
1.  Area and Entropy. 
• Question:  What happens when a physical system with a large amount of 

entropy is thrown into a black hole? 

• 

event horion 

singularity 

• Entropy of coffee cup disappears! 

• Violation of 2nd Law for closed 
system of black hole + coffee cup? 

Generalized Second Law of Thermodynamics (GSL): 

δSbh + δS ≥ 0. 

• Bekenstein (1973):  Suppose black holes have an entropy 
Sbh proportional to their area:  Sbh = f(A) = A/4. 
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17.  Black Hole Thermodynamics.  Part 2. 



Problem (Geroch 1971): 

1.  Lower box of radiation with high entropy toward event horizon. 

2.  Use weight to generate work. 

3.  At event horizon dump radiation in. 

• 

• At event horizon, the "Killing" vector ξa that encodes time-
translation symmetries is null:  |ξa| = 0. 

• So:  At event horizon, the box has zero energy, E = -ξapa. 

• So:  If box can reach horizon, then no increase in A 
at Step (3); thus δSbh = 0. 

• But:  δS < 0. 

• Thus:  δSbh + δS < 0.  Violation of GSL! 

• Bekenstein (1973):  Box has finite size, so 
can't reach horizon. 

• Bekenstein (1981):  When a stationary black hole 
absorbs an object with energy E and radius R, its area 
increases by δA = 8πER. 



2.  Surface Gravity κ and Temperature T. 
• Recall:  Laws of Black Hole Mechanics look like Laws of Thermodynamics if 

we equate surface gravity κ with temperature:  (1/2π)κ = T. 

• How seriously should we take this? 

• Claim A:  A black hole should be assigned zero absolute temperature! 

  Black body = object that absorbs all incident radiation. 

  Black body radiation = radiation emitted by a black body in thermal equilibrium."

  Effective temperature of an object = temperature of a black body that would 
emit the same total amount of radiation as the object. 

  How to measure effective temp:  Put object in thermal equilibrium with black 
body radiation and measure temperature of latter. 

•  Object in equilibirum with heat bath. 
•  Tobject = Theat-bath 

black body radiation heat-bath 



Refined Claim A:  The effective temperature of a black hole is abs zero. 

• Conclusion:  "In classical black hole physics, κ has nothing to do with the 
physical temperature of a black hole..." (Wald 1994, pg. 149.) 

"Proof":  "...a black hole cannot be in equilibrium with black body 
radiation at any non-zero temperature, because no radiation could be 
emitted from the hole whereas some radiation would always cross the 
horizon into the black hole."  (Bardeen, Carter, Hawking 1973, pg. 168.) 

•  Black hole in heat bath. 
•  Equilibrium cannot be established. 

black body radiation heat-bath 

• But:  This argument depends on quantum mechanics (black body radiation 
can only be characterized quantum-mechanically). 

Planck's (1900) quantum-mechanical 
formula for energy distribution of black 
body radiation:  E(ν) = hν/(ehν/kT - 1). 



Claim A:  A black hole should be assigned zero absolute temperature. 

Classical "Proof":  Consider "Geroch heat engine": 

• 

 efficiency = W/Qin = 1 - TC/TH 

 = 1   (if all energy of box goes into work) 

 So:  TC = 0, if all energy of box goes into work. 

• In other words:  TC = 0, if box can reach horizon. 

• But:  Finite box can't reach horizon. 

• Moreover:  The ratio TC/TH for black holes is 
non-zero arbitrarily close to the horizon... 

 TH = temperature of box at initial position. 

 TC = temperature of black hole. 



• Let:  dmin = minimum distance of approach to horizon. 

• Set up black hole #1 as hot place: 

  Lower box of radiation toward horizon of black hole #1. 

•

m 

dmin 

Black hole #1 

•

Black hole #2 

Claim B:  T1/T2 = κ1/κ2 for heat engine driven by two black holes.  (Jacobson 1996.) 

  Energy of box at dmin is E1 = -ξ1apa = ξ1m, where ξ1 = |ξ1a|. 

  Raise box. 
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• Let:  dmin = minimum distance of approach to horizon. 

• Set up black hole #1 as hot place: 

  Lower box of radiation toward horizon of black hole #1. 

  Energy of box at dmin is E1 = -ξ1apa = ξ1m, where ξ1 = |ξ1a|. 

  Raise box. 

•

Black hole #1 

•

dmin 

Black hole #2 

Claim B:  T1/T2 = κ1/κ2 for heat engine driven by two black holes.  (Jacobson 1996.) 

• Use black hole #2 as cold place: 

  Lower box toward horizon of black hole #2. 

  Energy of box at dmin is E2 = ξ2m. 

  Dump radiation into black hole #2. 



• Let:  dmin = minimum distance of approach to horizon. 

Claim B:  T1/T2 = κ1/κ2 for heat engine driven by two black holes.  (Jacobson 1996.) 

