region will change as time goes on, as systems have their phase
points enter and leave the region in different numbers. But some as-
signments of probability will leave the probability assigned a region of
phases constant in time under the dynamic evolution. What are these
assignments?

Suppose we measure the size of a region of phase points in the most
natural way possible, as the “product” of its position and momentum
sizes, technically the integral over the region of the product of the dif-
ferentials. Consider a region at time ¢, of a certain size, measured in this
way. Let the time go to ¢, and see where the flow takes each system
whose phase point at ¢, was a boundary point of this region. Consider
the new region at ¢, bounded by the points that represent the new
phases of the “boundary systems.” It is easy to prove that this new region
is equal in “size” to the old.

Suppose we calculated the probability that a system is in a region at
a time by using a function of the phases, P(q,p), a probability density,
such that the probability the system is in region A at time ¢ is

[...[,Pap dq...dgndp,...dpn

What must P(q,p) be like,so that the probability assigned to region A4 is
invariant under dynamic evolution? We consider first the case where the
systems have any possible value of their internal energy. The requirement
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on P(q,p) that satisfies the demand for “statistical equilibrium” — that
is, for unchanging probability values to be attributed to regions of the
phase space — is simply that P should be a function of the ¢’s and p’s
that stays constant along the path that evolves from any given phase
point. If we deal with systems of constant energy, then any function P
that is constant for any set of systems of the same energy will do the
trick.

Gibbs suggests one particular such P function as being particularly
noteworthy:

P = exp(y — £/0)

where 0 and y are constants and € is the energy of the system. When
the ensemble of systems is so distributed in probability, Gibbs calls it
canonically distributed. When first presented, this distribution is con-
trasted with others that are formally unsatisfactory (the “sum” of the
probabilities diverges), but is otherwise presented as a posit. The justi-
fication for this special choice of form comes later.

Now consider, instead of a collection of systems each of which may
possess any specific energy, a collection all of whose members share a
common energy. The phase point for each of these systems at any time
is confined to a sub-space of the original phase space of one dimension
less than that of the full phase space. Call this sub-space, by analogy with
surfaces in three-dimensional space, the energy surface. The evolution of
each system in this new ensemble is now represented by a path from a
point on this surface that is confined to the surface.

Given a distribution of such points on the energy surface, how can
they be distributed in such a way that the probability assigned to any
region on the surface at a time is always equal to the probability assigned
to that region at any other time? Once again the answer is to assign
probabijlity in such a way that any region ever transformed by dynamical
evolution into another region is assigned the same probability as that
latter region at the initial time. Such a probability assignment had already
been noted by Boltzmann and Maxwell. It amounts to assigning equal
probabilities to the regions of equal volume between the energy surface
and a nearby energy surface, and then assigning probabilities to areas on
the surface in the ratios of the probabilities of the “pill box” regions
between nearby surfaces they bound. Gibbs calls such a probability dis-
tribution on an energy surface the micro-canonical ensemble.

There is a third Gibbsian ensemble — the grand canonical ensemble —
appropriate to the treatment of systems whose numbers of molecules of
a given kind are not constant, but we shall confine our attention to
ensembles of the first two kinds.
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2. The thermodynamic analogies

From the features of the canonical and micro-canonical ensembles we
will derive various equilibrium relations. This will require some associa-
tion of quantities calculable from the ensemble with the familiar thermo-
dynamic quantities such as volume (or other extensive magnitudes),
pressure (or other conjugate “forces”), temperature, and entropy. Gibbs
is quite cautious in offering any kind of physical rationale for the asso-
ciations he makes. He talks of “thermodynamic analogies” throughout his
work, maintaining only that there is a clear formal analogy between the
quantities he is able to derive from ensembles and the thermodynamic
variables. He avoids, as much as he can, both the Maxwell-Boltzmann
attempt to connect the macro-features with specific constitution of the
system out of its micro-parts, and avoids as well their attempt to some-
how rationalize or explain why the ensemble quantities serve to calcu-
late the thermodynamic quantities as well as they do.

He begins with the canonical ensemble. Let two ensembles, each
canonically distributed, be compared to an ensemble that represents a
system generated by the small energetic interaction of the two systems
represented by the original ensembles. The resulting distribution will be
stationary only if the 8’s of the two original ensembles are equal, giving
an analogy of 0 to temperature, because systems when connected ener-
getically stay in their initial equilibrium only if their temperatures are
equal.

The next analogy is derived by imagining the energy of the system,
which also functions in the specification of the canonical distribution, to
be determined by an adjustable external parameter. If we imagine every
system in the ensemble to have the same value of such an energy fixing
parameter, and ask how the canonical distribution changes for a small
change in the value of that parameter, always assuming the distribution
to remain canonical, we get a relation that looks like this:

d8 = —edﬁ—zldﬂl...—zndan

where 1} = ¢y — £/6, the a/s are the adjustable parameters, and the A4,’s
are given by A = —dge/da,. A bar over a quantity indicates that we are
taking its average value over the ensemble. If we compare this with the
thermodynamic,

de = TdS- Ada,—...— A, da,

we get the analogy of 0 as analogous to temperature, and -T as
analogous to entropy (where the A,da; terms are such terms as PdV, and
SO on).
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Next, Gibbs takes up the problem of how systems will be distributed
in their energies if they are represented by a canonical ensemble. The
main conclusion is that if we are dealing with systems with a very large
number of degrees of freedom, such as a system of gas molecules, then
we will find the greatest probability of a system having a given energy
centered closely around a mean energetic value.

This leads to the comparison of the canonical with the micro-canonical
ensemble, and eventually to a picture of the physical situations that the
two ensembles can plausibly be taken to represent. The conclusion Gibbs
comes to is that a canonical ensemble, with its constant, 6, analogous to
temperature, best represents a collection of identically structured systems
all in perfect energetic contact with an infinite heat bath at a constant
temperature. Here one would expect to find the systems closely clustered
(if they have many degrees of freedom) about a central value of their
energy, but with systems existing at all possible energies distributed around
this central value in the manner described by the canonical distribution.

The micro-canonical ensemble, on the other hand, seems to be the
appropriate representative of a collection of systems each perfectly
isolated energetically from the external world. In the former case, the
thermodynamic result of each system at a constant energy when in con-
tact with the heat bath is replaced by the idea of the systems having
varying energies closely centered around their thermodynamically pre-
dicted value. In the micro-canonical case the thermodynamic idea of an
energetically isolated system as in a perfect, unchanging equilibrium state
is replaced by that of systems whose components fluctuate from their
equilibrium values, but that are, with overwhelming probability, near
equilibrium and at equilibrium “on the average” over time. An examina-
tion of the fluctuation among components in an ensemble whose members
are micro-canonically distributed shows that these fluctuations will be
describable by a canonical distribution governed by the equilibrium tem-
perature of the isolated system:

One can find thermodynamic analogies for the micro-canonical en-
semble as one can for the canonical ensemble. The quantity “analogous”
to entropy turns out to be log V, where V'is the size of the phase space
region to which the points representing possible micro-states of the sys-
tem are confined by the macro specification of the system. Analogous to
temperature is de/dlogV, although, as Gibbs is careful to point out, there
are difficulties in this analogy when one comes to treating the joining
together of systems initially isolated from one another.

Gibbs is also careful to point out that there are frequently a number
of distinct quantities that converge to the same value when we let the
number of the degrees of freedom of the system “go to infinity.” When
we are dealing with systems with a finite number of degrees of freedom,
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one of these quantities may be most “analogous” to a thermodynamic
quantity in one context, whereas another one of them might, in its
functional behavior, be more analogous to that thermodynamic feature
in some other context.

Gibbs also points out that the values calculated for a quantity using the
canonical ensemble and its thermodynamic analogy, and those calcu-
lated from the micro-canonical ensemble with its appropriate analogy,
will also coincide in the limit of vast numbers of degrees of freedom.
Because it is usually easier to analytically evaluate quantities in the
canonical ensemble framework, this suggests this framework as the
appropriate one in which to actually carry out calculations, even though
Gibbs himself declares that the canonical ensemble “may appear a less
natural and simple conception than that which we have called a micro-
canonical ensemble of systems.”

In his discussion of the thermodynamic analogies for the microcanonical
ensemble, Gibbs also points out clearly the distinction between average
values calculated by means of an ensemble and most probable values
calculated by means of the same ensemble. Once again for finite systems
these may well differ from one another, even if the usual convergence
of values in the limit of systems of vast numbers of degrees of freedom
seems to obliterate the distinction when it comes to calculating the
values of thermodynamic quantities by means of the analogies.

3. The theory of non-equilibrium ensembles

The Gibbsian program supplies us with a method for calculating equilib-
rium values of any thermodynamic quantity. Given the constraints im-
posed on a system, set up the appropriate canonical or micro-canonical
ensemble of systems subject to those constraints. Calculate from this
ensemble the appropriate analogue to the thermodynamic quantity and
identify the value obtained as the thermodynamic value for the system in
equilibrium.

But how are we, within this ensemble view, to understand the inevit-
able approach to equilibrium of systems initially not in equilibrium? In
Chapter XIII of his book, Gibbs shows, for a number of standard cases
such as that of two systems originally isolated and at equilibrium that
are then allowed to energetically interact, that if we assign to the systems
the appropriate ensembles, the features of equilibrium so described will
match the thermodynamic prediction. For example, in the case cited,
after the interaction the component of the new combined system that
was originally at the higher temperature will have transferred heat to
the component of the new combined system that was originally at the
lower temperature.
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But what right do we have to assume that the modified system will
be appropriately described by a canonical or micro-canonical ensemble?
The problem here is this: We have already described by means of an
ensemble the initial state of the system when it begins its transition to a
new equilibrium by, say, having the constraints to which it originally was
subject changed, making its old equilibrium condition no longer an
equilibrium condition. But each system of the original ensemble is deter-
mined in its dynamical evolution by the underlying dynamical laws during
the period after the constraints have been changed. So it is not fair to
simply choose a new ensemble description of the system at the later
time. Instead, the appropriate ensemble description that evolves by
dynamics from the ensemble description of the system at the earlier time
must be the ensemble description of the system at the later time. Can we
in any way justify describing the system at the later time by means of
the appropriate canonical or micro-canonical ensemble, rationalizing this
by an argument showing that such a description is the appropriate
dynamically evolved ensemble from the original ensemble?

Gibbs takes up this problem in two chapters of the book. Chapter
XI is devoted to showing that the canonical ensemble is, in a certain
sense, the ensemble that “maximizes entropy.” Chapter XII takes up the
dynamical evolution of an ensemble, as the member systems of the
ensemble follow the evolution dictated to them by dynamical laws.

We have already seen how, for the canonical ensemble, Gibbs offers,
by means of the thermodynamic analogies derived from considerations
of the variation of the ensemble with varying external constraints, i or
—TogP, which is —[PlogPdpdq as the ensemble analogue to the thermo-
dynamic entropy. In Chapter XI, Gibbs proves a number of “extremal”
theorems about this ensemble analogue to entropy. The major conclu-
sions are that (1) if an ensemble of systems is canonically distributed in
phase, then the average index of probability, M, is less than in any other
distribution of the ensemble having the same average energy; and (2) a
uniform distribution of a given number of systems of fixed energy within
given limits of phase gives a smaller average index of probability of
phase than any other distribution. Together, these two results give us, in
a certain sense, the result that the canonical and micro-canonical distri-
butions are, for their respective cases of fixed average energy or fixed
energy, the ensembles that maximize ensemble entropy.

Next, Gibbs takes up the problem of the dynamic evolution of ensem-
bles. Suppose, for example, we have a micro-canonical ensemble deter-
mined by some fixed values of constraints. We change the constraints.
Can we expect the micro-canonical ensemble to evolve, in a manner
determined by the dynamic evolution of each system in the ensemble in
accordance with the dynamical laws, into the micro-canonical ensemble
relative to the newly changed constraints?



Historical sketch 55

Now the ensembles we want to be the endpoint of evolution are the
unique ensembles that are such that two constraints are met: (1) the
number of systems between any values of functions of the phases that
are constants of motion are constant; and (2) the value of 7, the mean
of the index of probability, is minimized. Can we show, then, that the
ensemble whose constraints have been changed will have its I value
evolve with time toward the minimum value? That would show that the
ensemble is evolving to the unique, stationary ensemble consistent with
the constants of motion that are the standard equilibrium ensemble. That
is, can we use the “excess” of the 7| value of the ensemble at a time over
the M value of the equilibrium ensemble as an indicator of how far the
ensemble is from equilibrium, and then prove the monotonic decrease of
this value for the evolving ensemble?

Alas, a simple application of the same results that were required to
show the canonical and microcanonical ensembles stationary in the first
place shows that any ensemble, no matter how it evolves, will always
have a constant value of M.

But, says Gibbs, one ensemble may in some sense approach another
even if some function of the first does not approach that function of the
other. He offers an explanation by analogy. Imagine two mutually in-
soluble fluids, 4 and B, in initially different but connected regions of a
container. Stir the fluids. Because one never dissolves in the other, the
volume occupied by fluid A4 is always constant and equal to its original
volume. And the density of A at any point is always 1 or 0, just as it was
when the mixing began. But take any small, fixed, spatial region of the
container and look at the portion of that region occupied by the A fluid.
Initjally this will, except for a small number of regions on the boundary
of the fluids, be the fraction 1 or 0. But as the mixing continues, we will
expect, after a sufficiently long time, that the portion of any region that
is occupied by the A fluid will be the same fraction of that region as the
portion of original fluid that was A. (See Figure 2-7.)

We can expect an analogous result with ensembles. We divide the
phase space into small but non-zero regions. When the constraints are
changed, the ensemble initially fills a box entirely or the box is entirely
unoccupied. As dynamic evolution goes on, the original compact ensem-
ble “fibrillates” into a complex “strung out” ensemble ranging over the
entire region of now, newly accessible phase space. Eventually we ex-
pect the portion of each box occupied by the ensemble to be the same,
and equal to the original portion of the expanded phase space occupied
by the ensemble when it started. In this sense the ensemble has become
“uniform” over the expanded region of phase space, and, is therefore
“like the appropriate equilibrium ensemble, which is genuinely, uniformly
so spread, and not just spread uniformly in this new coarse-grained”
sense. If we let time go to infinity and then let the boxes go to zero in
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Figure 2-7. Mixing of insoluble fluids. A glass is filled 90% with clear water
and 10% with a black ink as in A, the water and ink being insoluble in one
another. The glass is stirred. The apparent result is uniform light gray inky water,
as in B. But a magnified look at a small region of the fluid in B, as shown in C,
reveals that each point is either totally in clear water or totally in black ink. The
portion of any small volume filled by black ink is, however, 10%, if the ink is
throroughly mixed into the water.

the limit, we will have a mathematical representation of this “spreading
to uniformity” of the initial ensemble. We would miss this spreading if
we first let the boxes go to zero size, and then let time go to infinity,
because that would give us, once again, the result of constancy of the
measure of “spread-outness” of the initial ensemble. (See Figure 2-8.)

With this new coarse-grained notion of spread-outness of an ensem-
ble, we can introduce a new measure of the deviation of an ensemble
from the equilibrium ensemble. Take the density of the ensemble in box
i at a time as P, and define the “coarse-grained entropy” as —Z PlogP,.
Whereas |PlogPdT is provably invariant, we can expect Z,PlogP, to
decrease to its minimal value as time goes on. Gibb does point out that
there will be “exceptional” ensembles that will not approach uniformity
in even this coarse-grained sense. He doesn’t offer any proof, however,
that such “exceptional” ensembles will really be rare “in the world.” Nor
is there any proof that the approach to equilibrium, in this new sense,
will be monotonic, nor that the time scale will be the one we want to
replicate for the ensembles in the actual approach to equilibrium in time
of non-equilibrium systems in the world. (See Figure 2-9.)
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Figure 2-8. Coarse-grained spreading of an initial ensemble. Region A
represents the collection of points in phase space corresponding to a collection
of systems. Each system has been prepared in a non-equilibrium condition that
is macroscopically the same. But the preparation allows a variety of microscopic
initial states. As the systems evolve following the dynamics governing the change
of microscopic state, A develops into T(A). The size of T(A) must be equal to
that of A by a law of dynamics, but whereas A is a simple region confined to a
small portion of the available phase space, T(A) is a complex fibrillated reégion
that is spread all over the available phase space “in a coarse-grained sense.” A
uniform distribution over the available phase space is what corresponds to
equilibrium in the theory. T(A) is not really uniformly spread over the phase-
space, but may nevertheless be considered to represent a spreading of the initial
ensemble that represents approach to equilibrium.
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Figure 2-9. Coarse-grained entropy increase. Suppose an ensemble starts with
the situation as noted in A — that is, each coarse-graining box is either totally full
of ensemble points that are spread uniformly throughout the occupied boxes, or
else totally empty of points. In B, the initial ensemble has become fibrillated and
coarsely spread out over the available phase space. One can certainly show that
the Gibbs coarse-grained entropy in B must be higher than it is in A, for by the
definition of coarse-grained entropy it is minimal for the situation in which boxes
are totally full or totally empty. But that, as the Ehrenfests noted, is a long way
from showing that coarse-grained entropy will always increase monotonically,
that it will approach the appropriate entropy for the new equilibrium condition
after the constraints have been changed, or that it will approach this value in the
appropriate time scale to represent observed approach to the new equilibrium.
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Gibbs does point out the provable fact that the initial coarse-grained
entropy can, at least, not be greater than the entropy of future states. But
it is also the case that the fact that one can expect in the future ensembles
of greater and greater coarse-grained entropy is matched by similar
statements about the past. The “increase of coarse-grained entropy to-
ward the future,” if we have a right to expect it, is matched by a similar
expectation of increase of coarse-grained entropy in the past of a system.
That is, if we trace the dynamic evolution of the systems that constitute
a non-equilibrium ensemble at a given time back into the past, we will
generate ensembles that are more uniform in the coarse-grained sense
than the ensemble at the specified time.

It is worth quoting Gibbs’ response to this time-symmetry paradox in
full, as it represents a theme we will see recur as the paradox of time-
symmetry is faced by later investigators:

But while the distinction of prior and subsequent events may be immaterial with
respect to mathematical fictions, it is quite otherwise with respect to events in the
real world. It should not be forgotten, when our ensembles are chosen to illus-
trate the probabilities of events in the real world, that while the probabilities of
subsequent events may be often determined from probabilities of prior events,
it is rarely the case that probabilities of prior events can be determined from
those of subsequent events, for we are rarely justified in excluding from consid-
eration the antecedent probability of the prior events.

We shall try to fathom what this means later on.

In Chapter XIII, Gibbs applies his results to the discussion of the ap-
propriate ensemble description of various non-equilibrium processes.
Here, Gibbs focuses not on the evolution of an ensemble representing
an isolated system, but on the course of change to be expected as ex-
ternal constraints are varied. First, he considers constraints being abruptly
varied. Here, changing the parameter does not effect the systems directly
but does change the distribution from an equilibrium one to one that is
now non-equilibrium in the newly accessible phase-space. In this case,
one expects the ensemble to change in such a way that it finally, in the
“coarse-grained” sense, approximates the equilibrium ensemble for the
newly specified parameters. And one expects, therefore, the coarse-grained
entropy to increase. In the case of slow enough change of parameter,
one expects the ensemble to vary in such a way that even the coarse-
grained entropy is constant.

Gibbs then takes up the problem of the bringing into energetic contact
of systems originally energetically isolated, and argues, once again, that
the resulting change of the ensemble representing the composite system
can be expected to evolve, in a coarse-grained sense, in such a way that
the resulting ensemble eventually comes to approximate the equilibrium
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ensemble appropriate to the new joint system subject to its overall exter-
nal constraints. For example, heat having flowed from the originally higher
temperature body to the one originally at lower temperature, the two
components will be at equal temperatures as represented by the appro-
priate “modulus” constant of the ensemble.

IV. The critical exposition of the theory of
P. and T. Ehrenfest

In 1912, P. And T. Ehrenfest published a critical review of the then
current state of kinetic theory and statistical mechanics entitled “The
Conceptual Foundation of Statistical Mechanics.” Published in the En-
cyclopedia of Mathematical Sciences, the article provided a brilliantly
concise and illuminating, if sometimes controversial, overview of the
status of the theory at that time. This piece can be considered the cul-
mination of the early, innovative days of kinetic theory and statistical
mechanics, and the beginning of the critical discussion of the founda-
tions of the theory that accompanied and still accompanies its scientific
expansion and development. The piece is directed first to an exposition
of the original kinetic theory and its changes in response to the early
criticism, along with a discussion of remaining unsolved problems in the
“statistical-kinetic” approach. It then moves to a critical exposition and
critique of Gibbs’ statistical mechanics.