T1 = temp of black hole #1. 

T2 = temp of black hole #2. 

Qin = E1 = energy extracted from black hole #1. 

Qout = E2 = energy exhausted to black hole #2. 

W = E1 - E2. 
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• Set up black hole #1 as hot place: 

  Lower box of radiation toward horizon of black hole #1. 

  Energy of box at dmin is E1 = -ξ1apa = ξ1m, where ξ1 = |ξ1a|. 

  Raise box. 

• Use black hole #2 as cold place: 

  Lower box toward horizon of black hole #2. 

  Energy of box at dmin is E2 = ξ2m. 

  Dump radiation into black hole #2. 

• Now:  Define absolute temps of black holes by 
T1/T2 := E1/E2 = ξ1/ξ2. 

• So:  Near horizon T1/T2 = ξ1/ξ2 ≈ κ1/κ2. 

Why?  κ = |∇aξ| on horizon. 

  So: 
  
!  ! " dx

0

dmin# = "d
min

• Near horizon ξ ≈ κdmin. 



• Hawking (1975):  Black holes emit radiation at the same rate that a black 
body would at temperature T = (1/2π)κ! 

"One might picture this...in the following way. Just outside the event horizon 
there will be virtual pairs of particles, one with negative energy and one with 
positive energy. The negative particle is in a region which is classically forbid-
den but it can tunnel through the event horizon to the region inside the black 
hole where the Killing vector which represents time translations is spacelike. 
In this region the particle can exist as a real particle with a timelike momen-
tum vector even though its energy relative to infinity as measured by the 
time translation Killing vector is negative. The other particle of the pair, 
having a positive energy, can escape to infinity where it constitutes a part of 
the thermal emission described above. The probability of the negative energy 
particle tunnelling through the horizon is governed by the surface gravity κ 
since this quantity measures the gradient of the magnitude of the Killing 
vector or, in other words, how fast the Killing vector is becoming spacelike."  

3.  Hawking Radiation. 



• 

Event horizon 

Region of negative 
energy states 

•  Particle/antiparticle pair 
production in quantum vacuum 
near event horizon. 

•  Negative energy antiparticle 
tunnels through event horizon 
and falls into singularity, 
decreasing black hole's area. 

•  Positive energy particle escapes 
in form of thermal radiation. 

"It should be emphasized that these pictures of the mechanism 
responsible for the thermal emission and area decrease are heuristic 
only and should not be taken too literally... The real justification of 
the thermal emission is the mathematical derivation..."  



Quantum field-theoretic explanation: 
Black hole acts as scattering potential for particle states of a quantum field φ. 

 aω†, aω are raising/lowering operators for "in" particle states. 

 "In" vacuum |0〉in = state with no "in" particles:  in〈0|aω†aω|0〉in = 0. 

 Expand φ in basis {fw} of positive frequency solutions with respect to past:  
φ =  dω (aω fω + aω† fω*).  ∫ 

 Expand φ in basis {pw, qw}, where pw are positive frequency solutions with 
respect to future, and qw are solutions with respect to event horizon:                                       
φ =  dω (bω pω + bω† pω* + cω qω + cω† qω*). ∫ 
 bω†, bω are raising/lowering operators for "out" particle states. 

 "Out" vacuum |0〉out = state with no "out" particles:  out〈0|bw
†bw|0〉out = 0. 

Particle states in distant past:  	



Particle states in distant future:  	





Number of "in" particles in "out" vacuum: "

But:  |0〉in and |0〉out belong to disjoint representations of the quantum field. 

• Which means:  It's mathematically incoherent to write in〈0|bw
†bw|0〉in. 

 in〈0|bw
†bw|0〉in = 

!
!

e2!"/# " 1
.

 Γω = fraction of in-coming modes that are absorbed by black hole. 

  

1
e2!"/# $1

 =                 energy distribution of black body radiation with temp κ/2π. 



Claim (Unruh and Wald 1982):  Hawking radiation prevents Geroch 
heat engine from violating Generalized Second Law. 

• 

• Recall:  If box can reach horizon, then δSbh = 0, δS < 0, 
and thus δSbh + δS < 0.  Violation of GSL! 

• But:  Hawking radiation generates buoyancy that prevents 
box from reaching horizon! 



Bekenstein Bound (Bekenstein 1981): 

   S(X) ≤ 2πER 

where E is the energy of an object X, and R is 
the radius of the smallest sphere enclosing it. 

4.  Entropy Bounds and The Holographic Principle. 

• Claim:  When a stationary black hole absorbs an object with energy E and 
radius R, its area increases by δA = 8πER. 

• Thus:  δSbh = δA/4 = 2πER. 

• And:  Generalized Second Law now requires:  2πER + δS ≥ 0. 

• Note:  δS = (final S) - (initial S) = -S. 