The general argument of the piece is this: The development of kinetic
theory from Kronig and Clausius to Maxwell and Boltzmann culminated
in Boltzmann’s kinetic equation and his proof of the H-Theorem. The H-
Theorem led to the criticisms of the theory summed up in the Reversibil-
ity and Recurrence Objections of Loschmidt and Zermelo. These led
Boltzmann to a reinterpretation of the description of system evolution
given by his H-Theorem and kinetic equation that is perfectly consistent
with the underlying dynamical theory. Despite this there are those who
remained unconvinced that Boltzmann had avoided the fundamental
problems of consistency posed by the Reversibility and Recurrence
Objections. In order to show that he had, one must resolve many am-
biguities in Boltzmann’s expression of his views. This elimination of
obscurities proceeds primarily by “transforming the terminology of prob-
ability theory step by step into hypothetical statements about relative
frequencies in clearly defined statistical ensembles.” On the other hand,
the revised Boltzmannian theory of non-equilibrium does require for its
justification postulates whose plausibility and even consistency remain in
doubt.

Furthermore, “a close look at this process of development shows that
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the systematic treatment, which W. Gibbs attempts to give . .. covers
only a small fraction of the ideas (and not even the most important ones)
which have come into being through this process.”

1. The Ebrenfests on the Boltzmannian theory

The older formulation of the theory. The Ehrenfests first offer a
brief survey of the evolution of assumptions about “equal frequencies of
occurrence” in the early development of kinetic theory. Kronig asserted
that the motions of the molecules being very irregular, one could, “in
accordance with the results of probability theory” replace the actual motion
by a regular motion — for example, assuming the molecules all have
the same speed. Clausius made a number of assumptions about equal
frequencies of molecular conditions, some explicit and some only tacit.
He assumed, for example, that the spatial density of the molecules was
uniform, that the frequencies of molecular speeds did not vary from
place to place, and that all directions of molecular motion occurred with
equal frequency. He also, tacitly, assumed the Stosszablansatz.

These are all postulates about “equal frequency” of conditions. What
about frequency postulates where the frequencies are not all equal — the
non- gleichberechtigt cases? Clausius had already assumed that at equilib-
rium there was a definite distribution of molecular velocities, even if he
didn’t know what it was. Maxwell posited his famous distribution law,
guided, it seems, by the Gaussian theory of errors. Boltzmann succeeded
in generalizing this distribution law to the cases of gases in external
potentials and to the cases of polyatomic gases from Maxwell’s law,
which holds for monatomic gases.

But how can one derive the equilibrium velocity distribution law?
Maxwell and Boltzmann, treating dynamic evolution of the system, showed
the equilibrium distribution to be stationary. Boltzmann, by means of the
H-Theorem, showed it to be the uniquely stationary distribution. The H-
Theorem requires a mechanical assumption in its proof, but it also re-
quires the kinetic equation, which assumes the truth of the Stosszablansatz.
So we can reduce the case of non-equal frequency assumptions to an
equal-frequency assumption, the Stosszablansatz. But clearly, then, the
kinetic equation and the H-Theorem are the central components of the
theory that we must critically explore.

Now Boltzmann had defined the quantity H and shown that if the
evolution of the distribution function obeyed his kinetic equation, H
must monotonically decrease. But Loschmidt’s Reversibility Objection and
Zermelo’s Recurrence Objection show that this alleged monotonic de-
crease in H from any non-equilibrium distribution cannot be valid. This
led to the new “Statistical Mechanical” or “Kineto-Statistical” approach to
the theory.
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The “modern” formulation of the theory of equilibrium. The
revised approach to the theory of equilibrium, according to the Ehrenfest
account, is one that takes as its basic arena the phase space of points,
each of which represents a possible micro-state of the system compatible
with its macroscopic constraints. The evolution of a system under the
dynamical laws is represented by a path from a point in the phase space.
If we measure volume in phase space in the standard way noted in
Section III,1, a theorem of dynamics, Liouville’s Theorem, will show us
that the volume assigned to a set of points will be the invariant volume
of the regions that set evolves into under dynamic evolution. If we
restrict our attention to points all of which have a common energy — that
is, to an energy hypersurface in the phase space — and to flows confined
to that surface, a new measure of “area” on the surface — the micro-
canonical measure discussed earlier — will play the role of invariant
measure under dynamical flow. If the probability distribution over all
phase space is an arbitrary function of the constants of motion of the
systems, it will be constant along any path. And it will be stationary in
time, always assigning the same probability to any region of the phase
space as the systems evolve. In the energy-surface constrained case, a
similar probability function, normalized by the surface measure, will
similarly be a stationary probability distribution.

At this point, the Ehrenfests introduce their notion of an ergodic sys-
tem as one whose path in phase space “covers every part of a multi-
dimensional region densely.” They attribute to Maxwell and Boltzmann the
definition of an ergodic system as one whose phase point “traverses
every phase point which is compatible with its given total energy.”
(Although, as historians point out, it isn't at all clear that either Maxwell
or Boltzmann ever really defined the relevant systems in exactly this
way.) If the systems obey this latter condition, then every system in
the ensemble traverses the same path if we follow it over an unlimited
time. Therefore, every system will have the same time average — defined
by Illm-}-ff) f(p,g,)dt — of any quantity that is a function of the phase

e

value of the system,
But, the Ehrenfests maintain,

The existence of ergodic systems, i.e. the consistency of their definition, is
doubtful. So far, not even one example is known of a mechanical system for
which the single G-path, that is the path in the phase space under dynamic
evolution, approaches arbitrarily closely each point of the corresponding energy
surface. Moreover, no example is known where the single G-path actually
traverses all points of corresponding energy surface.’

But it is just these assumptions that are necessary for Maxwell and
Boltzmann’s claim that in the gas model, all motions with the same total
energy will have the same time average of functions of the phase.
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Next, special distribution functions are introduced: those over phase
space that are a function of energy alone, of which the canonical distri-
bution is a special case; and the standard micro-canonical distribution
over the energy surface. It is these distributions that are constantly used
to derive results in gas theory, despite the fact that they were originally
introduced as justified by the assumption of ergodicity, even though
ergodicity is not usually even mentioned by those who have taken up
the use of these distributions in the foundations of their work.

At this point, the Ehrenfests offer a plausible reconstruction of what
“may have been” the starting point of Boltzmann’s investigation — that is,
of his suggested plan to use the micro-canonical ensemble average as the
appropriate representative of equilibrium values. Begin with the empirical
observation that a gas goes to equilibrium and stays there. So the average
behavior of a gas over an infinite time ought to be identical to its behavior
at equilibrium. Can we calculate “time averages of functions of the phase
over infinite time,” in the limiting sense of course? In particular, can we
show that the infinite time average of a gas corresponds to the Maxwell—
Boltzmann distribution? Take any phase quantity f — that is, f( p,¢). Then
consider the following equalities:

(1) Ensemble average of f = time average of the ensemble average of f
(@3] ensemble average of the time average of f
(6)) time average of f

Equality (1) follows from the choice of a stationary probability distri-
bution over the ensemble. Equality (2) follows from the legitimacy of
interchanging averaging processes. Equality (3), however, is crucial. To
derive it, we must invoke the postulate of ergodicity, for it is that pos-
tulate that tells us that the time average of f is the same for each system
in the ensemble. This is so because the dynamic path from each point
is always the same path if it is true that each system eventually traverses
each dynamical point. The Ehrenfests point out that the derivation, as
they have reconstructed it, looks rather more like the work of Maxwell,
Lord Rayleigh, and J. Jeans than it does like that of Boltzmann, because
Boltzmann chooses to derive from ergodicity the fact that the time spent
by the system in a region of phase space goes — given ergodicity and in
the limit as ¢ goes to infinity — to the size of the region. But, they say, and
as we shall see in detail in Chapter 5, that conclusion is equivalent to the
earlier one that proves the identity of ensemble phase averages with
infinite time averages given the posit of ergodicity.

The Ehrenfests conclude with the observation that given the postulate
of ergodicity, the facts about infinite time averages and about relative
duration of a system in states corresponding to a specified region of
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phase space in the infinite time limit follow from dynamical considera-
tions alone. No “probabilistic hypotheses” are called for. But if, on the
other hand, we dispense with the posit of ergodicity, it is unclear what
rationales the probabilistic hypotheses of the standard distribution of
probability over the ensemble have in the first place.

The statistical approach to non-equilibrium and the H-Theorem.
At this point, the discussion moves on to an attempt to make fully un-
ambiguous the statistical reading of the kinetic equation and the H-
Theorem. In the process the Ehrenfests offer their demonstration of the
consistency of these important non-equilibrium results with the under-
lying dynamics.

First, apparatus is set up that will allow the Ehrenfests to clear up a
number of misunderstandings resulting from Boltzmann’s loose language.
Consider the phase space appropriate for a single molecule - that is, the
space such that points in it represent the position and momentum, in all
degrees of freedom, of one of the molecules of the system. Coarse-grain
this phase space into small boxes, each of equal extent in position and
momentum. Now consider the position and momentum of each molecule
of the gas at a given time. This results in a certain number of molecules
having their representative points in this small phase space, called p-space,
in each #th box. Call the number in box 4, a,; and a given specification
of the a /s a state-distribution, Z. To each Z corresponds a region of points
in the original “big” phase space, now called I'-space — that is, the region
of all those phase points representing the total molecular state of the gas
with a given corresponding state-distribution, Z.

First, note that the region of I'-space corresponding to the Z that is the
Maxwell-Boltzmann distribution is overwhelmingly large and dominates
the allowed region of I'-space open to the gas. If we assume ergodicity,
this will justify Boltzmann’s claim that for the overwhelming amount of
time (in the infinite time limit) spent by the gas, it is in the Maxwell-
Boltzmann distribution.

Now, consider any function F of Z. Considered as a function of p,q
it will be discontinuous, changing its value when p,g change in such a
way that an g, changes its value. One such function is H(Z) = X ,a loga,,
and it is this H that will play a crucial role in our discussion of the
H-Theorem. Next, let us discretize time, looking at the gas only at a
number of discrete time points separated by an interval At from each
other.

With this apparatus we can now present a tidied-up version of
Boltzmann’s claims about the behavior of H over time. We can say that
H(Z) will remain for overwhelmingly long time intervals near its mini-
mum value, H,. If H, is a value of Hmuch above the minimum, then the
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sum of the time intervals in which H has a value at H, or above de-
creases rapidly with the increasing value of H,. If we now move to dis-
crete times, and look at the value of H(Z) at each time, we can argue
that whenever Ha, Hb, and Hc follow one another in time and all are
well above H, when we look at neighboring time moments we will
usually find situations in time like this:

Hb
Ha Hc

Much less often, but with equal frequency, we will find:

Ha Hc
Hb Hb
Hc or Ha

Only very rarely will we observe the following pattern to be the case:

Ha Hc
Hb

So, from a state with an H much above its minimum value we will almost
always find that the immediately succeeding state is one with a lower
value of H. (And almost always the immediately preceding value of H
will be lower as wellt)

In what sense, then, could the H-Theorem be true? Pick a Z,, at ¢, such
that H(Z,) is well above H,. Corresponding to this Z, is a region of points
in I'-space. From each point, a dynamic path goes off, leading to states
that at later times, t, + #At have a value H,. The claim is that there
will be values of H,H,, ... H, such that nearly all the systems will have
at time ¢;, H values at or near H,. The set of values H,, ..., H, we call
the concentration curve of the bundle of H-curves. We then assert that
this curve monotonically decreases from its initial high H(Z)) value,
converges to the minimum value H,, and never departs from it. At
any time ¢,, the overwhelming majority of curves of H will be at a value
near H,, but, as the Recurrence Theorem shows us, only a set of measure
zero of curves of individual systems will themselves behave in a manner
similar to the concentration curve. Next, we claim that the curve of the
H-Theorem, derived from the kinetic equation that presupposes the
Stosszablansatz, is identical to this concentration curve. Note that neither
of the claims made (that the concentration curve will show this mono-
tonic decreasing behavior and that it will, in fact, be replicated by the
curve of the H-Theorem) has been proven. The claim here is only that
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Figure 2-10. The concentration curve of a collection of systems. A col-
lection of systems is considered, each member of which at time 1 has entropy S,.
The systems evolve according to their particular micro-state starting at the initial
time. At later times, 2, 3, 4, 5, 6, . . ., the collection is reexamined. At each time,
the overwhelming majority of systems have entropies at or near values S,, S;, S,
Ss, S, - .., which are plotted on the “concentration curve.” This curve can
monotonically approach the equilibrium value S_,,, even if almost all the sys-
tems, individually, approach and recede from the equilibrium condition in the
manner depicted in Figure 2-4.

a consistent reading of Boltzmann’s claims has now been produced. An
additional supplement, suggested by the Ehrenfests, is that a given ob-
servationally determined state of a gas must be posited to have one
particular Z state overwhelmingly dominate the class of Z states com-
patible with that observational constraint. This is needed to connect the
observational thermodynamic initial state with the posited definite initial
Z, in the earlier treatment of the H-Theorem. (See Figure 2-10.)

The picture presented here is time-symmetrical and perfectly compat-
ible with the Objection from Reversibility. It is also compatible with the
Objection from Recurrence. A further variant of the Reversibility Objec-
tion — that to each state there is the reverse state, and that if the former
leads to an increase of H in a time interval, the latter must lead to a
decrease of H in the same time interval of equal size — is noted to be
fallacious, because there is no general argument to the effect that in a
given time interval a state and its time reverse will lead to equal and
opposite changes in the value of H for their respective systems.

Finally, the Ehrenfests take up the question of how to formulate
properly the Stosszablansatz, essential to the derivability of the kinetic
equation and hence of the H-Theorem, in light of the new, statistical,
understanding of the non-equilibrium situation. Boltzmann, they say, could
be understood as making claims in his revised, statistical, view of irre-
versibility: (1) The Stosszablansatz gives, for each time interval, only the
most probable number of collisions, and the H-Theorem only the most
probable value in the change in H; (2) the actual number of collisions
(and the actual change in H) fluctuates around this most probable value.
Here, once again, we must resolve obscurities and ambiguities by replacing
“probability” language with a careful formulation in terms of relative
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frequencies in well-defined reference classes. While, the Ehrenfests say,
statement (2) remained (at that time) to be clarified, J. Jeans, responding
to criticisms of the Stosszablansatz by S. Burbury, had made the meaning
of statement (1) precise.

Consider a gas in state Z, at a given time. How many collisions of a
given kind will occur in time At? This depends on the specific phase of
the gas at the time, and is under-determined by the Z-state. Look at the
points in I'-space corresponding to the Z-state. We can formulate the
statistical Stosszablansatz as the claim that the sub-region of the region
of points in space corresponding to the Z-state in which the number of
collisions is given by the Stosszablansatz is the overwhelmingly largest
part of the given region of I'-space.

But to get the kinetic equation we need more. For we apply the
Stosszablansatz at every moment of time in deriving that equation. This
leads to the Hypothesis of Molecular Chaos as a posit. Take the subset
of the original region in I'-space for which the Stosszablansatz gave the
right number of collisions in the time interval. Look at the systems those
systems have evolved into at the end of that time interval, characterized
by a new region of points in I'-space. In order to derive the kinetic
equation, we must assume that the overwhelming fraction of those points
also represent systems whose collisions in the next interval of time will
also be in accord with the Stosszablansatz. And this hypothesis about the
dominance of the Stosszablansatz obeying region must be continuously
repeated for the set into which that subset evolves, and so on.

We can get the result we want by considering the points reached by
trajectories started in our initial region. These will correspond to different
distributions of state, Zg, Zz., and so on. But each such Z region of
points started in our initial region will correspond to only part of the
I'-space region corresponding to a given Zg distribution, that part
occupied by points on trajectories that started in our initial Z region. What
we must assume is that in each such partial region corresponding to a Z-
state, the largest region is that for which the Stosszablansatz will hold,
just as we assumed it for the whole region of I'-space corresponding to
a given initial Z-state.

Although this new Hypothesis of Molecular Chaos may need subtle
modification (because of molecular correlation induced by finite size of
molecules, and so on), it shows, according to the Ehrenfests, that a sta-
tistical formulation of the Stosszablansatz, and therefore a statistical
derivation of the kinetic equation and H-Theorem, exists. And the deri-
vation is immune to the Objections of Recurrence and Reversibility. Note,
once again, that no claim as to the provability or derivability of the
needed posit from underlying dynamics is being made here.
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2. The Ebrenfests on Gibbs’ statistical mechanics

Whereas the Ehrenfests view Boltzmann, aided by his predecessors and
Maxwell, as the seminal thinker in the field, the researcher whose work
defines the field, even if it is sometimes ambiguously stated and needful
of clarification and supplementation, the Ehrenfests’ critical view of Gibbs
is rather unfavorable. In successive sections they offer an exposition and
critique of Gibbs’ approach: (1) to the theory of equilibrium; (2) to the
theory of the irreversible approach to equilibrium; and (3) to the asso-
ciation of Gibbs’ statistical mechanical quantities with thermodynamic
quantities by means of the “thermodynamic analogies.”

Critique of Gibbs’ equilibrium theory. Gibbs, according to the
Ehrenfests, first recapitulates Boltzmann’s investigations into the most
general stationary ensembles, and then fixes his attention on two “very
special” cases — the micro-canonical distribution, which is equivalent to
Boltzmann’s ergodic surface distribution, and the canonical distribution.

Gibbs is able to compute many average values of functions of the
phase quantities when the systems are canonically distributed in phase.
For a given modulus (8) of a canonical distribution, the overwhelmingly
large number of systems have about the same totalenergy, K, given the vast
number of degrees of freedom of the system. For this reason, “it is plausible
that in general the average over the canonical distribution will be very
nearly identical with the average taken over the micro-canonical or even
ergodic ensemble with E = E,.” On the other hand, that distribution
will be almost identical to the one obtained by taking all those phase
points in I'-space that correspond to a number a, of molecules in box ¢
in coarse-grained I"-space such that X a,g, = E,, where g, is the energy of
a molecule “centered” in the i-th box, and then distributing probability
uniformly over those phase points in I'-space. But average values cal-
culated by this last probability function will be values of phase quantities
when the molecules are in the Maxwell-Boltzmann distribution. So, es-
sentially, average values calculated using the canonical ensemble can be
expected to be the same as values calculated by assuming that the gas
is in one of its “overwhelmingly most probable” Maxwell-Boltzmann
distributed states. “Thus, from the point of view of Boltzmann’s presen-
tation, the introduction of the canonical distribution seems to be an
analytical trick” — that is, merely a device to aid in calculation.

And, the point is, Gibbs does not even mention the subtle problems
of the posits of ergodicity needed to justify the claims that these methods
are the appropriate methods for calculating equilibrium.
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Critique of Gibbs on non-equilibrium and the approach to equi-
librium. First, say the Ehrenfests, Gibbs defines a function 6 = Jplogpdqdp
and shows that this function takes on its minimum value subject to ap-
propriate constraints (definite average energy for canonical case, definite
energy for micro-canonical case) in the canonical and micro-canonical
distributions. But this quantity is probably invariant under dynamical
evolution, the proof being a simple corollary of Liouville’s Theorem.
Then Gibbs suggests dividing the I'-space into small boxes, taking the
average ensemble density in each box, P, and defining X = Z,PlogP,
as a new measure of departure of an ensemble from its equilibrium
distribution.

Gibbs concludes that every non-equilibrium ensemble will stream in
such a way that the P/s will become stationary in the infinite time limit
and such that in the limit of infinite time, the value of Z(#) will assuredly
be less than or equal to its value at the initial moment. His argument for
this consists in the analogy with the mixing of insoluble liquids. Further,
his arguments can be taken to show that in the infinite time limit, the P,’s
will all be the same on a given energy surface.

Now one certainly can demonstrate the inequality noted here, for if we
start with an ensemble all of whose coarse-grained boxes are either
totally filled or totally empty, then Z(#) cannot increase in time, and may
very well decrease.

But, say the Ehrenfests, Gibbs has not shown, by any means, all that
needs to be shown. First, there is the question of the time the ensemble
will take to spread out in such a way that Z(#) is at or near its minimum
value. The Ehrenfests suggest that this can be expected to be many
cycles of the time needed for a system that leaves a coarse-grained box
to return to that box — that is, many of the “ ‘enormously large’ Poincaré-
Zermelo cycles.” Nor does Gibbs' argument show in any way that the
decrease of X(#) with time will be monotonic. It could very well some-
times decrease and sometimes increase, even if the limiting inequality is
true. Finally, Gibbs fails to show that the limiting value Z(#) will in fact
be that value corresponding to the appropriate equilibrium ensemble for
the now modified constraints. As far as Gibbs’ proofs go, tlgll Z(t) could
be arbitrarily larger than the fine-grained entropy of the appropriate ca-
nonical or micro-canonical ensemble. In his treatment of the thermo-
dynamic analogies, Gibbs simply assumes, without noticing he is making
the assumption, that one can identify the ultimate ensemble as that which
approximates the equilibrium ensemble although, as just noted, he really
has not demonstrated this, for he has only shown, at best, “a certain
change in the direction of the canonical distribution.”

What, finally, is the response of the Ehrenfests to Gibbs’ observation
that his “increase of coarse-grained entropy” result holds both forward
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and backward in time from an ensemble stipulation at a given time?
Gibbs observed that we often infer future probabilities from present
probabilities, but that such inference to the past was illegitimate. In their
footnote 190, the Ehrenfests respond: “The penultimate paragraph of
Chapter XII [the paragraph in which Gibbs makes the relevant observa-
tions quoted abovel, so important for the theory of irreversibility, is in-
comprehensible to us.”

Critique of Gibbs on the thermodynamic analogies. As the final
component of their critique of Gibbs’ theory, the Ehrenfests offer a
systematic comparison of how the components of the statistical-kinetic
theory are to be associated with those of thermodynamics in the alterna-
tive approaches of Boltzmann and Gibbs.

First, they note that the Maxwell-Boltzmann distribution of molecules
as they are distributed in p-space is formally comparable to the canonical
distribution function description of the distribution of systems in I'-space
in the canonical ensemble. If we think of slowly modifying the con-
straints on a system, we get, in the Boltzmann picture, a description of
how the parameters determining the Maxwell-Boltzmann distribution
vary with this parameter variation. This parallels Gibbs’ description of
how the parameters governing the canonical distribution will have their
variation connected with variation of constraints in his approach. And
both resulting equations will formally resemble the familiar equation
governing the relation of thermodynamic quantities in the phenomeno-
logical theory.

For a system in equilibrium, Boltzmann thinks of the system as having
a representative point in I'-space, which characterizes its micro-state, as
overwhelmingly likely to be in that dominating region of points that
correspond to the Maxwell-Boltzmann distribution. From this distribu-
tion, one can then calculate the appropriate surrogates to the thermo-
dynamic quantities. Gibbs, on the other hand, identifies averages over all
phases in the appropriate canonical ensemble with the thermodynamic
quantities.

How do Boltzmann and Gibbs treat the problem of two systems, ini-
tially each in equilibrium but energetically isolated, and then brought
into a condition where they can exchange energy with one another?
Boltzmann describes each system, prior to interaction, as having its ap-
propriate Maxwell-Boltzmann distribution over its molecules. Once in
interaction, they are in a non-equilibrium initial state. The kinetic equa-
tion and H-Theorem show that on the average (and with overwhelming
frequency) the combined system will evolve to the new equilibrium
Maxwell-Boltzmann state appropriate to the combined system. Gibbs
will describe each component system initially by a canonical ensemble.
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To represent the systems in thermal contact we pick a new ensemble
each member of which is a combination of one system from each of
the earlier ensembles. Unless the initial such ensemble is canonical, it
will “smear out,” in the coarse-grained sense, until the new ensemble
“approximates” the appropriate canonical ensemble for the combined
system.

How do they treat reversible processes? For Boltzmann, one can, given
the slow variation in the parameters, treat the system as always in a
Maxwell-Boltzmann distribution. Using the thermodynamic analogy
relation obtained earlier, one can derive that entropy is (tentatively)
generalizable to —H = -X,a,loga; where a, is the occupation number
of the i-th box in coarse-grained p-space. For Gibbs, slow change of
parameters means that we can view the system as represented by a
canonical ensemble at every moment. The analogue to entropy is given
by —Iplogpdpdg, where p is the density function of the canonical en-
semble in I'-space.

How do they treat the increase of entropy in an irreversible process?
For Boltzmann, if the system does not have a Maxwell-Boltzmann distri-
bution at a time, then by the H-Theorem or the kinetic equation, it will,
in almost all motions, assume smaller values of H at later times. For Gibbs,
it is the quantity X,PlogP;, defined by coarse-graining I'-space and
taking the P,’s as average ensemble density in the i-th box, whose de-
crease with time represents the changing ensemble and which, in the
infinite time limit, must assume a smaller value than its initial value.

Concluding remarks. Summing up their critiques both of Boltzmann
and Gibbs, the Ehrenfests remark that their conceptual investigation into
the foundations of kinetic-statistical mechanical theory required that they
“emphasize that in these investigations a large number of loosely for-
mulated and perhaps even inconsistent statements occupy a central
position. In fact, we encounter here an incompleteness which from the
logical point of view is serious and which appears in other branches of
mechanics to a much smaller extent.”

But these foundational and conceptual difficulties have not prevented
physicists from applying the basic modes of thought over wider and
wider ranges of phenomena, generalizing from the theory of gases to
radiation theory and other areas. How optimistic can one be that they
will prove warranted in their optimistic use of the theory? Here the
Ehrenfests are guarded in their prognosis, not least because of the no-
torious difficulties with the fundamental consequence of equilibrium
theory — the equi-partition theorem - giving apparently wrong results
in the case of the theory of poly-atomic molecules and absurd results
(divergence of the distribution function with increasing frequency) in the
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case of radiation. These difficulties were not resolved until the classical
dynamical underpinning of the theory was replaced with a quantum
micro-dynamics.

V. Subsequent developments

In the three-quarters of a century since the Ehrenfest review article ap-
peared, there has been an intensive and massive development of kinetic
theory and statistical mechanics. To hope to even survey the multiplicity
of ramifications of the theory would be impossible here. It will be helpful
for our further exploration of foundational problems, however, to offer
an outline of some of the high points in the development of the theory
subsequent to its innovative first period described earlier.

Two of the following sections — 1 and 3 — will simply note some of the
gains that have been made in extending the theory of equilibrium and of
non-equilibrium to allow them to cover cases outside the range of the
early theory. Whereas the early theory is primarily devoted to under-
standing dilute gases, the theory can be extended widely both to cover
more difficult cases within the realm of kinetic theory proper (such as
gases in which more than binary collisions are relevant, and so on) and
to realms of phenomena such as magnetization of matter and the distri-
bution of energy in radiation that although treatable in general statistical
mechanics, go beyond the case of many-molecule gas systems in various
ways.

The other two following sections — 2 and 4 — treat material more
directly relevant to our project. Here I will offer the barest outline of the
direction in which attempts have been made to continue the program
of rationalizing or justifying the methods used in statistical mechanics,
in particular in rationalizing and justifying the choice of probabilistic
postulates such as the traditional ensemble probability distributions in
equilibrium theory and the Hypothesis of Molecular Chaos in non-
equilibrium theory. Such programs of rationalization and justification
are also intimately connected with the problem of explaining why the
posited probability assertions are true, if indeed they are. Or why, if they
are not, the theory that posits them works as well as it does. Because the
topics of these two sections will occupy our attention for three full chapters
in Chapters 5, 6, and 7, all that is offered here is an outline to be fleshed
out in greater detail.

1. The theory of equilibrium

From classical to quantum micro-theory. We have already seen
how a major failure in the predictive reliability of equilibrium statistical
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mechanics cast doubt upon the validity of the entire theory. One funda-
mental result of the theory is that at equilibrium the thermal energy of a
substance will be equally distributed over all of the degrees of freedom
available to its components. But even in the case of diatomic molecules,
the energy fails to be so distributed when the vibrational and rotational
degrees of freedom of the molecule are added to its translational degrees
of freedom. In the case of radiation, the equi-partition theorem leads to
totally incoherent results, because the possibility of standing waves in a
cavity having unlimitedly short wavelength leads to a distribution func-
tion that diverges with high frequency.

One of the origins of quantum mechanics is in Planck’s study of the
thermodynamics and statistical mechanics of radiation. He was able to
get the empirically observed distribution curve by assuming that energy
is transferred from radiation to matter, and vice versa, only in discrete
packets, each having its energy proportional to the frequency of the
relevant radiation. This was generalized by Einstein to the view that
energy exists in such “quanta” even in the radiation field. Combined by
Bohr with the existence of stationary states of electrons in atoms and the
quantization of emission and absorption of radiant energy by them, we
get the older quantum theory. Soon, difficulties of applying that theory
to more general cases than the hydrogen atom, along with the desire
for a general quantum kinematics on the part of Heisenberg and an
exploration of “wave-particles” duality by de Broglie and Schrédinger,
give rise to the full quantum theory.

From the point of view of this theory, the underlying dynamics of the
components of a system (molecules of the gas, frequency components of
the radiation field, and so on) is not governed by classical mechanics at
all but by the quantum mechanical laws. This requires a total reformu-
lation of kinetic theory and statistical mechanics. Where we previously
dealt with ensembles of micro-states, taking micro-states to be specifica-
tions of the positions and momenta of each molecule, now we must deal
with ensembles of quantum micro-states, where these are represented by
rays in a Hilbert space or, more generally, by density matrices.

We shall, of course, not divert ourselves into the mysteries encumbent
in a study of the meaning of the foundational concepts of quantum
mechanics. Nor shall we even devote a great deal of attention to the
ways in which a statistical mechanics founded upon an underlying
quantum mechanical micro-theory differs in its structure and its predic-
tions from a statistical mechanics founded upon an underlying classical
mechanical micro-theory. But we will note here one curious apparent
consequence of the theory and a few ways in which the change in the
micro-theory does impinge on the study of the fundamental statistical
assumptions of statistical mechanics.



Historical sketch 73

The curious consequence of the theory arises out of its statistical
mechanics of systems made up of a multiplicity of similarly constituted
particles. For reasons that are, to a degree, made available by some
results of quantum field theory, it turns out that in considering possible
states of systems made of particles with half-integral spin, we must con-
struct our ensembles only over state-functions that are anti-symmetric
under permutation of the particles. In constructing ensembles for particles
whose spin is integral, we must restrict ourselves to symmetric wave
functions. In both cases, the simple way of counting micro-states in the
classical theory is abandoned. This is the method that takes micro-states
obtained from one another by a mere permutation of particles from one
phase to another as distinct micro-states. Statistically, the result is the
creation of two new distribution functions: the Fermi-Dirac distribution
for half-integral spin particles, and the Bose-Einstein distribution for
particles with integral spin. The Maxwell-Boltzmann distribution remains
only as an approximating distribution for special cases.

Philosophically, the new way of counting “possible micro-states com-
patible with the macroscopic constraints” leads us, if we insist upon
thinking of the particles as really being particles — which, if quantum
mechanics is correct is a position hard to maintain — to say very curious
things both about the “identity through time” of a particle, about the
alleged Principle of Identity of Indiscernibles, and about the possibility
of apparently non-causal correlations among the behaviors of com-
ponents of a compound system. Because I believe these are puzzles that
can only be coherently discussed within the context of a general study
of the foundations of quantum mechanics, it will be best to leave them
to the side.

More relevant to our purposes are some special features of ensembles
in the quantum mechanical statistical theory that do interfere with the
smooth treatment of the problem of the nature and status of the funda-
mental statistical posits of statistical mechanics. In classical statistical
mechanics, we can have an ensemble that has no “recurrence” over time
in its distribution, even if the individual systems in the ensemble are all
governed by the Poincaré Recurrence Theorem. In quantum statistical
mechanics, this is not true. If we want a non-recurrent ensemble, we can
only obtain it in some special way — for example, by going to the ideal-
ization of a system with an infinite number of constituents. Further, we
can show that what we will call ergodicity and mixing results of various
kinds obtainable in classical statistical mechanics cannot hold in the theory
with a quantum micro-foundation.

Finally, as we shall see, a number of investigators have tried to found
an explanatory theory of the nature of the fundamental statistical posits
of the theory by arguing that these rest upon constraints in our ability to
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SO prepare systems as to construct ensembles that fail to behave in the
appropriate kinetic way. Their arguments frequently draw analogies
between limitations on our preparation of systems, which result from
purely classical considerations, with the alleged limitations on measure-
ment and preparation familiar from the Uncertainty Relations in quantum
mechanics. When we explore this approach to the rationalization of non-
equilibrium ensemble theory, we will have to deal with these alleged
similarities to the quantum mechanical situation.

Extending the equilibrium theory to new domains. In standard
statistical mechanics, the methodology for deriving the thermodynamic
features of equilibrium is routine, if sometimes extraordinarily difficult to
carry out in practice. One assumes that equilibrium properties can be
calculated by establishing the appropriate canonical ensemble for the
system in question. The form of this ensemble is determined by the
external constraints placed upon the system, and by the way the energy
of the system is determined, given those constraints, by the generalized
position and momentum coordinates of its component parts. Then one
uses the now familiar argument that in the limit of a very large number of
components, one can use the micro-canonical ensemble or the canonical
ensemble to represent the problem with the assurance that the thermo-
dynamic results obtained will be the same. Actually, the true rationale for
this requires subtle argumentation, some of which we will note later.

Formally, what one calculates is the function Z, the Zustandsumme or
partition function, where Z is defined by

Z= Je‘“""’)/ Tdp, ...dp,dq, ...dq,
in the classical case, and by the analogous sum
Z=73, e BV T

in the quantum mechanical case. E is the energy and T the temperature
of the system.

By a Gibbsian thermodynamic analogy, one can identify a thermo-
dynamic quantity, the Helmholtz free energy, F, as F = ~Tlog Z. Then,
from the transformation laws of the thermodynamic quantities, one can
derive the other thermodynamic functions. The end result of the process
is a characterization of the equilibrium thermodynamic properties of the
system in terms of the parameters constraining the system and the features
of its internal constitution, such as the number of constituent components
in the system. Here, the standard Gibbsian identification of ensemble
averages with equilibrium thermodynamic features is presupposed.
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Because the energy function can be a complex function of the posi-
tions and momenta of the components, depending in crucial ways, for
example, on spatial separations of particles acting on one another by
potential-derived forces and, in the case of electromagnetic forces, by
forces that may depend on relative velocity as well, the actual calculation
of the partition function as an analytically expressible function of the
constraints and structural features may be impossible. This leads to a
wealth of approximative techniques, series expansions, and so on. Cases
such as L. Onsager’s exact calculation of the thermodynamic functions
for the Ising model of a two-dimensional lattice of spinning particles
interacting by their magnetic moments are rare triumphs for the theory.

But if one is satisfied with approximative solutions, the wealth of sys-
tems whose equilibrium properties can be calculated by this orthodox
method is great: dilute and dense gases of molecules; one-, two-, or
three-dimensional arrays of spinning particles interacting by their mag-
netic moments; radiation confined to a cavity (which can be viewed as
being “composed” of its monochromatic component frequencies); inter-
acting systems of matter and radiation; plasmas of charged particles, and
so on. All fall prey to the diligent application of sophisticated analytical
and approximative techniques.

Phases and phase changes. One of the most characteristic macro-
scopic features of matter is the ability of macroscopically radically differ-
ent forms of matter to coexist at equilibrium. Typical examples are the
gas-liquid, gas-solid, and liquid-solid phases of matter at boiling, sub-
limation, and freezing points. But examples abound from the macro-
scopic magnetic states of matter and other thermodynamically describable
situations as well.

We shall see in Section 2 how the study of the so-called “thermo-
dynamic limit” throws light upon the existence of phases and the nature
of the change from one phase to another. Here I wish only to note the
existence of a theory that supplements the general principles of statistical
mechanics and has proven enormously successful in shedding light upon
the nature of the change from one phase to another, at least upon the
nature of the transition to the solid phase. The special feature of solidity
is long-range order. Whereas in a gas one expects at most short-range
deviation from pure randomness in the state of the molecules the deviation
to be expressible in a correlation of the state of nearby molecules be-
cause of their dynamic interaction, in a crystal one finds an astonishing
regularity that holds to macroscopic distances.

Reflecting on the fact that small arrays and large arrays show the same
kind of correlational order in the solid phase, a theory — renormalization
theory — is invented that provides great insight into the nature of the
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solid phase and the transition to it from, say, the random gas phase. In
particular, this theory is able to explain why it is that quite dissimilar
systems (atoms interacting by van der Waals forces and spinning elec-
trons interacting by means of their magnetic moments, for example) can
show phase transitions to the solid state that are quite similar in their
macroscopic characteristics. Renormalization theory is able to explain
why it is that general features of the system such as its dimensionality
and the number of degrees of freedom that are available to its constitu-
ents are what are important in the characterization of the nature of the
phase transition. The specifics of the intercomponent forces are much
less important.

2. Rationalizing the equilibrium theory

Ergodicity. We have seen how, from the very beginning of the en-
semble approach to the theory, there has been a felt need to justify the
choice of the standard probability distribution over the systems repre-
sented (in Gibbs) by the canonical and micro-canonical ensembles. In
Chapter 5, we shall spend a great deal of time exploring exactly what it
would mean to justify or rationalize such a probability distribution, as
well as ask in what sense such a rationalization would count as expla-
nation of why the probability distribution holds in the world. It will put
matters into perspective, though, if I here give the barest outline of the
progress of so-called ergodic theory subsequent to the Ehrenfest review.
The details of this history and an explanation of exactly what was shown
at each stage and how it was shown will be provided in Chapter 5.

Maxwell, Boltzmann, and Ehrenfest all propose one version or another
of an Ergodic Hypothesis. In some versions, one speaks of the dynamical
path followed from the micro-state at a time of a perfectly isolated system.
In other versions, one speaks of the path followed by the representative
point of a system subjected to repeated small interference of a random
sort from the outside. In some versions of the hypothesis, one speaks of
the point as traversing a path that eventually goes through each point in
the accessible region of phase space. In other cases, the path is alleged
to be dense in the accessible region, or to come arbitrarily close to each
point in the region over an unlimited time.

What is supposed to be provided by the hypothesis that is otherwise
not demonstrable? Although the micro-canonical ensemble is provably a
stationary probability distribution, we do not, without an Ergodic Hypo-
thesis, know that it is the unique such stationary probability distribution.
Ergodicity is supposed to guarantee this. Ergodicity is supposed to
guarantee that the infinite time limit of a function of the phase is equal
to the average of that phase function over all accessible phase points,
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Figure 2-11. The Quasi-Ergodic Hypothesis. As a suggestion to replace the
Ergodic Hypothesis, which, in its strong versions, is provably false, the Quasi-
Ergodic Hypothesis is proposed. Let a system be started in a micro-state repre-
sented by some point p in the phase space I. Let g be any other representing
point in the phase space. Then if Quasi-Ergodicity holds, the trajectory started
from p will eventually come arbitrarily close to g. That is, given any initial micro-
state of a system and any other micro-state allowed by constraints, the system
started in the first micro-state will eventually have a micro-state as close as one
likes to the given, second, micro-state.

where the average is generated using the micro-canonical probability
distribution. Finally, it is supposed to follow from ergodicity that the
limit, as time goes to infinity, of the fraction of time spent by the rep-
resentative point of a system in a given region of phase space is pro-
portional to the size of that region of phase space, when the size is
measured using the unique invariant measure.

First, A. Rosenthal and M. Plancherel show that the strongest ver-
sion of Ergodic Hypothesis — that the path of an isolated system will
eventually actually go through each point in the accessible region of
phase space — is provably false. This leads attention to be directed to
quasi-ergodicity — that is, to the claim that the path will be, instead,
dense in the phase-space region. It seems to be as difficult to prove any
realistic model of a system quasi-ergodic as it was to prove it ergodic in
the stricter sense. In any case, as we shall see, quasi-ergodicity, even if
it holds, proves to be insufficient to prove such things as equality of time
and space averages. (See Figure 2-11.)

Eventually, J. von Neumann and G. Birkhoff proved theorems that give
necessary and sufficient conditions on the dynamical structure of an
isolated system for the alleged consequences of ergodicity to hold. That
is, the study of the path is dropped in favor of trying to prove facts about
the system sufficient to show directly the uniqueness of the stationary dis-
tribution, the equality of time and phase average, and the proportionality
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of time in a region to size of region. But their necessary and sufficient
condition — metric indecomposability — is itself extremely difficult to
establish for realistic models.

For some years there have been attempts at performing “end runs”
around ergodicity, offering weaker rationales for the probability distribu-
tion, rationales that are, at least, dependent only upon conditions that
can be shown to follow from the dynamics of the system. Others drop
the rationalization program entirely, proposing instead that the funda-
mental probability hypothesis be taken as an ineliminable basic posit of
the theory.

Finally, as the culminating result of a long-term mathematical research
program initiated by Birkhoff and von Neumann and carried on by
E. Hopf, A. Kolmogorov, N. Krylov, V. Arnold, and others, Ya. Sinai is
able to prove metric indecomposability for certain models that bear
an interesting relation to realistic models of molecules in a box. But, at
the same time, other important mathematical results at the hands of
Kolmogorov, Amold, and J. Moser provide rigorous limitations on the
range of systems that could possibly satisfy the Birkhoff-von Neumann
ergodic condition.

As noted, we shall follow out this history in detail in Chapter 5. More
importantly, we shall there explore in detail just what one has a right
to expect from ergodicity results, when they are available, in the manner
of justifications of the probabilistic posits, rationalizations of them, or
explanations of why they are so successful in predicting thermodynamic
results.

The thermodynamic limit. We have seen continual reference in our
historical survey to the important fact that the systems under considera-
tion are constituted out of a vast number of micro-constituents. This
undeniable fact has been invoked to make such claims as the assertion
that fluctuations from equilibrium will be extremely rare over time and
that the canonical and micro-canonical ensemble calculations will give
the same values for thermodynamic quantities. Can this use of the large
numbers of degrees of freedom of the system be rigorously justified? The
attempt to put such claims on a firm foundation is known as the study
of the thermodynamic limit.

Here we deal, if we are working with the typical case of a gas of
molecules confined to a box, with systems whose volume is taken as
very large, whose number of molecules is taken as enormous, but whose
density is that of the system under consideration. This suggests the ob-
vious idealization of dealing with systems in the limit as the volume and
number of particles become infinite, with the density being held constant
in the limiting process. The theory of the thermodynamic limit has been
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highly fruitful. Results may be rigorously obtained in interesting idealized
cases. Furthermore, there is in this theory a nice sense of “control” over
the limiting process in that one can not only prove things about the limit
but get estimates on deviation from the limit in finite cases. This is some-
thing usually impossible to obtain in the situation of ergodic theory where
infinite time limits can be obtained, but where, often, no hold on how
much deviation from the limit one can expect in finite time intervals is
available.

What are some of the results one desires from the study of the thermo-
dynamic limit?

(1) We presuppose in statistical mechanics that the effect on the behavior
of the system of the interaction of the molecules with the box at the
edges of the gas is ignorable in calculating, for example, total energies
due to intermolecular interaction. But what genuine right do we have to
believe that this is so? Can we show that in the thermodynamic limit, the
contribution of the molecule-box interaction to the potential energy stored
in the gas goes to zero?

(2) If we demand that entropy be a function that is maximal for the
standard equilibrium distribution when that distribution is compared with
all distributions consistent with the specified constraints, and if we de-
mand that it have the appropriate additivity properties for independent
components of a system, then the unique statistical mechanical definition
of entropy can be derived. Now in thermodynamics we take entropy to
be an extensive quantity. A portion of gas in an equilibrium state that is
like a portion in a similar state but twice the size is taken to have twice
the entropy. Can we show in the thermodynamic limit that this will be
so? That is, assuming the usual equilibrium ensemble distribution and the
usual definition for entropy in terms of the distribution, can we show that
in the limit of the vast system, the entropy will have the appropriate
extensive nature?

(3) We generally assume that in the thermodynamic limit, an ensemble
will describe a system whose fluctuations away from the dominating
equilibrium state will become negligible. Whereas each ensemble pro-
vides a probability distribution over micro-states that is such that “most
probable” distributions in I'-space overwhelmingly dominate in prob-
ability those distributions in I'-space that are far from equilibrium, what
assurance do we have that the probabilities of the fluctuational I'-space
distributions will go to zero in the thermodynamic limit?

This problem is intimately related to the problem of the equivalence
of ensembles. It is just this assumption of vanishing fluctuations that
allows one to conclude that calculations done canonically and micro-
canonically will give the same thermodynamic results. Thermodynamic
quantities are derivable from one another by appropriate transformations
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in the phenomenological thermodynamical theory. But different ensembles
may be appropriate for deriving the different thermodynamical quanti-
ties in statistical mechanics. Only the proof of vanishing fluctuations —
fluctuations whose characteristic nature varies from ensemble to ensemble
— will allow us to legitimately select ensembles indiscriminately at our
need or convenience in calculating the values of thermodynamic quantities
while being assured that the resulting quantities will bear the appropriate
thermodynamic transformational relations to one another.

(4) The existence of multiple phases in equilibrium with one another
can plausibly be claimed to be modeled in statistical mechanics by a
partition function that is non-analytic — that is, that fails at certain points
to be a smooth function of its variable. But a simple proof is available to
the effect that in a finite system the partition function is provably analytic
everywhere. The thermodynamic limit approach to this problem is
designed to show that such smooth behavior of the partition function
can indeed break down in the thermodynamic limit, leading in that
idealized case to a non-everywhere analytic partition function represent-
ing multiple phases. An alternative but similar approach to this problem
recognizes in the path to the thermodynamic limit an analogy to the
ergodic path to the infinite time limit from orthodox ergodic theory. This
second approach attempts to correlate phase-change with a failure of this
kind of “system size ergodicity.”

But how can the results about the thermodynamic limit be obtained?
Let us first note that the task here is not to justify the equilibrium ensemble
distribution. This is presupposed. What additional presuppositions need
be made in order to derive the desired results? In the case of a gas of
interacting molecules, it is the nature of the interaction that is crucial.
Only for certain energetic interactions of the molecules will the thermo-
dynamic limit results be obtainable.

First, it is required that a stability condition be met. This demands that
there be a lower bound to the potential energy produced by the inter-
action potential attracting one molecule to another. Next, there is a
requirement on the interaction that the positive part of the potential
converges sufficiently quickly to zero with increasing molecular separa-
tion. For some interactions, proving these results is not difficult. For other
idealized interactions (such as the Coulomb interaction), various addi-
tional assumptions and clever analytical tricks are necessary. For gravi-
tational interaction, as we shall see, the stability condition is not met, but
for most realistic cases, one simply neglects the relatively insignificant
gravitational attraction of molecules for one another.

Given these presuppositions, there are basically two ways to proceed.
The first looks at the formulas connecting thermodynamic features to
ensemble-calculated features for finite systems, and studies how those
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functions behave in the thermodynamic limit. Here, one is often able to
prove the four results discussed as the aim of this theory.

There is an alternative to the approach that defines the thermodynamic
functions for finite systems and then investigates how these functions
behave in the thermodynamic limit. In this other program, one attempts
to characterize an infinite system from the very beginning, seeking the
appropriate representation to describe an idealized system of infinite
extent and with an infinite number of components, but whose density
is a specified finite value. When it comes to defining thermodynamic
properties for such a system, one looks for the appropriate ensemble
definition for quantities such as entropy density, rather than total en-
tropy, which will be divergent.

One problem in characterizing such systems and their statistical me-
chanics is finding the appropriate restriction on initial micro-states to
guarantee that wildly divergent behavior doesn’t ensue. For such infinite
systems, the possibility of solutions to dynamic evolution failing to exist
after a finite time arises — say, by an infinite amount of energy being
transferred to a single component in that finite time. Such possibilities do
not arise in the finite-system case.

Once such constraints are discovered, the next task is to say what an
equilibrium state is for such an idealized infinite system. One approach
uses ergodicity as the defining criterion for a state being equilibrium.
Although such equilibrium states for typical systems have been found,
there remain difficulties in being sure all such states have been described.
It is a curiosity of this approach that systems that when finite are never
ergodic, such as the ideal gas, are ergodic in the infinite-system limit.

Other ingenious characterizations of equilibrium have also been pro-
posed. A suggestion of Dobrushin, Lanford, and Ruell (the DLR condi-
tion) is that we think of equilibrium for a classical infinite system as
being that state characterized by the fact that for any finite region, if we
keep the particles outside of the region fixed, the particles inside the
region will be describable by a Gibbs grand canonical ensemble. For
quantum systems, an ingenious proposal from Kubo, Martin, and
Schwinger (the KMS condition) provides a clear characterization of
equilibrium state that can be extended to classical systems as well. Another
way to characterize equilibrium in this approach to the thermodynamic
limit is to think of equilibrium states as states that are stable under all
local perturbations.

3. The theory of non-equilibrium

Solving the Boltzmann equation. The Maxwell transfer equations
and the Boltzmann kinetic equation provide alternative, equivalent, means
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for describing the approach to equilibrium of a non-equilibrium dilute
gas. But whereas the H-Theorem - at least if the presuppositions of
the posit of Molecular Chaos can be established — gives us reason to
expect, in the probabilistic sense, an approach to equilibrium from a
non-equilibrium initial state, detailed knowledge of the nature of that
approach requires a solution to the equation. Although Maxwell and
Boltzmann were able to obtain limited results for the (unrealistic) inverse
fifth-power forces — the so-called Maxwell potential — the solutions of the
kinetic equation for realistic potentials were a long time in coming.

In 1916-17, S. Chapman, working from Maxwell’s transfer equations,
and D. Enskog, working from the Boltzmann equation, were able to
determine a class of special solutions to the equations. They did not look
for a general solution to the equation from an arbitrary initial condition,
an analytically hopeless task to solve. Instead, relying upon the
phenomenological equations of hydrodynamics, they simply assumed
that linear transfer coefficients existed, and looked only for solutions that
presupposed such linear coefficients. The implicit assumption here is
that even from the most wildly non-equilibrium initial condition, the gas
will very quickly reach a state that although still non-equilibrium, is one
whose future evolution obeys the familiar phenomenological regularities
of hydrodynamics. The special class of solutions Chapman and Enskog
found are usually characterized as normal solutions to the equations.
Although the discovery of such solutions can hardly be taken to give a
full account of why the phenomenological regularities hold, given that
their form is presupposed, the theory has positive and novel results that
outrun the resources of the phenomenological theory. One can, for ex-
ample, compute numerical values for the linear transport coefficients,
values that are simply inserted into the phenomenological theory. One
can also derive such empirically confirmed resuits as the dependence
of the coefficients on various thermodynamic parameters, such as the
variation in viscosity of a dilute gas with its temperature.

The problem of non-equilibrium ensembles. In Chapter 6, we shall
explore in great detail the structure of various attempts to generalize
non-equilibrium statistical mechanics beyond its origins in Maxwell’s
transfer equations and in Boltzmann’s kinetic equation. As we shall see,
there is no single, coherent, fully systematic theory that all will agree to
that constitutes the correct core of non-equilibrium theory. There is, in-
stead, a collection of approaches to the fundamental problems. Although
various approaches are plainly related to one another, exact or rigorous
demonstrations of equivalence of approach are rare. Even the question
of the limits of the statistical mechanical approach is not a settled issue.



Historical sketch 83

It is simply not known in any definitive way what general classes of non-
equilibrium phenomena will be susceptible to the apparatus of ensembles
and their evolution, or of kinetic equations derived from this kind of
ensemble dynamics.

Whereas equilibrium theory is founded upon a choice of the equilib-
rium ensemble, non-equilibrium theory presents a somewhat different
problem. Plainly, our approach to the foundations of non-equilibrium
will require an ensemble way of dealing with systems. If a kinetic equa-
tion or some other dynamical description of approach to equilibrium is
to be possible at all, it can only be in a probabilistic sense — whatever
that turns out to mean. But what should a theory of non-equilibrium
ensembles look like?

The first thing to notice here is the joint role played by the choice of
initial ensemble and by the dynamical laws of ensemble evolution that
are entailed by the micro-dynamics of the individual systems in the en-
semble. If an initial ensemble is picked at one time, the evolutionary
course of that ensemble is not open to our choice, for it is fixed by the
underlying dynamics. This is true despite the fact that, as we shall see in
Chapter 6, the method for deriving an appropriate description of dynami-
cal evolution often involves the positing of some “perpetual random-
ness” assumption that in one way or another, generalizes the Posit of
Molecular Chaos. How the ensemble evolves will depend upon its initial
structure. We will need to justify or rationalize any such assumptions
about its structure in order to complete our descriptive theory. But if we
derive our description of the evolution of this initial ensemble by super-
imposing on the micro-dynamical laws some posit of a statistical nature,
we shall have to show that the posit is actually comsistent with the
constraints on evolution imposed by the micro-dynamical laws.

How should an initial ensemble be chosen? This immediately leads
to a fundamental preliminary problem: What are to be the macroscopic-
phenomenological quantities by which the system and its evolution are
to be described? In the case of equilibrium theory, the answer to this
question has always been clear. One chooses the energy (or its mean if
one was doing canonical ensembles) or, in special cases, the energy plus
the small number of additional knowable constants of motion. Then one
generates the appropriate ensemble. In some cases of non-equilibrium
statistical mechanics, where we are dealing with systems near equilib-
rium or started from an equilibrium that is then destroyed by a parameter
being changed, the equilibrium methods guide us to our choice of non-
equilibrium initial ensemble as well. But in the more general case we
really have no systematic guide to what macroscopic parameters can be
fixed by the experimenter, and hence no systematic guide to what kinds
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of initial ensembles we must consider. This issue will be crucial when the
alleged reduction of thermodynamics to statistical mechanics is discussed
in Chapter 9.

Once we have decided what the macroscopic constraints are to be, the
further problem of choosing a probability distribution for the systems
over the allowable phase space of systems arises. Here, the method of
equilibrium theory that picks out the standard invariant ensemble is not
available to us, although, once again, it provides direction in limited
kinds of cases. We shall explore some general proposals for systemati-
cally picking the probability distribution given the macroscopic constraints.

What methods, given an initial ensemble, or even leaving the choice
of this ensemble indeterminate, can we find for deriving the appropriate
dynamical evolution equations that will lead to our macroscopic non-
equilibrium behavior?

Ideally, one would like there to be methods that, given a sufficient
characterization of the initial ensemble, could, using the micro-dynamics
alone, allow one to derive a description of ensemble evolution from
which generalized kinetic equations could be derived. Such a derivation
does exist in a very limited realm. Even there it serves only to rationalize
or justify a kinetic equation (in this case, the Boltzmann equation) derived
by other means. The actual route to kinetic equations in the general case
comes about through the positing of some probabilistic principle that,
superimposed on the dynamical laws, permits the derivation of a kinetic
equation in a manner similar to the way in which the Posit of Molecular
Chaos permits the derivation of the Boltzmann equation.

One group of such methods appears in the form of a direct general-
ization of the Posit of Molecular Chaos. Here, the functions that describe
the correlations of the motions of molecules of various kinds (positions,
momenta, and so on) are posited to be simple functionals of the func-
tions that express lower-order correlations. The result is a hierarchy of
equations for the correlation functions that can be transformed, by a
posit or Ansatz, into closed equations for the lower-order correlations.
The method is a clear generalization of the basic posit of a “perpetual
Stosszablansatz” of the kind noted by the Ehrenfests.

By use of this method, one can seek for kinetic equations for dense
gases, plasmas, and so on. It is worth noting here that even for the
simple cases that go beyond the Boltzmann equation for a moderately
dense gas, it has proven to be extraordinarily difficult to construct an
appropriate kinetic equation. And, in fact, it is usually not only impos-
sible to solve the kinetic equation derived, in the sense that Chapman
and Enskog solved the Boltzmann equation, but even to prove an ap-
propriate H-Theorem for the more general cases.

A very important class of approaches that has proven to be of value
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in deriving kinetic equations is applicable to cases where the system can
be viewed as a large number of energetically, almost independent, sub-
systems that interact only to an energetic degree much smaller than their
intrinsic energy. Many systems are of this nature — an almost ideal gas
with small intermolecular potential energy, radiation coupled by a small
“dust mote” that absorbs and reradiates, almost harmonic oscillators
coupled by a small mutual inharmonic force, and so on.

Here, one can deal with states that are the invariant states of the
uncoupled system, and one can assume that the introduction of the small
coupling serves to give rise to transitions of the system from one distri-
bution over the invariant states of the uncoupled system to another. The
technique is subtle, for often one must deal not with values of functions
that are determined by the invariant uncoupled states, but with averages
of such functions over those states. But once again, an assumption that
transitions from one such state to another are determined by fixed con-
stant probabilities over time becomes another way of representing the
system as a Markov process, and leads, by means of what is called a
Master Equation, once more to a kinetic equation describing a monotonic
trend toward equilibrium.

Other approaches to the problem of generalizing from the Boltzmann
equation follow a plan derived in conception from Gibbs’ treatment of
the non-equilibrium ensemble. Gibbs suggested that we could deal with
non-equilibrium, at least in part, by “coarse graining” the I'-phase space
and defining the new coarse-grained entropy. The approach to equilib-
rium would be represented by an increase in coarse-grained entropy,
corresponding to the initial ensemble “spreading out” in such a way that
although its volume remained constant, the proportion of each coarse-
grained box occupied by it became more and more uniform with time,
heading toward an ensemble in which each coarse-grained box was
equally full and equally empty of systems.

But Gibbs did not offer a postulate sufficient to show that this monotonic
increase in coarse-grained entropy would in fact occur, a deficiency clearly
pointed out by the Ehrenfests. One can supply such a postulate, how-
ever. As we shall see in Chapter 6,111,3, the assumption that the system
evolves as a kind of Markov process does the trick. The assumption, in
essence, is that the fraction of systems in a box at one time that will be
in a given box at the next specified later time is constant. Again, this
assumption, like the generalized Posit of Molecular Chaos, amounts to a
continuous rerandomization assumption about the dynamic evolution
of the ensemble, an assumption whose consistency with the underlying
dynamical laws remains in question.

In Chapter 6, we shall follow in some detail a number of approaches
toward finding some general principles for construing non-equilibrium
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ensembles and for deriving, by means of various posits, kinetic equations
of various sorts from them. This is an area of physics lacking in any
single, unified, fully coherent approach. There is, rather, a wide variety
of approaches. That they are related to one another is clear, but there
is in general no systematic way of rigorously or definitively elucidating
their relationships to one another.

4. Rationalizing the non-equilibrium theory

It is one thing to be able to describe initial ensembles in a systematic way
and to be able to posit appropriate randomization hypotheses so as to be
able to derive a kinetic description of non-equilibrium systems. It is quite
another thing to justify the correctness of one’s description. And it is
another thing again to be able to explain why the description is success-
ful, if it indeed is. The whole of Chapter 7 is devoted to just these issues
but, once again, it will be useful to give here the briefest possible outline
of what some approaches to the justification and explanation problem
might be.

First, there are a number of approaches to this problem that lie outside
the “mainstream” or “orthodox” approaches. One of these non-standard
approaches argues for the reasonableness of the principles that give rise
to kinetic equations and irreversibility through an interpretation of the
probabilities cited in statistical mechanics as subjective probabilities. The
rules for determining probabilities are taken as originating in general
principles of inductive inference under uncertainty.

_ A second non-orthodox approach, whose origins can be traced back
quite far in the history of statistical mechanics, seeks the rationale in the
non-isolability of systems from the external world. Here it is claimed that
at least part of the explanation of the success of the statistical mechanical
methods arises from the fact that systems idealized as energetically isolated
from the rest of the world are actually not so isolated. It is, in this view,
the perpetual interaction of the system with its environment, small as that
may be, that accounts for the success of the statistical method and the
randomization posits. A third non-orthodox approach seeks the resolu-
tion of the difficulties in the positing of time-asymmetric fundamental
dynamical laws.

The more common, orthodox, directions in which justification and
explanation are sought look for their resources to identifiable physical
features of the world arising out of the structure of the system in question
and the structure of the micro-dynamical laws in order to ground the
derivation of the kinetic description.

In one unusual case, the kinetic equation can be derived from a posited
structure of the initial ensemble by itself using solely the micro-laws of
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dynamical evolution. In other cases, it is derived by means that rely both
on the structure of the initial ensemble and on posited randomizing
features of dynamic evolution. In both cases one would like to find some
grounds for believing that all initial ensembles will have the requisite
feature. Here, what one seeks are physical reasons for a limitation on the
kinds of actual ensembles of systems that we can prepare. The resources
to which one turns include the structure of the individual systems — the
underlying micro-dynamical laws — plus additional constraints upon the
ability of an experimenter, restricted in some sense to the macroscopic
manipulation of the system, to constrain a system’s initial conditions.
Whether such resources will, by themselves, serve to rationalize the re-
striction on initial ensembles or whether, instead, some additional funda-
mental probabilistic postulates resting on different grounds will be needed
as well is, as we shall see in Chapter 7, a matter of important controversy
and is fundamental to the study of the foundations of the theory.

When one’s derivation of a kinetic equation rests either in whole or in
part upon randomization posits imposed on dynamic evolution, a rather
different task of justification and explanation needs to be faced. Because
the dynamic evolution of an ensembile is fixed by the underlying micro-
dynamics — at least in the orthodox approaches in which isolation from
the outside is retained for the system and in which one accepts the
standard micro-dynamics as a given and not as some approximation to
a more stochastic or probabilistic underlying theory — one must reconcile
the posited randomization imposed on the evolution with the evolution
as constrained by the laws of the micro-dynamical theory.

Here, one might try to rely solely upon some demonstration that the
evolution described by the micro-dynamics is adequately representable
by the probabilistic description, the justifiability of the alternative repre-
sentation resting upon the structure of the laws of dynamical evolution
alone. Or one might offer a justificatory or explanatory argument that
utilizes both the structure of the micro-dynamical laws and some posited
structure feature of the initial ensemble. We shall see both approaches
used in our detailed reconstruction of these arguments in Chapter 7.

It is in this part of the program of rationalizing the non-equilibrium
theory that the use is made of a series of important advances in our
understanding of the micro-dynamical laws and the structure of the
possible solutions. In particular, various demonstrations of the radical
instability of solutions under minute variations of initial conditions for
the equations, and of the connection of such demonstrable instabilities
with various “mixing” features of the ensembles whose evolution is
governed by these equations, play a central role in the part of foundational
studies. Here, powerful generalizations of the ergodicity results that we
shall study in Chapter 5 come into play. We shall explore these more
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general results — which play in the foundational study non-equilibrium
a role both like in some respects and unlike in other respects the
role played by ergodicity results in the equilibrium theory — in detail in
Chapter 7.

V1. Further readings

For a history of thermodynamics, see Cardwell (1971).

Two clear books on thermodynamics emphasizing fundamentals and
concepts are Buchdahl (1966) and Pippard (1961). Truesdell (1977) is
historically and conceptually oriented.

On the approach to thermodynamics that directly embeds probability
into the theory, see Tisza (1966).

For the theory of non-equilibrium systems close to equilibrium, two
good sources are Kubo, Toda, and Hashitsuma (1978) and de Groot
and Mazur (1984). Introductions to the concepts used to deal with non-
equilibrium thermodynamics far from equilibrium can be found in
Prigogine (1980) and (1984). See also, Truesdell (1984).

Brush (1983) is a brief and clear history of kinetic theory. Brush (1976)
is a compendium of essays covering many areas of the history of kinetic
theory and statistical mechanics. Brush (1965) contains many of the seminal
works in the history of kinetic theory and statistical mechanics selected
from the original sources and translated into English where necessary.
Maxwell’s Demon is exhaustively treated in Leff and Rex (1990).

An excellent introduction to statistical mechanics emphasizing
foundational issues is Tolman (1938). Two later works covering both
older and newer topics and emphasizing fundamental issues are Toda,
Kubo, and Saito (1978) and Balescu (1975). Munster (1969) is a treatise
covering both foundational issues and applications.

Gibbs (1960) is essential reading.

Ehrenfest and Ehrenfest (1959) stands as a masterpiece of critical analysis
of the theory up to 1910. For quantum statistical mechanics, Toda, Kubo,
and Saita (1979) and Tolman (1938) are excellent.

An excellent survey of the important developments in statistical me-
chanics in the period prior to its publication is O. Penrose (1979), a
retrospective piece that can direct the reader to much of the original
literature.

Toda, Kubo, and Saito (1979) and Balescu (1975) contain very acces-
sible treatments of the phase-transition problem and descriptions of the
exactly solvable models.

The issue of the thermodynamic limit is taken up with mathematical
rigor in Ruelle (1969) and in Petrina, Gerasimenko, and Malyshev (1989).
See also, O. Penrose (1979), Section 2.
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For further readings on the foundational problems of the rationaliza-
tion of the probabilistic posits in equilibrium and non-equilibrium theory,
see the “Further readings” at the ends of Chapters 5, 6, and 7 of this
book.



3

Probability

As is already clear from the preceding historical sketch of the develop-
ment of foundational problems in statistical mechanics, the concept
of probability is invoked repeatedly in the important discussions of
foundational issues. It is used informally in the dialectic designed to
reconcile the time-asymmetry of statistical mechanics with the time-
reversibility of the underlying dynamics, although, as we have seen, its
introduction cannot by itself resolve that dilemma. Again, informally, it is
used to account for the existence of equilibrium as the macro-state
corresponding to the “overwhelmingly most probable” micro-states, and
to account for the approach to equilibrium as the evolution of micro-
states from the less to the more probable. More formally, the attempts at
finding an acceptable derivation of Boltzmann-like kinetic equations all
rest ultimately on attempts to derive, in some sense, a dynamical evolu-
tion of a “probability distribution” over the micro-states compatible with
the initial macro-constraints on the system. The picturesque notion of the
ensemble, invoked in the later work of Maxwell and Boltzmann and
made the core of the Gibbs presentation of statistical mechanics, really
amounts to the positing of a probability distribution over the micro-states
of a system compatible with its macro-constitution, and a study of the
changes of such a distribution over time as determined by the underlying
dynamics.

But what is probability? The theory of probability consists of a formal
mathematical discipline of astonishing simplicity at its foundation and of
astonishing power in what can be derived in it. Along with the formal
theory, there is a wide and deep literature devoted to trying to explicate
just what elements are described within the formal theory. As we shall
see, the so-called problem of the interpretation of probability — the
problem of understanding in a general way what probabilities consist of
— is one that remains replete with controversy. What seems initially to be
a simple matter, requiring only conceptual clarification in matters of detail,
is actually a puzzling and difficult area of philosophy.

Although it will be the aim of this chapter to survey a number of the
most crucial assumptions and puzzles in several modes of the interpre-
tation of probability, it will not be my purpose here to explore this to the
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depth it deserves as a problem in its own right. Such an effort would take
us too far afield from our main goal — the pursuit of the foundational
problems in statistical mechanics. But a survey of these general approaches
to interpretation will provide an essential background for studying the
more specialized problems in the application of probability to physics
that are encountered in statistical mechanics. We shall also see how
some of these general interpretive issues may very well depend for their
resolution on some of the particular results obtained in the study of
statistical mechanics, because, as we shall see in Chapter 7,IV,1 and 2, it
is sometimes unclear where the dividing line between purely conceptual
issues and issues about the nature of the world as revealed in our best
physics lies.

This chapter will first outline some essential formal aspects of prob-
ability theory. Next, it will survey some of the philosophical work on the
interpretation of probability. The final section will deal with the special
problems encountered when probability is introduced as a fundamental
element in statistical mechanics.

I. Formal aspects of probability

1. The basic postulates

One begins with a collection, E, called a set of elementary events. Next,
there must be a collection of subsets of E, called events, that is closed
under set union, intersection, and difference, and that contains E. In
general, this collection, F, will not contain every subset of E. Probability
is then introduced as a function from the members of F into the real
numbers, P. P assigns the value 1 to E — that is, P(E) = 1. Most im-
portantly, P obeys an additive property: If A and B have no members in
common, then P assigns to their union the sum of the values assigned to
A and B — that is,

AN B=¢,then P(A U B) = P(4) + P(B)

When the set E is infinitely large, F can contain an infinite number of
subsets of E. In this case, the additivity postulate here is usually extended
to allow for denumerably infinite unions of subsets of F. If a collection
of A/s consists of sets, all of which have no members in common when-
ever i # j, then it is posited that P(U,;4,) = Z,P(A4,). This is called
countable additivity or ¢-additivity. This postulate is sometimes ques-
tioned in subjective probability theory, although denying it leads to
peculiar behavior for probabilities even when they are interpreted sub-
jectively. But in all of the standard applications of probability theory to
statistical mechanics, it is assumed to hold.
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Next, one needs the notion of conditional probability, introduced in
this approach by definition. If P(4) # 0, then the probability of B given
that A, the conditional probability of B on A, written P(B/A), is just
P(B n A)/P(A). This can be understood intuitively as the relative
probability of B to the condition of A being assumed to be the case.
Two events are probabilistically independent if P(B/A) = P(B) and
P(A/B) = P(A). This can easily be generalized to hold for collections of
events where each event-is independent of all the others in the collection,
rather than independence being merely between pairs of events.

A sequence of “trials” that constitute an “experiment” is an important
notion. Here, one thinks of a sequence in which some elementary event
is the outcome of each running of the trial. If the probability of an event
on a given trial is independent of the outcomes of all other trials, the
sequence is said to be a Bernoulli sequence. If the probability of an
event in a trial differs, perhaps, from its probability conditional upon
the outcome of the immediately preceding trial, but if this probability
P(A,/A, ) is then the same as the probability of A,, conditioned on all
other additional outcomes, the sequence is called a Markov sequence. In
a Bernoulli sequence, no knowledge of other outcomes leads to a change
of one’s probability attributed to the outcome of a given trial. In a Markov
sequence, knowing the outcome of what happened just before the speci-
fied trial may lead one to modify one’s probability for a given trial, but
knowledge of earlier past history is irrelevant.

Finally, we need the notions of random variables and distribution. A
random variable is merely a function that assigns a value to each of the
elementary events in E in such a way that the set of all elementary events
that have a value less than a specified amount is in F, and hence is assigned
a probability. One can define the distribution function for the random
variable as the function whose value at a is just the probability that the
random variable has a value less than a. If this function is differentiable,
its derivative, intuitively, gives the rate at which the probability that the
random variable will have a value less than a is increasing at a. From the
distribution function for a random variable, one can define its expecta-
tion. Intuitively, this is just the “sum of the product of the value of a
random variable times the probability of that random variable.” Naturally,
for continuously distributed random variables, this requires formalization
in terms of that generalization of the sum that is the integral. Crudely, the
expectation of a random variable is its mean value.

The basic postulates of probability are of extraordinary simplicity.
Naturally, much refinement is needed to make things precise in the general
cases of infinite collections of events and so on. Although the postulational
basis is simple, it is extraordinarily rich in consequences. We will need
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to note only a few of the most important of these consequences in the
next section.

2. Some consequences of the basic postulates and definitions

A group of important consequences of the basic postulates of probability
theory deal with sequences of trials that are independent — Bernoulli
sequences. Suppose such a sequence of trials is performed, with a fixed
probability for the outcomes of each trial and with the independence
condition holding, so that for any collection of trials the probability of
a joint outcome is merely the product of the probabilities of the out-
comes of each trial, a condition easily seen to be equivalent to the earlier
definition of independence.

One can take the outcomes of the first » trials, characterized by a
random variable defined over the elementary event outcomes, add them
up, and divide by #, getting a “sample mean” of the outcomes in a
particular series of trials. The laws of large numbers relate these sample
means in the limit as the number of trials “goes to infinity” to the ex-
pected value of the random variable as calculated by using the probability
distribution for this random variable as fixed by the probabilities of the
various outcomes on any one trial. This probability distribution, by the
definition of the sequence as a Bernoulli sequence, is the same for each
trial.

The Weak Law of Large Numbers tells us that

limP(y, - > =0

where y, is the sample mean of the random variable in question and p
is the expected value of it on a single trial. What this says is this: Suppose
an infinite number of Bernoulli sequences of trials are run, and the sample
mean calculated for each sequence at each #n. For any deviation of this
mean from the expected value, the proportion of sequences such that
the sample mean at », a specific trial number, will differ by more than
¢ from the expected mean can be made arbitrarily small by picking an
n far enough out in the sequence.

This result is compatible, however, with the following: An infinite
number of such infinite number of trials are run. In each, the deviation
of the sample mean from the expected value becomes, as the Weak Law
demands, sparser and sparser as the number of trials increases. But in
each run, or in a large proportion of them, the sample mean never gets
within € of the expected value, and stays there forever. That this is not
to be expected is given us by the Strong Law of Large Numbers. This
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says P(lim y, = p) = 1. What this comes down to is that when we look
at this infinite collection of repeated trials, as the number of trials goes
“to infinity” in each sequence, we can take it that the probability of a
sequence getting a sample mean that settles down to within € of the
expected value forever has probability one, and the set of those that
never do this has probability zero.

One can go much further. The Central Limit Theorem, for example,
tells us that there is a limiting particular distribution function to which
the distribution of such sample means in this infinite collection of infinite
trials will converge.

These facts about large numbers of trials (or more correctly about the
behavior of sample means of sequences of trials in the limit) will play a
role in some of our attempts to outline just what probability is. For the
moment the reader should only note how the notion of probability plays
a crucial role in the statement of these results. The “convergence of the
sample mean to the expected value” noted in all these results is some
form of convergence “in probability.” For future reference, it is important
to note also how the crucial premise that allows these results to be
derived is that the sequence is one of independent trials. In Chapter 5,
we shall see in discussing the role of the Ergodic Theorem in attempts
to provide a rationale for equilibrium statistical mechanics, that it is possible
to provide a close analogue of these “large number” results even in some
important cases where, intuitively, independence of trials is not the case,
at least in the physical sense of trials whose outcomes are causally in-
dependent of one another. Indeed, we shall see that something like
a law of large numbers can be derived in some cases even where the
outcome of each successive trial is completely causally determined by
the outcome of the initial trial.

One very simple consequence of the postulates and of the definition
of conditional probability is Bayes’ Theorem. Suppose A4, ... A4, con-
stitute events in F so that each elementary event in E is in one and only
one A;. Then, for any event B in F, the following holds:

P(B/A)P(A,)

P(A,/B) =
X,P(B/ADP(A)

The theorem relates the probability of one of the A,s conditional upon
B to a quantity calculable from the unconditional probabilities of the
A/'s and the probability of B conditional upon the specific 4, in question.
We shall note in Section IL,5 the central role this theorem plays in one
view about the way probability assessments are to vary dynamically over
time.
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3. Some formal aspects of probability in statistical mechanics

The role of probability in statistical mechanics is one fraught with puzzles,
many of which will be components of the central issues to be discussed
in this book. Here, I want only to note a few basic aspects of the for-
malism by which probability is usually introduced into the theories we
will survey.

The class of elementary events relevant to statistical mechanics is phase-
space, the class of points representing each possible micro-state of the
dynamical system in question. For the classical statistical mechanics with
which we will be dealing, each point represents the full specification of
generalized position and momentum coordinates for each dynamical
degree of freedom of the system. The relevant phase-space for quantum
statistical mechanics is of vital importance for statistical mechanics in
practice, but not something we will have to deal with very often. The
class of events, F, is just a class of sets of micro-dynamical states. Random
variables will then be functions that assign numbers to micro-states in
such a way that when the probability function over the relevant class of
sets of micro-states, F, is defined, well-defined probability distributions
for the random variables in question also exist.

To define one’s probabilities, start with a measure, a generalization
of the ordinary notion of volume, on the phase-space in question. The
choice of this measure ultimately constitutes the determination of the
relevant values a probability is to take. Justifying the choice of this mea-
sure and explaining why it works often constitute central parts of the
foundational question. The standard measures are all derived from the
measure on phase-space as a whole that works by taking a volume in
phase-space to have its size be essentially the product of all its exten-
sions in coordinate and momentum values. Usually one will be dealing
with a lower-dimensional sub-space of the phase-space, a sub-space
determined by the restriction of possible micro-states of the system to
those compatible with some class of macro-quantities. The appropriate
measure on this sub-space will not in general be the simple volume
measure of the phase-space restricted to this lower dimension, but an
appropriate modification of it. In the case of equilibrium statistical me-
chanics, this appropriate measure is a measure of the size of the regions
in the sub-space provably invariant over time under the action of the
dynamic evolution of the systems represented by trajectories from their
initial representing phase-point. In non-equilibrium cases, as we shall
see in Chapter 7, such measures also play a role, but one whose rational-
ization is rather less well understood.

The measure of regions then allows one to assign probability to appro-
priate regions. Here, it is important to note crucial facts about regions “of
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zero size,” regions that are assigned zero probability. It is easy to show
from the basic postulates that the empty set in F — the set containing
no elementary events — must get probability zero. But having probability
zero is not a property of this set alone. In general, many non-empty sets
in Fwill have probability zero. In the ordinary measure for regions of the
real line, for example, all sets of rational numbers only get measure zero.
In a many-dimensional space with its ordinary volume measure, all sub-
spaces of lower dimension will receive measure zero. In statistical me-
chanics, the role of sets of micro-states of probability zero is an important
one, and we shall have a good deal to say about what can, and what
cannot, be inferred from some class of micro-states being of probability
Zero.

Formally, the choice of a probability assignment to sets of micro-states
that is such that probability zero is assigned to any set with zero size in
the measure — an assignment of probability that is, in mathematicians
terms, “absolutely continuous” with respect to the standard measure —
makes the formal method for assigning probabilities simple. When the
probability assignment is absolutely continuous with respect to the
measure, we can derive all probabilities assigned to sets by positing a
non-negative, measurable, function, f, over the micro-state points of the
relevant subspace of phase-space. The probability assigned to a region
A in the phase-space is then obtained by “adding up” the f values for
all the points in A, or, more rigorously, by integrating the function with
respect to the measure over the region A. That is, a single probability
density function can be defined that “spreads the probability” over the
appropriate region of phase-space so that the total probability assigned
to a region is obtained by a measure of the amount of the total probabil-
ity over the whole phase-space that is spread in the region in question.
Most commonly in statistical mechanics it is “uniform” spreading that is
posited, the probability being assigned to a region of micro-states just
being proportional to the size of that region in the chosen measure. Of
course, the grounds for choosing such a measure in the first place, and
the explanation of why such a choice works as well as it does (when it
does work), remain deep conceptual and physical issues.

. Interpretations of probability

A single formal theory can be applied in many different domains. The
same differential equation, for example, can apply to electromagnetic
fields, sound, heat, or even to phenomena in the bioclogical or social
world. The postulates and basic definitions of formal probability theory
are clear. But what is the domain that we are describing when we take
the formal apparatus of set of elementary events, set of subsets of it
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called events, and additive function on these called the probability
function to be characterizing what we take intuitively to be probability?
As we shall see in the brief survey next, this has become one of those
issues that seems at first easily resolvable, but that becomes slippery and
elusive when a complete and clear explication is demanded.

1. Frequency, proportion, and the “long run”

Consider a finite collection of individuals with a number of properties
such that each individual has one and only one member of the set of
properties. The relative frequency with which a property is instanced
in the population is plainly a quantity that obeys the postulates of prob-
ability theory. So, are probabilities in the world nothing but relative fre-
quencies in ordinary finite populations?

One objection to this is its limitation of probability values to rational
numbers only, whereas in many of our probabilistic models of phenom-
ena in the world, we would want to allow for probability to have any
value in real numbers from zero to one. But surely we can generalize
beyond actual relative frequencies to actual proportions. Imagine a particle
moving in a confined region that we think of as partitioned into non-
overlapping sub-regions. Surely we understand the notion of the propor-
tion of some finite time interval the particle spends in any one of the
partitioning sub-regions. These proportions can, in general, have non-
rational values. And it is transparent that the proportions will obey the
laws of formal probability theory. The particle will spend all of its time
somewhere in the region P(E) = 1, and for exclusive regions the pro-
portion of time the particle spends in the joint region of 4 and B will just
be the sum of the proportion of time spent in 4 and that spent in B.

But there is a standard objection to any proposal to take such clearly
understood notions as finite relative frequency or ordinary proportion as
being identifiable with probability. Our intuition tells us that although
frequencies and proportions should in some sense cluster around prob-
abilities, we cannot, in general, expect probabilities and proportions to
be equal. The probability of heads on a fair coin toss is one-half, but only
a small proportion of coin tossings have heads come up exactly half the
time — and it will never be so if the number of tossings is odd. A simple
identification of probabilities with frequencies or proportions, it is often
argued, is too naive, too direct, and too simple-minded a theory to cap-
ture the subtle relation that probabilities hold to actual frequencies and
proportions.

One familiar attempt to resolve this problem is to move to idealized
“infinitely large” reference classes. Here, the attempt is made to use the
close association of probability with observed frequency mediated by the
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laws of large numbers in probability theory to find something in the
world more strictly identifiable with probability than the frequencies or
proportions in finite reference classes. For example, it is sometimes
argued that in the case of something like coin tossings, where only one
of a finite number of outcomes is possible, the probability of an outcome
ought to be identified not with the frequency of that outcome in some
limited set of trials, but with the “limit of relative frequency in the long
run” — that is, as the number of tosses increases without limit or “to
infinity.”

But such long-run relative-frequency accounts of probability are prob-
lematic in several ways, at least if they are intended as providing some
definition of probability in terms that advert to actual features of the
world and that themselves do not invoke probabilistic notions. One
problem is that the limit of a series — the natural way to define probabil-
ity in this approach being to use the usual mathematical definition of a
quantity as a limit — can vary depending upon the order of the terms in
the series. Although the finite relative-frequency approach to probability
requires no implicit order among the events whose probability is to be
determined, the limit of relative frequency in the long-run approach does
demand such an order of events. But for events that are orderable in time
or in some other natural way, this is not an insuperable conceptual
problem.

More disturbing is the degree of unrealistic idealization that has been
introduced in this “more sophisticated” approach to a definition of prob-
ability. Although the finite classes and sub-classes of the finite relative
frequency view are taken as existing in the world, in what sense do the
infinite sequences of events needed to define probability in the long-run
approach really exist? Will there ever really be an infinite number of
tossings of fair coins in the world? If not, then have we abandoned the
ideal of finding something “real” and “in the world” to be the element
described by the formal probability theory? If we take such infinite se-
quences not as real elements of the world, but as some “ideal” element,
then exactly how is this ideal related to what is real (presumably actual
relative frequencies in actual finite reference classes), and, given this
idealization, what are we to take its probabilities to be?

Most important of all is the realization that going to long-run limits
of relative frequencies doesn’t really solve the problem it was introduced
to handle - the possibility of deviation between relative frequency and
what is taken, intuitively, to be probability. First, note that the association
of probability with relative frequency guaranteed by the laws of large
numbers holds only when the sequence is a Bernoulli sequence, a se-
quence of probabilistically independent trials. But this notion is one that
requires an introduction of a probabilistic characterization of the physical
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situation in its definition, leading us to be quite skeptical that there is
some way in which, by using infinite sequences of trials, we could “de-
fine” the notion of probability in terms that themselves do not presup-
pose the understanding of probabilistic notions.

A further consideration in this vein is even more important. Even given
that the sequence has the proper probabilistic independence between
trials, even the Strong Law of Large Numbers fails to identify the limit of
relative frequency with the probability in an individual trial. We are told
only that the probability that they will be equal is one, or that the prob-
ability of their being unequal goes to zero. But, as we have noted, prob-
ability zero is not to be identified with impossibility. Even if an infinite
sequence existed, and even if we could be assured that it was a Bernoulli
sequence, the laws of probability still leave open the possibility that the
limit of relative frequency, even if it existed, could differ from the prob-
ability of the relevant outcome in an individual trial. It would seem, then,
that we can associate limits of relative frequency with probabilities only
relative to a modality that is itself probabilistic in nature. For this reason
as well as for the others noted, many have become skeptical that the
invocation of long runs, construed either realistically or in terms of some
idealization, will do the job of mitigating the fundamental objection to
the finite relative frequency (or finite proportion) account of probability
— that is, the possibility of a divergence between the appropriate propor-
tion, finite or long-run, and the probability we are seeking to identify
with some feature of the world.

2. Probability as a disposition

One very important group of attempts to solve some of the problems
encountered in the relative frequency (or proportion) and long-run rela-
tive frequency approaches is the one, beginning with seminal work of K.
Popper, that offers an account of probability as a disposition or propen-
sity. Although the frequentist takes probability as something “in the world”
but attributable, at least primarily, to collections of trials or experiments,
the dispositionalist thinks of a probability attribution as being fundamen-
tally an attribution of a property to a single trial or experiment. For the
frequentist, probability adheres to the individual trial only insofar as that
trial is subsumable into some general kind or class, and frequentists
generally take the correct probability attribution to an individual trial as
something that is only relative to thinking of that trial as in some specific
class or other. But such problems concerning the uniqueness or non-
uniqueness of the correct probability attribution to an individual trial (or,
on its relativization to thinking of that trial as a member of some general
kind) are sometimes puzzles for the dispositionalist as well.
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The property — or rather magnitude, for probability is taken to be a
“quantity” that inheres in the individual event to some “degree” or other
ranging from zero to one — that probability is taken to be is a dispositional
property. Here, probability is assimilated to such properties as the solu-
bility or the fragility of objects. Intuitively, a distinction is made between
categorical properties and dispositional properties. The former are, in
some sense, the “occurrent” properties of the object, the latter present
in the form only of “conditional” properties, attributions that have their
presence because of what the object would do were certain conditions
met. Thus, a dry piece of salt is categorically cubical, but soluble only in
the sense that if it were put in a solvent it would dissolve. Needless to
say, that distinction between the categorical and dispositional properties
is a hard one to pin down. Many, in fact, would doubt that any such
distinction that holds in a context-independent way can be made, argu-
ing that what is for the purposes of one discussion categorical can be for
other purposes viewed as dispositional.

Dispositional theories of probability vary widely in what the disposi-
tion is attributed to and in their detailed analysis of how the attribution
of probability as a disposition is to be precisely construed. We will have
to survey the most general features of these accounts only briefiy.

As we have seen, the stipulation or definition of a dispositional property
is usually by means of some counter-factual conditional: how the object
would behave were certain test conditions satisfied. What would such an
account of probability as a disposition look like? Usually this is thought
of in terms of the propensity of the trial to reveal a certain relative
frequency (or proportion) of outcomes on repetitions of it. Crudely, what
it means to attribute a probability of one-half for heads on a coin toss is
that were one to toss the coin (an infinite number of times?), a relative
frequency of heads of one-half would be the result. Here, at least one
problem of the ordinary relative frequency view is addressed. Even if there
were no repeated trials — indeed, even if the coin were never tossed at
all — it could still have a definite probability for an outcome upon tossing,
for the relevant tossings are posited only in the mode of possibility.

There are many alleged problems with the dispositional account and,
once again, we will only be able to note a few of them in outline.
Intuitively, many think there are two distinct situations where probabili-
ties are attributed to a kind of trial: the cases where the outcome on a
single trial is determined by some underlying “hidden” parameters whose
values remain unavailable to us, and the “tychistic” case where, as is
frequently alleged of trials in quantum mechanics, there are no such
underlying hidden parameters whose values actually determine the out-
come of the trial in question. How does the dispositionalist address these
two cases?
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In the deterministic case, some dispositionalists would deny that any
non-trivial probabilities are involved, the probability of the outcome being
one or zero depending on whether it is determined that it occur or that
it not occur. For these dispositionalists, the appearance of probability
in deterministic cases is just that, an illusion. For them, where genuine
indeterministic chance is not exemplified in the world, it is wrong to
think of the outcomes as having non-trivial probabilities.

Other dispositionalists would be loath to drop the idea that even in
such cases there would still be real, non-trivial probabilities. How would
these be defined? By the relative frequency of the outcome that would
result from repeated trials of the kind of experiment in question. But what
would this frequency be? It would, given the determinism, be fixed by
the actual distribution over the initial conditions that would have held.
This leads to two problems. First, it seems to some that the dispositionalist
account here may be parasitical on an actual relative frequency (or pro-
portion) account, making it no real change over the latter. More im-
portantly, wouldn’t such an account be subject to the same fundamental
objection as that made against the actual relative frequency account —
that it would fail to do justice to our intuition that frequency and prob-
ability can diverge from one another, even in the “long run™?

What about the other case, where the outcome of a given trial is truly
undetermined by any hidden parameter values? This is the case that
many dispositionalists find most congenial, indeed some of them assert-
ing that only in such cases does the trial have real non-trivial probabili-
ties for its outcomes.

Here we have no actual distribution of underlying hidden parameters
that fully determine the outcomes of the trials to rely on, nor do we have
the worry that in any individual trial the “real” probability must be zero
or one because the outcome, whatever it is, is fully determined by the
values of the hidden parameters even if they are unknown to us. We do
have, of course, the actual relative frequencies (or their limits or propor-
tions) of outcomes in collections of trials that are (now, in all respects)
like the trial in question.

Are these frequencies or proportions to be taken to be the probabili-
ties? No. For the dispositionalist, the real probability — the dispositional
feature of the individual tychistic situation — is connected to the mani-
fested frequency, but not in a definitional manner. The real propensities
are supposed to be, in some sense, causally responsible for the fre-
quencies. The probabilities as dispositions in the individual case “generate”
the relative frequencies in some sense of that term. And the manifested
frequencies or proportions may be taken as evidence of just what the
real dispositional probability values are. Manifested frequencies cluster-
ing about some value are an indication to us that the real probability has
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its value somewhere in the vicinity of the revealed frequency. But the
manifested frequencies or proportions are not taken to be “constitutive”
or definitive of what the probabilities are.

For many dispositionalists, the real probabilities are to be, once again,
defined by the use of counter-factual locutions. The probability has a
certain value if in a long run of repeated trials of the experiment in question
the proportion or frequency of the value specified by the probability
would now be obtained. The type of trial is now fixed as a kind by all of
its features, there being no “hidden” features relative to which a further
subdivision of kinds can be made into which the trial could be placed.

Yet that can’t be quite right either. For, as we have seen, even the
strongest laws of large numbers don’t identify long-run proportion with
individual case probability. Wouldn't this “slack” — a slack characterizable
only in probabilistic terms — still hold even if it were possible but we
were talking about non-actual runs of trials? One can imagine how to
try and improve the situation from a dispositionalist stance. Think of a
counter-factual being true if in some possible world like ours, but differ-
ing only in the satisfaction of the “iffy” part of the conditional, the “then”
part holds. Now imagine the repeated trials being carried out in a vast
number of such other possible worlds. In each such world, a certain
proportion of outcomes would result. Take the disposition of probability
as having a certain value if the distribution over all these possible worlds
of the proportions of outcomes is as would be described by the laws
of large numbers for the appropriate probability. So, in vast numbers of
such worlds the proportion would cluster strongly around the proportion
identical to the probability, but we could still allow for possible worlds
where the frequency diverged from the probability, assuming such worlds
were themselves infrequent enough.

But few are willing to have quite such a “realistic” attitude toward
these other possible worlds. At this point, one begins to wonder if this
“explication” of probability really is an explanation of what “in the world”
probability is. Has it become, rather, a repetition of the facts about prob-
ability as described by the formal theory cast into a guise that seems to
be providing an interpretation but that is now diverging from the original
intent of finding some feature of the world, the actual world, that can be
taken as described by the formal terms of probability theory?

3. “Probability” as a theoretical term

A group of important attempts to understand probability, still in the ob-
jectivist vein that we have been exploring in the last two sections, make
a deliberate effort to avoid some of the problems encountered by
frequentist and dispositionalist, problems they run into at least in part
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because of their desire to define probability in non-probabilistic terms.
This alternative approach is in part inspired by views on the nature of
theoretical terms in science. Early empiricist and operationalist views on
the meaning of terms referring to non-directly observable entities and
properties in science, wanting to legitimize the usage of such terms
as they appeared in physical theories but wary of the introduction into
discourse of terms whose meaningfulness was dubious because of their
lack of associability with items of experience, frequently proposed that
any term in science not itself clearly denoting an item of “direct experi-
ence” be strictly definable in terms of such items from the “observational
vocabulary.” But later empiricistically minded philosophers became
dubious that our typical terms of physical theory could be so explicitly
defined. Couldn’t such terms be legitimized, though, so long as they
played an essential role in a theoretical structure of sentences that was
tied down to direct experience at some level, if only through a network
of logical implications? A term, then, could be legitimate, and its meaning
could be made clear, if it functioned in the overall network of scientific
assertion, so long as that network as a whole led to testable empirical
consequences.

The application of this general approach to probability would be
to argue that attributions of probability to the world were also to be
understood as functioning in a complex network of assertions, some of
the components of which, including the attributions of probabilities to
outcomes of experimental setups, were tied to the immediate data of
observation only in an indirect way.

One component of the overall structure that fixes the meaning of
probability attributions would be the rules of inference that take us upward
from assertions about observed frequencies and proportions to asser-
tions of probabilities over kinds in the world, and downward from such
assertions about probabilities to expectations about frequencies and
proportions in observed samples. These rules of “inverse” and “direct”
inference are the fundamental components of theories of statistical
inference.

Needless to say, there is no reasonable plausibility to the claim that
there is a body of such rules that is universally accepted. The appropriate
structure for a theory of inference to statistical or probabilistic general-
izations from observed frequencies and proportions is one fraught with
controversy at very fundamental levels. Even the apparently simpler
problem of inferring from an accepted probabilistic assertion about a
population to a legitimate conclusion to be drawn about a sample of one
or more individual cases is wrapped in controversy. But the claim we are
looking at here is only this: Once one has adopted some principles for
making such inferences — from sample to probabilistic assertion and from
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probabilistic assertion to expectations for samples from the population
in question — the very adoption of those rules of upward and downward
inference is constitutive, at least in part, of what the probabilistic asser-
tion means for you. The principles of “warranted assertion” that state
what one will take to be legitimized inferences to and from probability
assertions to assertions about frequencies and proportions in finite sample
classes do at least part of the job of determining what we mean by the
probabilistic assertions themselves. And fitting the probabilistic asser-
tions into a network of inference in this way, we can “fill in” their mean-
ing without requiring us to give an explicit definition of “probability”
in terms of proportion or its limit, or in terms of these even in other
possible worlds (as the dispositionalist suggests).

One puzzle with this approach is that it seems, so far, to leave out
some crucial elements. Suppose two statistical schools rely on differing
upward and downward rules of inference, but whose rules, when com-
bined, lead to the same inferences from proportions in samples to pro-
portions anticipated in other samples. Do they merely disagree on the
meaning of the “intervening” statistical assertions, because they accept
different such assertions on the same sample evidence, or do they have
a disagreement about which upward rule of inference is correct? The
latter seems to require some notion of another constraint on the truth of
the statistical assertions, something that goes beyond its being the asser-
tion warranted on the upward rule chosen. And doesn't it seem plausible
to claim that the truth of the statistical assertion has at least something to
do with the actual frequency or proportion of the feature in question in
the total population, even if, as we have seen, a naive identification of
the probability with that proportion can be challenged?

One direction in which to seek additional elements in the world pin-
ning down the meaning we give to objectivist probability assertions is to
look toward the origin of the actual frequencies and proportions in the
total population in the general features of the world described by our
background scientific theories. The idea here is that although some fre-
quencies and proportions have a merely accidental or contingent aspect,
others can, in one way or another, be shown to be “generated” out of the
fundamental nature of the world as described by our most general and
foundational lawlike descriptions of the world.

The ideas here are connected with those that arise in the philosophy
of science when one seeks for a notion of a law of nature as opposed
to a mere true generalization. Whereas “F = ma” is supposed to have
a lawlike status, “all the coins in my pocket are copper” does not. The
former generalization is inductively inferable from a sample of the cases
it covers, the latter knowable only by an exhaustive inspection of each
coin in the pocket. The former grounds counter-factual inferences about
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possible but non-actual situations, the latter hardly allows one to infer
“if something else were a coin in my pocket it would be copper.” What
constitutes the lawlike force of some generalizations? Reliance on such
notions as laws being true not only in the actual world but in all “physically
possible worlds” just seems to beg the question.

One general approach focuses on the place the generalization holds in
our hierarchical system of general beliefs about the world. Some beliefs
of a generalized nature play a fundamental role in that they are the
simple axiomatic beliefs from which other beliefs of great generality and
explanatory importance can be derived. The idea is that lawlikeness is
not a feature of a generalization having some semantically differentiable
content when compared with ordinary generalizations, but rather that
the lawlike generalizations are those fundamental axiomatic generaliza-
tions that ground our overall explanatory structure of the world, or those
more restrictive generalizations whose lawlikeness accrues from their
being derivable from the more fundamental laws.

The connection of these ideas with objective probability goes through
a claim to the effect that a quantity that appears in such a fundamental
lawlike generalization, and that has the formal requisites to obey the
laws of probability theory, is what counts as an “objective probability
in the world.” The idea is that we connect up this quantity, obeying the
formal postulates of probability theory and placed in the fundamental
laws of nature to the world of experience, by taking its specification of
probabilities to be our guide to proportions in samples of the population
according to the usual probabilistic inferences. So although such a theo-
retical probability is a guide to frequencies in the world, and may be, at
least in part, inferred to have the value it does by our observation of
frequencies in the world, there is no strict identification of probability
with frequency or proportion, even in the whole population in question
or in that population in some dominant class of possible worlds either.

The wave-function of quantum mechanics, or rather that function
multiplied by its complex conjugate, provides, in specific physical situ-
ations, a formally probabilistic distribution over the possible outcomes of
an experiment. From this we can formulate our expectations not only of
what proportion to find in some run of the experiment, but even of the
way in which proportions themselves will be distributed over repeated
runs of repeated experiments. Naturally we expect to find closer concen-
tration of proportions and frequencies around theoretically posited prob-
abilities as the number of trials in an experimental run increases. But we
don’t claim that the probability is the actual frequency even in the totality
of trials, or even in that overwhelmingly large number of totalities of
trials we could have run.

Something like this idea of probability will indeed fit well with much
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of the way in which probability functions in statistical mechanics. Need-
less to say, this “probability as a theoretical quantity” view is not without
its puzzles as well. Some skepticism that we have genuinely fixed a
unique meaning for “probability” still affects those who find general fault
with the holistic idea that meanings can really be fixed by putting a term
into a theoretical web that connects somewhere or other with experi-
ence, faults engendered by problems of referential indeterminism that
come along with such holistic accounts of meaning. Again, the connection
between theoretical assertions about probability and assertions about
relative frequencies in finite samples is not completely clear here. Have
probabilistic notions been presupposed when we say that we have
interpreted the probabilistic assertion at the theoretical level by draw-
ing inferences — inferences of what kind? — about proportions in finite
populations from it?

One puzzle to consider is that the virtue of this approach - its ability
to distinguish probability from proportion even in the total population —
may be in some sense a vice as well. Could it be the case that probability
and actual proportion in the entire population radically differed from one
another? Of course we might doubt, in the case of wide variance of
probability and frequency, that what we took to be the probabilities in
the world really had the value we supposed. But from the point of view
of the theoretical notion of probability we have been looking at, could
it not be the case that that probability really did have the original value
even though the proportion in the population as a whole radically dif-
fered from this value? Such an outcome would itself be “improbable”
in that view, but not in any way impossible. But do we want to let the
notion of “what probability is in the world” become that detached from
the frequencies or proportions that actually manifest themselves? Perhaps
the idea could be filled out that probability is that proportion of the total
population posited as an “ideal” by the simple but very general postu-
lates that we take to be the fundamental laws of nature.

As we shall see in Section III of this chapter, and as we shall again see
a number of times, especially in Chapter 8, where the details of probabil-
ity in statistical mechanics are discussed, this problem of radical diver-
gence of probability from proportion or frequency is not merely one
that occurs in an “in principle” discussion of the meaning of probability
in general. Some vexing issues within statistical mechanics proper, and
in its interpretation, hinge on the question of how we ought to respond
to the puzzle of accepting a theory that posits a probability for an out-
come while seeming to simultaneously maintain that the actual pro-
portionate outcome of the feature in question in the world we inhabit
radically diverges from the probability. The germ of this issue has already
been noted in our discussion in Chapter 2 of Boltzmann’s response to the
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problem of explaining the apparent non-equilibrium nature of the world
as a whole, in the face of his contention that equilibrium is the over-
whelmingly most probable state of a system.

Additional questions abound concerning the relation of probability
construed as a theoretical property and the other features of the world
described by our theories. Suppose we watch a piece of salt dissolve in
water. Asked why the salt dissolved we could say, “because it is soluble,”
but we believe a much more interesting answer is available in terms of
the composition of the salt out of ions, the nature of water on the molecular
scale, and so on. Similarly, we might “explain” an observed proportion
in nature by reference to a probability that leads to some degree of
expectation for that proportion to occur in such a sample. But, once
again, we feel that some other, deeper, answer in terms of the laws of
nature governing the phenomenon in question, the distribution of initial
conditions of hidden parameters in nature, and so on is available. What
is the relation of “probability” to these more familiar features of the world
as described by our scientific theories?

Some have suggested that we think of probability as a “temporary
place-holder” in our theories, to be eliminated by future, deeper, theo-
ries that will dispense with it in terms of the underlying physics of the
situation. So, it is suggested, “soluble” holds a place for descriptions of
atomic constitution of solute and solvent and their mutual interaction,
and “probability” is, similarly, a temporary and dispensable place-holder
in our theory.

Much of this book will be concerned with the issues surrounding the
question of just what underlying facts of nature ground the attributions
of probability encountered in statistical mechanics. Whether one con-
cludes that ultimately “probability” ought to be somehow defined in
terms of these deeper physical elements of nature (as some have sug-
gested), or, instead, that it be treated as a term “holding a place for them
in theory” to be replaced by them as our deeper understanding progresses
(as others have suggested), or even that it is, in its own terms, an
ineliminable component of our ultimate theory (which also suggests it-
self as the right expectation to others), one still must get clear just what
the nature of the world is, on the microscopic scale and as described by
our physics, that plays the role relative to probability for thermal pro-
cesses analogous to the role played by ionic constitution in grounding
notions such as solubility for solids. Getting an agreed answer to this
question at present will be too much to expect. The issues surrounding
the importance of fundamental dynamical laws, of distributions of initial
conditions, of the interaction of a system with its environment, of the
nature of the means by which systems are constructed and prepared, and
of the basic cosmological facts about the universe considered as a global
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whole in “grounding” the fundamental probability attributions needed
to get the standard conclusions out of the theory remain replete with
controversy.

4. Objective randomness

At the time attempts were being made to define objective probability in
terms of limits of frequencies in long-run sequences of events, it was
noticed that the order of outcomes in the sequence could be important
for reasons that went beyond the dependence of the value of the limit
on the order. A sequence of two outcomes coded by zeros and ones, for
example, might have the limiting frequency of zeros being one-half. But
suppose the zeros and ones alternated in regular order. Would we want
to say that the probability of a zero outcome in a trial was one-half? If
we knew the immediately previous outcome, wouldn’t we be sure that
the zero would or would not occur? Clearly, at least for the application
of our knowledge of frequencies and their limits, some assurance that
the outcomes occurred “randomly” in the sequence was essential. For
some, randomness became a requisite of there being a genuine probabil-
ity in the sequence. For others, it was thought to be merely a condition
of its applicability. But both camps required some understanding of what
randomness is.

Whereas some argued that questions of randomness and order ought
best be considered a matter of the “subjective” knowledge of the ob-
server, others looked for objectivistic characterizations of a sequence
being random in the world. R. von Mises suggested that randomness
consisted in the same limit of relative frequency holding in the original
sequence and in any sub-sequence derived from it by a characterization
that did not refer to the actual outcomes of the trials. For this rule to
select at least some sequences as random, some restriction of the rule
for selecting out sub-sequences needs to be imposed. A. Church made
the important suggestion that a sequence is random if the same limiting
relative frequency occurs in any sub-sequence selected by an effectively
computable function generating the indexes of the selected trials. This
ingenious characterization proved a little too weak, because it included
as random sequences in which, for example, there were more zeros than
ones in every finite sequence initiating an infinite sequence, even though
the probability of zeros in the sequence as a whole was one-half.
Strengthened versions of it do a better job, however.

Other ingenious characterizations of objective randomness have been
developed. Some rely on the intuition that “almost all” sequences ought
to be random, and that the orderly sequences ought to be sparse in the
sequences as a whole. A. Wald and P. Martin-Lof have suggested that a



Probability 109

property of randomness be defined as any property that “almost all” (sets
of measure one) sequences be characterizable in a specific way (i.e. in
some limited language), and that the random sequences be those with
all the random properties. On this definition, the random sequences
are, indeed, of measure one in the set of all sequences. But the definition
moves rather far from our intuitive grasp of randomness.

Martin-Lof has developed another approach. Here, one looks at the
way statisticians reject hypotheses. A hypothesis is rejected at a certain
“significance level” if the outcome observed is sufficiently improbable
given that the hypothesis is true. Effectively characterizable tests for
randomness are described, and it is then shown that they can all be
combined into a universal effectively characterizable test for random-
ness. The random sequences are those not rejected by this universal test
at any significance level.

Another ingenious notion of randomness utilizes the notion of how
long a computer program it would take to program an effective com-
puter to generate the sequence in question. Although the length of
a computer program will depend upon the programming language
chosen, A. Kolmogorov has shown that the problem can be discussed in
terms of a universal programming language. Intuitively, for finite se-
quences, the randomness of the sequence is measured by the relative
length of the shortest program that can generate it, random sequences
being those that, in essence, can be generated only by simply stipulat-
ing the outcomes in their order in the sequence. To a degree, the results
can be extended to infinite sequences, although the natural way of so
extending it fails, and several, inequivalent, alternative ways can be for-
mulated that extend the notion in different ways. Furthermore, getting
agreement between our intuition as to what is to count as random and
what gets defined as random by the method of computational complex-
ity requires our thinking of the sequence as itself being generated by
some mechanism characterized in a probabilistic way. Once again this
makes it implausible that we can define probability in non-probabilistic
terms using the notion of objectively random sequences.

The multiplicity of definitions of randomness do not all coincide, but
it is not a great surprise to discover that the initial vague intuitive notion
had a number of distinct (although related) formal explications. We shall
not be concerned much with these notions of randomness here. In Chapter
7.11,3, however, we will discuss in some detail other notions of random-
ness that have their origin in the way in which a collection of systems,
each of which has a strictly deterministic evolution, can be characterized
as displaying randomizing behavior when the systems are given descrip-
tions only at the macroscopic level. That is, when we coarse-grain the
phase space in the manner suggested by Gibbs, it turns out that for
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systems suitably constructed, the evolution of a system from coarse-grained
box to coarse-grained box may generate a sequence of numbers, char-
acterizing the box it is in at a given time, that has features closely related
to the features we would expect of sequences generated in purely
stochastic ways. One of these features will be the fact that “almost all”
such sequences of occupation numbers for the members of the ensemble
started in different initial conditions will be of the “random” sort. We
shall also briefly mention later work that has shown that systems can
be “chaotic” in their behavior as described by the macroscopic equations
of evolution as well. That is, that the equations of hydrodynamics, for
example, can have solutions that can be characterized as chaotic in nature.
Work has also been done relating chaos in this sense (which comes
down to ineliminable large scale deviation of future behavior on infini-
tesimal variation of initial state) to randomness of sequences of the kind
noted in this section.

5. Subjectivist accounts of probability

Whereas objectivists look for some feature of the world that can be
identified as the probability formally captured by the familiar axioms of
probability theory, subjectivists focus on how our acceptance of a given
probability assertion will govern our beliefs and our behavior. What is it
to hold that a certain outcome in a kind of trial has a specified probabil-
ity? Isn’t it to hold a “degree of partial belief” that when the trial is
undertaken that outcome will result? And what is it to have such a “degree
of partial belief”? Can’t we understand that in terms of the familiar phe-
nomenon of betting behavior? In the face of reward and punishment for
having our expectations come out confirmed or disconfirmed by experi-
ence, we will act as though some outcome will occur depending both on
the gains and losses we would suffer were the outcome to actually occur
or not, and on our degree of certainty that the outcome will in fact turn
out to be the case. The higher the probability we hold the outcome to
have, the lower the odds we will demand from the bookie (human or
nature) before we will bet on that outcome being the case. Turning this
around, can’t we simply understand the notion of probability as being a
measure of our confidence in an outcome as defined by the minimum
odds at which we would bet (act as if ) that outcome were really going
to be the case?

Much rich and profound work has been done, from several perspec-
tives, in trying to understand probability from this subjectivist point of
view. Probability is here viewed as a measure of degree of belief fixed
in its functional role in our network of psychological states by its place
in an account of our action in the face of risk. One problem any such
subjectivist account faces is to explain to us why, given probability as
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such “partial belief,” probability ought to conform to the usual formal
axioms of probability theory. For the objectivist, this conformity follows
either directly or indirectly from the facts about proportions. But why
should our partial beliefs obey the axioms, in particular the addition
postulate?

One ingenious and philosophically underexplored group of arguments
begins with the work of R. Cox. In these approaches, probability is a
number assigned to propositions, perhaps conditional one on the other,
so that we are looking for P(i/h), the “probability of the inference 7 on
the hypothesis ».” The usual Boolean algebra of propositional logic on
the propositions is assumed. Next, axioms are posited such as: (1) the
probability of i on b determines the probability of (not ) on b; (2) the
probability of i and jon b is determined by the probability of i on jand
b and the probability of jon b; (3) the probability of i U jon b (when
inj=0)is a continuous and monotonic function of the probabilities of
ion b and jon b. These axioms of functional dependence, plus some
assumptions about the smoothness (differentiability) of the functional
dependence, lead to a generalization of the usual probability axioms. It
is then argued that the standard form of the axioms can be obtained by
making some conventional stipulations. Here, then, the formal aspects
of probability are taken to arise out of our intuitions that some partial
beliefs (probabilities) ought to depend in a functional way only on a
limited class of others.

More familiar and more widely explored alternative justifications of the
usual axioms focus directly on our betting behavior. The so-called “Dutch
Book” arguments have us reflect on making bets against a bookie on
the outcome of some trial. We pick our degrees of partial belief in the
outcomes, and the bookie offers us the minimum odds we would accept
appropriate to those degrees of partial belief. An ingenious but simple
argument can show us that unless our subjective probabilities conform
to the usual postulates of probability theory, the bookie can offer us an
array of bets that we will accept, but that guarantee that when all stakes
are collected he wins and we lose, no matter what the outcome of the
trial. In order for us to avoid having such a “Dutch Book” made against
us, our probabilities must be coherent — that is, accord with the usual
postulates. Even if our probabilities are coherent, we might still be put
into a position where we cannot win, no matter what the outcome, but
we might lose or break even. If we wish to avoid that we must make
our probabilities “strictly coherent” — that is, coherent and with a zero
probability credited only to outcomes that are impossible. Normally in
the physical situations we won’t want strict coherence because classes
of events that are non-empty but of probability zero are a familiar, if
puzzling, part of our usual physical idealizations of phenomena.

An alternative and more general approach considers an agent offered



112 Physics and chance

choices of lottery tickets in which gains and losses are to occur to the
agent conditional on an outcome of a trial occurring or not occurring. If
the agent’s preference ordering among the lottery tickets is transitive,
and if some other conditions of the choices ordered being rich enough
are met, then one can show that the agent acts “as if” he had a subjective
probability over the trial outcomes that obeyed the standard axioms of
probability and that was uniquely determinable by his preferences, and
as if he had a valuation or utility or desirability function over the rewards
and losses unique up to a linear transformation. It goes something like
this: Suppose the agent always prefers x to z whenever x is preferred to
yand yto 2z Suppose also that if the agent prefers x to y, he will also
prefer a given probabilistic mixture of outcomes involving x to the
identical mixture with y substituted for x. And suppose there is a suffi-
ciently rich collection of preferences. Then we can assign a probability
to each outcome, p, and a utility to the gains or losses incumbent upon
the outcome occurring or not occurring, #, and u,, such that if each lottery
ticket is assigned an “expected value,” pu, + (1 — p)u,, then the prefer-
ence ordering among lottery tickets instanced in the agent can be re-
produced by ordering the lottery tickets in terms of their expected value.
It will be “as if” the agent assigned a unique probability to the trial out-
comes consistent with the laws of probability theory, and a utility to the
gains and losses, unique up to a linear transformation (which amounts
to picking one gain or loss as “neutral” and fixing a scale unit for units
of desirability), and then ordered his preference for the lottery tickets by
calculating their expected values.

This approach to subjective probability is important as a component of
various “functionalist” accounts as to what partial beliefs and desirabilities
are, as well as a crucial component of the theory of rational decision
making. Naturally the full theory is a very complicated business, involv-
ing many difficulties in associating the “psychological” states to behavior,
and in formulating a theory of normative rational action immune to in-
tuitive paradox. But the overall strategy for showing why probabilities, if
they are to be taken as measures of partial belief, ought to obey the usual
probability axioms (as a consequence of “rationality of choice as evinced
by transitiveness”) is clear.

An alternative derivation of subjective probabilities starts with the
notion of comparative believability — that is, with the idea of a relation
among propositions that, intuitively, can be thought of as one proposition
being “as worthy of belief” as another. Intuitively plausible axioms are
imposed on this notion of comparative believability. For example, we may
demand transitivity, so that if A4 is as believable as B and B as believable
as C, it follows that A is as believable as C. Additional constraints can be
placed on the notion of comparative believability that are sufficient to
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guarantee that one’s believability structure can be represented by a
probability assignment to the propositions. Such a probability represen-
tation assigns real numbers between zero and one (inclusive) to the
propositions. And the assignment is such that A will be as believable as
Bijust in case the probability number assigned to A is at least as great as
that assigned to B.

The subjective theory of probability is concerned not only with our
holding partial beliefs, but with our changing them in the face of ex-
perience. How should we modify our distribution of partial beliefs in the
face of new evidence? The usual rule suggested is conditionalization. We
have, at a time, not only probabilities for propositions, but conditional
probabilities as well, the probability of b given e, whenever the prob-
ability of e is non-zero. Suppose we then observe e to be the case.
Conditionalization suggests that we take as the new probability of » the
old conditional probability it had relative to e. This rule has been nicely
generalized by R. Jeffrey and others to handle cases where we don’t go
to e as a certainty, but instead take the evidence as merely modifying the
older probability of e. Conditionalization is a conservative strategy. It makes
the minimal changes in our subjective probability attributions consistent
with what we have learned through the evidence, and it generates a new
probability distribution as coherent as the one we started with.

Much effort has gone into giving a rationalization for changing prob-
abilities by conditionalization as persuasive as the standard rationales for
having subjective probabilities at a time obey the usual formal axioms.
An argument reminiscent of the Dutch Book arguments and due to D.
Lewis has the agent confronting a bookie and making bets on the out-
come of one trial, and then additional bets on other outcomes of other
trials should the first trial result in one specific outcome or the other.
Only if the second set of bets is made on odds consistent with conditional-
ization on the outcome of the first trial can a compound Dutch Book
situation be avoided by the agent. P. Teller has shown that conditional-
ization follows from demanding that one’s new probability distribution
has P(b) = P(k) after the evidence e has come in if P(b) = P(k) before
the observation and if » and kboth implied the evidence assertion, e. And
B. van Fraassen has shown that conditionalization is the only method of
changing one’s probability distribution that will make the probability
dynamics invariant under reclassifications of the elementary events into
event classes. A variety of other rationalizations for conditionalizing can
also be given. On the other hand, because conditionalization is a con-
servative procedure, intuitively changing one's subjective probabilities
only to the extent that the change is directly forced by the change in the
probability attributed to the evidence induced by the result of the trial,
there could be circumstances where the subjectivist would doubt its
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reasonable applicability, say if the new evidence indicated the agent’s
earlier irrational state of mind when the initial probability distribution
was chosen.

In Chapter 7,111,3, we shall see that some of those who advocate what
they call a subjectivist approach to probability in statistical mechanics
seem to evade the strictures on conditionalizing with respect to all known
evidence in some of their uses of probability attributions.

Suppose one accepts the legitimacy of probability as interpreted as a
measure of partial belief, in the manner we have outlined. What, from
this subjectivistic perspective, is the place of the version of probability as
“a feature of the objective world” in one of the guises previously out-
lined? Here, defenders of subjective probability take a number of differ-
ent positions. Some would allow for their being two kinds of probability
(often labeled by subscripts as probability, and probability,), objective and
subjective, just as most defenders of objective probability are perfectly
happy to countenance a legitimate subjectivist interpretation of the for-
malism as well.

The advocate of objective probability as actual short or long-run
frequency or proportion will usually think of subjective probabilities
as estimates on our part of the real proportions of the world. Naturally
he will seek principles of rational inference to and from proportions in
samples to those in populations, and hence to and from proportions in
samples to subjective probabilities. The believer in objective probability
as a propensity of an individual trial situation, it has been suggested
by D. Lewis, will hold to a “Principal Principle,” that if the chance of
an outcome on the trial is taken to have a certain value, the subjective
probability of that outcome must have the same measure. At least this
will be so if the propensity chance is one that supposes the absence of
underlying hidden variables that would, if known, change the propensi-
ties assigned. Subjective probabilities are, for some of the probability-as-
a-theoretical-feature proponents, the basic interpretive device by which
the theory structure fixing objective probabilities gets its connection to
the world. It has been suggested, for example, by S. Leeds, that we can
give an interpretation to the state-function of quantum mechanics by
simply taking the rule that the values thought of as probabilities upon
measurement computed from it are to be understood as subjective prob-
abilities. From this point of view, subjective probabilities generated by a
theory so interpreted partially fix any meanings for objective probabilistic
expressions appearing in the theoretical network, leaving it open, of
course, that these objective probabilities may be further pinned down by
their association with non-probabilistically characterized features of the
world, or even eliminated in terms of them. (The “fairness” of the coin
that leads to subjective probabilities of one-half for heads and tails upon
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tossing, for example, would be replaced by its structural symmetry, and
perhaps the distribution in the world of initial conditions over tossings,
which underlie its being a fair coin.)

Other subjective probability theorists find no room whatever for the
notion of objective probability as we have been construing it. For them,
probability is subjective probability. Not that there aren’t, of course, fre-
quencies in the world, maybe even long-run limits of them. And, of
course, there are also all those other features of the world, such as the
balance of the coin, the distribution of initial conditions, the quantum
state of the electron, that are causally connected to the frequencies we
observe. But, from this point of view, there is no need to think of prob-
ability itself as anything over and above degree of partial belief. Our
partial beliefs may very well be determined for us by various beliefs we
have about frequencies and structures in the world, but there is no need
to think of probability as being anything itself “in the world” generated
by or identifiable with these familiar objective features of things.

A very interesting proposal in this vein, initiated by B. de Finetti, tries,
from a subjectivist perspective, to explain to us why we might be tempted
to think of “objective probability in the world” when no such concept
can be made coherent (as the usual objectivist intends it, at least). Im-
agine a sequence of tossings of a coin the objectivist thinks of as biased
— that is, of having some definite propensity to come up heads that might
not have the value one-half. The objectivist thinks of us as learning from
experience. We observe a long run of trials, and on the basis of the ob-
served proportion of heads in the trials come to an estimate of the real
propensity of the coin to come up heads, the objective probability of
heads. How can a subjectivist understand this learning from experience
without positing objective probabilities?

De Finetti asks us to consider someone with a subjective probability
distribution over finite sequences of outcomes of trials of the coin toss-
ing. Suppose this subjective probability distribution is exchangeable — that
is, suppose the subjective probability given to a sequence of heads and
tails is a function only of the proportion of heads in the sequence and
is independent of the order of heads and tails. Then, de Finetti shows,
this agent’s probability distribution over the sequences can be represented
“as if” the agent took the sequences to be generated by independent
trials of tossing a coin that is biased to some particular propensity for
heads, but with an unknown bias. It will be “as if” the agent generated
his subjective probabilities for the sequences by having a subjective
probability distribution over the range of possible biases of the coin.

Furthermore, let the agent modify his subjective probability distribu-
tion over the sequences by conditionalizing on the observed tossings of
the coin. Then, if the agent’s original distribution was such that when
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represented as a distribution over propensities or biases it gave no pro-
pensity probability zero or one, the evolution of the agent’s probability
distribution over sequences can be represented as the agent having his
subjective probability converge on an ever narrower range of biases,
indeed converging to a propensity equal to observed relative frequency
in the limit as evidence tossings go to infinity. And two such agents will
then behave “as if” they started with different subjective probabilities
over biases, but, learning from experience, both converged to the “real
objective propensity” in the long run. For de Finetti, of course, there is
no such “real” probability of heads for the coin. All that exists are the
convergences to observed relative frequency, convergences themselves
dependent on the particular structure of initial subjective probabilities of
the agent (these being exchangeable) and on the agent’s learning from
experience by conditionalization.

This result of de Finetti’s is generalizable in interesting ways. The key
to the representation theorem is the symmetry of the agent’s initial sub-
jective probability, the probability given to a sequence being invariant
over any permutation of heads and tails in the sequence, so long as the
number of heads and tails remained invariant. A general result shows
that such symmetries in the agent’s subjective probability will lead to
his acting as if he believed in an objective propensity to which observed
relative frequencies would converge. Even more general results can be
proven to show that agents who start in agreement about which sets of
outcomes receive probability zero, and who modify their probabilities in
a conditionalizing manner, will converge on identical probability distri-
butions “in the limit.” These results constitute important formal facts about
subjective probabilities that are closely analogous to other results usually
interpreted in an objectivist vein. We will discuss these related results in
the context of the equilibrium theory of statistical mechanics in Chapter
5 when we examine the important Ergodic Theorem of classical equilib-
rium statistical mechanics.

An important concept, emphasized by B. Skyrms, of “resiliency” should
also be noted in this context. A subjective probability is, basically, resilient
if the agent would not modify the value he gives the outcome in question
(or at least would not modify it much) in the light of additional evidence.
Resiliency, then, is closely analogous to the kind of objectivist demand
that “real” probabilities be those that are genuinely tychistic, so that
no exploration of hidden variables could divide the kind of trial in ques-
tion into sub-classes in which the probability of the outcome would
differ from the probability in the class as a whole. Resiliency is a kind of
subjectivistic “no hidden varjables” for the probability in question. It
can be argued that what appear to be objective probabilities, can be, at
least in part, reconstrued from the subjectivist point of view as resilient
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subjective probabilities. Again, this subjectivistic notion is related to a
kind of objectivist resiliency (metric indecomposability) that we will
explore in Chapter 5.

6. Logical theories of probability

The subjectivist places the restraint of coherence on an agent’s initial
probability distribution. If we take conditionalization to be justified by
the arguments for it, then additional constraints exist on how subjective
probability distributions are constrained by rationality to change in the
light of new evidence. But is there any further constraint of rationality on
an agent’s initial probability distribution, on his probability distribution
“in the light of no evidence,” or, as it is frequently designated, on his “a
priori probability?” Pure subjectivists frequently answer “no,” coherence
being given, that one a priori probability distribution is just as rational as
any other.

Others deny this. “Objective Bayesians,” as they are sometimes called,
maintain that there are indeed further constraints of rationality that can
be imposed on an a priori probability distribution. Their claim is closely
related to the claims made by those who would offer what was once
thought of as an alternative interpretation of probability. Deductive logic
presents us with a relationship among propositions, in particular with the
idea that the truth of one proposition can assure the truth of another. A
premise can entail a conclusion, so that if the premise is true, so must the
conclusion be true. Could there not be a similar but weaker relationship
among propositions so that the truth of one, although not guaranteeing
the truth of the other, could provide some degree of assurance, less than
certainty perhaps, that the other was true as well? Qualitative relation-
ships of this kind were explored by J. Keynes and others. Later attempts
— in particular, the extended program of R. Carnap — sought to develop
a quantitative theory of so-called “inductive logic.”

But how can the “degree of support” or “degree of confirmation” of
one proposition grounded in another be determined? First, it is usually
assumed that these degrees of confirmation must obey the usual formal
postulates of probability theory. In his later expositions of the work,
Carnap took the line that these probabilities were to be thought of,
ontologically, in the subjectivist vein. Then the rationale for holding them
to be constrained by the familiar laws of probability theory would be the
rationales for subjective probabilities being coherent that were discussed
in the last section. But these constraints were plainly insufficient to
uniquely fix the degree of probability of one proposition relative to
another, and further constraints were sought.

A natural way of viewing the problem is to think of propositions as
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classes of possible worlds, the proposition being identified with the class
of possible worlds in which it is true. The degree of confirmation of
proposition b on proposition e could be thought of, then, as the measure
of the proportion of worlds in which e is true and in which b is true as
well. We can get the results we want, a logical probability obeying the
formal theory of probability, by distributing an initial probability of one
over the distinct possible worlds. The naive way of doing this that sug-
gests itself — letting each possible world have an “equal share” in the total
probability — leads to an inductive logic in which we don't learn from
experience. A subtler method of first dividing the probability evenly over
a class of kinds of worlds, and then evenly over the worlds in the kinds
(kinds that don’t have equal numbers of individual possible worlds in
them), gives probabilistic weighting to “orderly” worlds, and leads to an
inductive logic that raises our expectation that a property will be in-
stanced as we experience its instancing in our observed sample, a kind
of inductive projection from the observed into the unobserved.

Trying to rationalize a unique confirmational measure as the only one
justifiable, or to find criteria of adequacy for a probabilistic measure that
will pin down the possibilities for confirmation functions to a small number
of choices, and then to rationalize those criteria of adequacy, is a task
that Carnap only partially achieves to his own satisfaction. He relies
frequently on “intuition” even to get that far. And finding a way of ex-
tending the method originally designed for simple and finitistic languages
to the richer realm of higher order languages and to worlds with an
infinite number of individuals proves problematic as well. But, most
importantly for our purposes, another hidden difficulty with the program
exists. Notice, though, that if we had achieved the program to our sat-
isfaction, the problem of a rational constraint on an agent’s a priori prob-
ability distribution would be solved. Each proposition has its “logical
probability” relative to any other proposition, and indeed to the empty
set of propositions. This “probability of b relative to null evidence” would
then be the rational probability with which to hold a proposition before
any evidence came in. Probabilities after the evidence could then all be
arrived at by conditionalization, using the a priori probabilities to com-
pute, in the usual way, the conditional probabilities needed to know
how to modify one’s initial probability as new evidence was uncovered.

The basic rule invoked for determining the a priori probabilities — treat
all symmetric propositions equally when distributing probability — is a
modern instance of one of the oldest ideas in probability theory, the
Principle of Indifference. The idea is that “probabilities are to be taken
as equal in all similar (or symmetric, or like) cases.” A priori, heads has
a probability of one-half, there being only two possible symmetric out-
comes. Later tossings of the coin might indicate bias and lead us to
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modify the probability we give to heads, but it is the symmetry of cases
that provides the a priori probability where we start. But why should we
believe, a priori, in equal probabilities for the symmetric case?

In fact, the Principle of Indifference has more problems than its lack
of apparent rationalization. It is, without further constraint, incoherent.
For it depends in its probability assignment upon how the possible
outcomes are categorized or classified. A die has six faces, so the a priori
outcome of a one coming up is one-sixth. But the die can either come
up with a one or else with a “not-one.” So there are fwo cases, and by
the Principle of Indifference, the probability of a one coming up ought
to be taken to be one-half. In this case, we might resort to the fact that
“non-one” can be decomposed into five cases, each of which is, in some
sense, indecomposable, leading us back to the natural one-sixth and
away from the counter-intuitive one-half. But what if the number of
possible outcomes is infinite? Here, each indecomposable outcome has
probability zero, and each interesting class of these (an interval on the
real line, for example) has an infinite number of elementary outcomes
contained in it.

This dependence of the a priori probabilities on the way cases are
categorized has been emphasized by what are frequently generically
referred to as “Bertrand’s Paradoxes.” Imagine, for example, a container
with a shape so that the surface area on the inside that is wetted varies
non-linearly with the volume of the container that is filled. An a priori
probability of “amount of container filled” that distributed probability
uniformly over the possible volumes of fluid would give radically differ-
ent results from one that distributed probability uniformly over allowable
interior surface area wetted by the fluid. What principle of rationality,
designed to fix the unique one of the coherent possible a priori prob-
abilities as the rational one for an agent to adopt, will tell us which
categorization of the possible outcomes to choose? Only given a principle
for selecting the right categories in which to view the problem can we
then apply a Principle of Indifference or symmetry over those possibilities
so construed.

H. Jeffreys initiated a program of selecting from among the categor-
izations by examining the invariance of probabilistic conclusions under
various transformations of the data. Sometimes it seems as though we
would want our probabilistic results to remain invariant under certain
transformations. We feel, for example, that in some cases picking a
designation of one value of a quantity as zero point as opposed to
another, or picking one interval as unit scale as opposed to another,
should not modify our expectations. Under those circumstances, one
can sometimes fix upon a single categorization, with its associated uni-
form probability distribution militated by the Principle of Indifference so
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applied. But, as we shall see in Chapter 5,II1,5 and 71,3 when we
examine attempted applications of the Principle of Indifference (or its
modern day reformulation, the “Maximum Information Theoretic Entropy
Principle™), such a rationalizable invariance rule to fix our a priori prob-
abilities is only rarely available to us. And when it is, what we can obtain
from it may be less than what we would like.

When investigators in the foundations of statistical mechanics allege
that they are understanding probability in statistical mechanics as subjec-
tive probability, it is usually, rather, a belief on their part that there is a
legitimate applicability of the Principle of Indifference to physical situa-
tions that can be applied to ground the positing of initial probabilities so
essential to getting what we want in statistical mechanics that is the core
of their position.

III. Probability in statistical mechanics

A great deal of Chapters 5 through 9 will be directed toward problems
that, at least in part, will be explored by examining in some detail the
role played by probabilistic assertions in the description and explanatory
account of the world offered by statistical mechanics. It will be of use
here, though, to give a preliminary survey of how probability attributions
are embedded in the statistical mechanical picture of the world, and of
some of the peculiarities of probability in statistical mechanics that lead
to difficulties in fitting an account of its role in that theory into one or
another of the philosophical views about probability that have been
outlined in this chapter.

In our survey of the history of the foundational problems of statistical
mechanics we saw how attempts were made to account for the equilib-
rium state as being the “overwhelmingly most probable” state of a sys-
tem. Here, we view the system as subject to some fixed macroscopic
constraints (say volume and pressure for gas) and look for some justifi-
cation of the claim that of all the microscopic dynamical states of the
system compatible with these macro-conditions, with overwhelmingly
great probability they will correspond to the state of the gas being at or
near its equilibrium value of some other macroscopic constraint (say the
temperature of the gas).

In trying to understand the non-equilibrium behavior of a system, we
imagine it as having been prepared out of equilibrium, again subject to
some macroscopic conditions. We then try to show that the combination
of a reliance upon the detailed facts about the microscopic constitution
of the system, the facts about the dynamical laws governing these micro-
scopic constituents, and some other assertions framed in the probabilistic
guise can lead us to the derivation of a description of the approach to
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equilibrium of the system as characterized by the macroscopic hydro-
dynamic equations of evolution appropriate to the system in question. In
some accounts, the probabilistic assertions will be about probabilities of
initial microscopic states of the system compatible with its initial macro-
scopic condition. In other accounts, they will be about the probability
of future interactions of the micro-components with one another. Once
again, the invocation of the probabilistic claims is one that cries out for
justification.

As we shall see in Chapters 5 and 7, the justification needed for the
probabilistic claims will vary quite radically depending on just what the
claim under consideration is. And getting clear on that will sometimes
require some serious preliminary conceptual clarification. At this point I
will make only a few general remarks about some kinds of conceptual
puzzlement we will run into. Here I will be concentrating, in particular,
on those issues that will be problematic because they introduce features
of probabilistic description of the world in statistical mechanics that most
directly confront the various philosophical accounts of probability we
have just seen outlined. The kinds of problems noted here are not meant
to be either exhaustive or exclusive of one another. Some of the puzzles
noted here are closely intertwined with one another, and an acceptable
understanding of the world will require a grasp of issues that does justice
to answering a number of questions simultaneously.

The origin and rationalization of probability distributions. Some
problems arise out of the questions concerning the physical ground on
which a given correct probability attribution rests. This is intimately con-
nected, of course, with the questions concerning the rationale we can
offer if a claim we make that a probability distribution ought to take
a certain form is challenged. The problem is complicated in statistical
mechanics by the fact that probability distributions are introduced on
quite different grounds, with quite different rationales, and for quite
different purposes in different portions of the theory.

In equilibrium theory, or at least in the version of it that seems clearest
and most defensible, the aim will ultimately be to show that a unique
probability distribution can be found that satisfies a number of con-
straints. One of these constraints, time invariance, comes from the very
notion of equilibrium itself. The other, absolute continuity with respect
to the usual phase space measure, is a constraint harder to justify, assum-
ing as it does a portion of the original probability attribution we meant
to justify. The rationalizing ground is sought in the constitution of the
system and in the dynamical laws of evolution at the micro-level. The
role played by this probability distribution in our description and ex-
planatory account of the world is itself somewhat problematic.
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In non-equilibrium theory, the understanding and rationalization of
one probabilistic postulate of the usual theory plays a role in attempts
to ground the posits that are the immediate descendants of Boltzmann’s
Stosszablansatz. The kinetic equations of non-equilibrium theory are
usually obtained by one version or another of some rerandomizing posit
governing the interaction of the micro-constituents of a system. But the
dynamic evolution of a system, and hence even of an ensemble of systems
(or probability distribution over systems subject to a common macro-
scopic constraint), is fully fixed by the dynamical laws of evolution govern-
ing the micro-components of the systems. So a rationalization of the
probabilistic posit here will come down to an attempt to show the
consistency of the probabilistically formalized rerandomization posit with
the accepted dynamical laws and the facts about the constitution of the
systems. Here, probabilistic postulation is thought of much as a device
to generate the correct result (the kinetic equation of evolution for a
reduced description of the ensemble), a device to be instrumentalistically
justified by reference to the real laws governing the dynamical evolution,
and hence not directly a fundamentally independent component of the
full description of the facts of the world we are seeking.

But another role for probability distributions in non-equilibrium theory
is even more fundamental to the theory. This is the appropriate distribu-
tion to impose over the microscopic initial conditions of a system started
in non-equilibrium subjected to some macroscopic constraints. In some
accounts, the rationalization of rerandomization will itself depend upon
this distribution. And if we want a full explanatory account of the struc-
ture of the approach to equilibrium of a system (its relaxation time, the
form of its equation of evolution toward equilibrium on a macroscopic
scale, and so on), it seems clear that such an assumed distribution will
need to be posited. But here, much is still opaque in the theory. There
is, in fact, and as we shall see, no universally accepted account of even
what such distributions should be taken to be, much less a universally
agreed upon account of their origin and rationalization. Microdynamical
laws, constitutions of systems, places of systems in interacting external
environments, modes by which systems are prepared, a priori distribu-
tions determined by principles of general inductive reasoning, and
cosmological facts have all been invoked in one or another of the com-
peting accounts of the physical basis of these essential initial probability
distributions over possible micro-conditions.

Probability and tychism. We have outlined a debate between those
who would take probability to be a mode of description of a world
that might be underlain by a fully deterministic picture — that is, who
would take non-trivial probabilities to be consistent with an underlying
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description of the situation that would so bring factors into account that
with their full specification, the outcome would either definitely occur or
not occur — and those who would hold that probability exists in the
world only if there is a genuine failure of determinism — that is, only if
such hidden factors fail to exist.

Quantum mechanics, with its “no hidden variables” theorems, has
typically provided the context in which pure tychism and irreducible
probabilistic descriptions not underpinnable by determinism at a lower
level are defended as the correct picture of the physical world. Should
the initial probabilities over initial conditions in non-equilibrium statisti-
cal mechanics be construed in a similar manner, or should they be viewed
as merely the accounting of actual distributions over the underlying
possibilities, one of which constitutes the real and fully determining con-
dition in any particular instance of a physical system?

As we shall see in Chapters 7,1I1,6 and 9,II1,1, this is a controversial
matter. Particularly interesting in this context are attempts to argue that
the probability of statistical mechanics is neither the “pure chance with-
out hidden variables” of quantum mechanics, nor the “distribution over
fully determining hidden variables” of the usual “ignorance interpreta-
tion” variety, but, rather, a third kind of probability altogether. The argu-
ment will be that the instability of the dynamic evolution of the systems
with which we are concerned in statistical mechanics makes the charac-
terization of the system as having a genuine microscopic dynamical state
a “false idealization.” The arguments to be offered rest upon the contention
that no matter how close we get to any initial condition in systems of
these kinds, we will find other initial conditions whose future evolution,
as described by the familiar trajectory in phase space starting from this
other condition, will diverge quickly and radically from the trajectory
starting from the first initial state we considered. Under these conditions,
it will be alleged, it is misleading to think of any individual system as
really having a precise initial “pointlike” dynamical state and “linelike”
dynamical trajectory. Rather, it will be argued, the individual systems in
question ought to have their states characterized by probability distribu-
tions over phase-space points and their evolution characterized in terms
of the evolution of such distributions over phase-space.

This view is like the “pure tychism” view in taking the probability
distribution to be irreducibly attributable to the individual system, but
unlike the “no hidden variables” view in that the grounds for denying
any further deterministic specifiability of the system are quite unlike those
that are used to deny hidden variables in quantum mechanics. In the
latter case, we are presented with alleged proofs that the statistics in
question (those predicted by quantum mechanics) cannot be represented
as measures over underlying phase-space regions of points. But in the
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statistical mechanical case, there plainly is such a representation of the
probability distribution. It is worth noting that although we will be dis-
cussing this issue in the context of classical statistical mechanics, the
view takes on exactly the same aspects in the context of a statistical
mechanics whose underlying dynamics is quantum mechanics. The
“irreducible probability” in both cases is sui generis. In the quantum
mechanical case, it is quite independent of the pure tychism that might
be alleged to hold of the underlying dynamics.

Applying the posited probability distribution. Only occasionally
are probability distributions used directly to determine observable
quantities in statistical mechanics, although they sometimes do function
in that way as in predictions of molecular velocity distributions and at-
tempts to confirm these predictions by direct surveys of velocity distribu-
tions in samples of the population of molecules. More commonly, the
probability distribution is used to calculate some value that is then
associated with a macroscopically determinable quantity.

Care must be taken, however, to make sure that the quantity calculated
can plausibly play the role demanded of it in the explanatory-descriptive
account in which it is to function. Sometimes it is easy to lose sight of
what one was interested in showing in the first place, and to think that
a goal has been accomplished when a quantity is derived having the
formal aspects sought, but whose role in the overall account is less than
clear. Often a precise disentangling of the notions involved, and the
application of derivable connections between quantities will go a long
way to clarifying the structure of the theory. Thus, in the equilibrium
theory the careful distinction must be made between time averages of
quantities, computed using a probability distribution over the reference
class of time states of a given system, and averages for these quantities
taken over all possible micro-states of different systems compatible with
given constraints and relative to some probability measure over these
possible states. These latter averages are called phase averages. Also
important is the distinction of the latter averages from most probable
values of the quantities in question (calculated using the same set of
available micro-states and the same probability distribution). The justifi-
cations of asserted relations among these values by means of Ergodic
Theory and by means of results dependent upon the vast numbers of
degrees of freedom of the system, play important parts in clarifying the
formal and philosophical aspects of equilibrium statistical mechanics.

In some cases, it remains a matter of controversy which probabilistically
generable quantity is the correct one to associate with the macroscopic
feature of the world we are trying to understand. For example, in the non-
equilibrium theory, most accounts of the statistical mechanical regularity
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to be associated with the monotonic approach to equilibrium described
by thermodynamics follow the Ehrenfests in associating the curve of
monotonic behavior of the macroscopic system with the concentration
curve of an ensemble evolution — that is, with the curve that goes through
the “overwhelmingly most probable value of entropy” at each time. And
these accounts agree with the Ehrenfests that this curve should not be
thought of as representing in any way a “most probable evolution of
systems.” But other statistical mechanical accounts do in fact think of the
monotonic approach to equilibrium as being representable in statistical
mechanics by just such an “overwhelmingly most probable course of
evolution.” Such conflicts of understanding point to deep conflicts about
the fundamental structure of the theory insofar as it is designed to allow
us to understand montonically irreversible thermodynamic behavior.

Probability versus proportion. In our discussion of foundational
views on probability, we noted important doubts that probability could,
in any simple-minded way, be identified with actual frequency or pro-
portion in the world. Indeed, even moving to a view of proportion in
possible worlds, doubts remained that one could define probability as
proportion — even in the “long run.”

Statistical mechanics presents us with additional puzzles concerning
the relationship between probability and proportion. These are exempli-
fied by the paradox considered by Boltzmann and discussed in Chapter
2: If equilibrium is the overwhelmingly probable state of a system, why
do we find systems almost always quite far from equilibrium?

We will need to consider a variety of possible answers to questions of
this sort. One might be to deny the correctness of the claim that equilib-
rium really is overwhelmingly probable. Another might be to deny that
probability has anything to do with realized proportion, something not
too implausible from some subjectivist or logical probability viewpoints.
Still another group of attempts at resolving such a puzzle might be to
argue that we have simply looked at too small a reference class in seek-
ing the proportion in the world to associate with the asserted probability.
Such a suggestion is that offered by Schuetz and Boltzmann to the effect
that our region of the universe is only a small portion of its extent in
space and time, and that if we looked far and wide enough in space and
time we would indeed discover equilibrium to be dominant in propor-
tion in the universe as a whole. Modern variants of such a “cosmological
way out” will, as we shall see in Chapter 8, suggest that we would need
to look far and wide indeed to find the appropriate proportion to identify
with the probability of our theory. We shall also need to examine those
modern variants of Boltzmann’s suggestion as to why proportion differs
so wildly from probability in our local region of the larger world — that
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is, updating his argument that such a deviation from the norm ought to
be expected by us for the simple reason that in the dominant regions of
equilibrium, no sentient observer could exist to experience this dominant
proportion of equilibrium in his neighborhood.

Idealization and probability. In exploring how physical theories deal
with the world, we are accustomed to the fact that our theories deal only
with “idealized” systems. In mechanics, we talk of systems composed of
point masses, or of frictionless systems, or of systems in which all inter-
actions save one can be ignored. Idealization plays a prominent role in
statistical mechanics, sometimes in ways that require rather more atten-
tion than a mere nod to the fact that the results hold exactly only in the
ideal case.

Some of the idealizations we will encounter include going to the
thermodynamic limit of a system with an infinite number of degrees of
freedom, or to the Boltzmann-Grad limit in which the relative size of
molecule to scale of the system becomes vanishingly small, or to the limit
as time “goes to infinity” invoked in the ergodic theorems of equilibrium
statistical mechanics or in the mixing results of the non-equilibrium theory.
In some cases, the role the idealization is playing will be clear and
relatively uncontroversial. Thus, for example, the role played by the
thermodynamic limit in allowing us to move from average values of
some quantities to the values being identified with the overwhelmingly
most probable values of these quantities will be rather straightforward. In
other cases, however, the place of idealization in the overall scheme can
be quite controversial. One derivation of the kinetic equations of non-
equilibrium — that of Lanford, for example — makes a radical use of the
Boltzmann-Grad limit to obtain results puzzlingly incompatible (at least
in a conceptual way) from those obtained by the “mixing” type results.
And these latter rely on the “time going to infinity” idealization for their
accomplishments in a way objected to by the proponents of the Lanford
scheme. Which idealization ought to be taken as “really representing
how things are in the actual world” is by no means clear.

Here, I want only to note how the very concept of probability intro-
duced in statistical mechanics is sometimes heavily determined by the
idealizing context. Take, for example, what is sometimes called a prob-
ability in equilibrium statistical mechanics viewed from the perspective
of the Ergodic Theorem. Here, one starts off with systems idealized with
reference to their structure, molecules interacting only by collision, and
then perfectly elastically, for instance, and a system kept in perfect en-
ergetic isolation from the outside world. Next, one shows that for “almost
all” initial conditions the proportion of time spent by a system with its
representative point in a phase-space region will be proportional to the
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“size of that region in a standard measure. But one shows this only in the
limit as time “goes to infinity.” There is of course nothing wrong with
such a notion. Indeed, it fits nicely with those accounts of probability
that, we saw, emphasized proportion in the limit of an infinite number
of trials. But the relation of such a probability to such things as the
actually observed behavior of systems in finite time intervals is only
indirect. And unless one is careful to keep in mind the essential role
played by the idealization, one can think that more has been shown than
is actually the case.

IV. Further readings

An excellent elementary introduction to the theory of probability is Cramér
(1955). Feller (1950) is a classic text on the subject. The axiomatic foun-
dations are explained in Kolmogorov (1950).

A survey of philosophers’ ideas on the nature of probability can be
found in Kyburg (1970). For the dispositional theory, a good source is
Mellor (1971). Kyburg (1974) surveys many variants of the dispositional
account. For the view of probabilities as “theoretical quantities,” see Levi
(1967) and (1980) and Fine (1973). Cox’s derivation of probability is in
Cox (1961). See also, Shimony (1970).

Fundamental papers on the subjectivist approach to probability are
in Kyburg and Smokler (1964). The relation of subjective probability to
comparative believability can be found in Fine (1973).

For one version of a “logical” theory of probability, see Carnap (1950).
For other versions, so-called “objective Bayesianisms,” see Jeffreys, H.
(1931) and (1967), Rosenkrantz (1981), and Jaynes (1983).

On Humeanism and its opponents, see Chapter V of Earman (1986).
Lewis (1986), Chapter 19, is important on the relation of subjective and
dispositional probability.

For an introduction to the variety of ways of characterizing “objective
randomness,” see Chapter VIII of Earman (1986). Fine (1973) has detailed
and comprehensive treatments of the major approaches to this issue.