• So:  The entropy S of any object with energy E and radius R cannot exceed 
2πER! 

•  Increase in mass δM = (energy) × (red-shift factor) = E (R/4M). 

•  δA = (dA/dM)δM = [d(16πM2)/dM]δM = (32πM)(ER/4M) = 8πER. 

A.  Bekenstein Bound 
• Idea:  Use Geroch process to derive bound on entropy of matter. 



• Suppose:  A spacetime region O with radius R can have more entropy than a 
black hole with same radius R. 

• Claim:  This would violate Generalized 2nd Law. 

Proof: 

 Note:  Sbh(R) > Sbh(R'). 

 So:  S > Sbh(R'). 

 So:  Sbh(R') - S < 0. 

 But:  δSbh = (final Sbh) - (initial Sbh) = Sbh(R'). 

 And:  δS = (final S) - (initial S) = -S. 

 So:  δSbh(R') + δS < 0.  Violation of GSL! 

 Let:  Sbh(r) = entropy of black hole with radius r. 

B.  Spherical Entropy Bound 

• Idea:  Use "Susskind" process to derive bound on entropy of matter. 

 Consider:  Process in which region O of radius 
R and entropy S > Sbh(R) collapses to form 
black hole with radius R' < R. 

•
R' 

R 

Initial state: 
Stotal = S > Sbh(R).  

Final state: 
Stotal = Sbh(R'), R' < R. 

collapse 

O  



• Suppose:  A spacetime region O with radius R can have more entropy than a 
black hole with same radius R. 

• Claim:  This would violate Generalized 2nd Law. 

•
R' 

R 

Initial state: 
Stotal = S > Sbh(R).  

Final state: 
Stotal = Sbh(R'), R' < R. 

collapse 

B.  Spherical Entropy Bound 

• Idea:  Use "Susskind" process to derive bound on entropy of matter. 

• So:  If GSL is to hold, then a region O with 
radius R cannot have more entropy than a 
black hole with same radius R. 

Spherical Entropy Bound (Susskind 1995): 

   S(O) ≤ A/4 

where O is a spatial region with radius R and A is 
the area of a stationary black hole with radius R. 

O  



L2(B) 

L1(B) 

C.  More Generalized Bounds 

Spacelike Entropy Bound: 

   S(V) ≤ A[B(V)]/4 

where V is any spatial region, B is its 
boundary, and A is the area of B. 

time 

space 

V 
B 

time 

B 

Covariant Entropy Bound (Boussa 1999): 

   S[L(B)] ≤ A(B)/4 

where B is any hypersurface, L(B) is any 
light sheet of B, and A is the area of B. 

•  A light sheet of a surface B is a null surface generated by 
light rays emanating from B that do not expand with respect 
to B (cross-section decreases moving outward from B). 



Holographic Principle: 

The number of fundamental degrees of freedom in any 
region of spacetime cannot exceed A/4. 

• Recall:  The Boltzmann entropy SB(ΓZ) = k ln |ΓZ| measures the volume of 
the region ΓZ in phase space associated with the macrostate Z. 

• Which means:  SB(ΓZ) is a measure of the number of microstates that have 
the macroproperties given by Z. 

• Define:  The number N of fundamental degrees of freedom of a physical system 
is equal to ln (# states), which is just the system's Boltzmann entropy SB. 

• Then:  The various entropy bounds suggest: 

• Why "holographic"?  The "information" (degrees of freedom) encoded in a 
physical system is contained, not in the system's volume, but in its boundary 
(area). 



Information-Theoretic Interpretation 

• A degree of freedom (DOF) = an essential property that must be assigned a 
value in order to characterize a state of a physical system. 

• A Boolean DOF = an essential property that must be assigned one of two 
values in order to characterize a state of a physical system. 

• Let:  N = # of states, N = # DOF, n = # Boolean DOF. 

Ex:  A spin-1/2 quantum system. 

   N = n = 1 (one essential property that only has 2 values) 

   N = 2 (two possible states) 

• For theories that only have Boolean DOF, N = 2n. 

• So:  For such theories, SB = ln N = ln 2n = nln 2. 

• And:  n = SB/ln 2 = N/ln 2. 

"Information-Theoretic" Holographic Principle ('t Hooft 1995): 

The number of Boolean degrees of freedom in any region of 
spacetime cannot exceed A/(4ln 2). 



Concerns with Holographic Principle: 
• Requires three steps: 

• Concern with Step (1). 

  It's motivated by Boolean theories, for which (# Boolean DOF) = log2 N. 

  This suggests the generalization (#DOF) = log(#values) N. 

(1)  Positing a relation between (#DOF) and N; namely, (#DOF) = ln N. 

(2)  Using this relation to identify (#DOF) with Boltzmann entropy SB. 

(3)  Assuming the entropy S of matter in the GSL is Boltzmann entropy SB. 



• Concern with Step (2). 

  The (appropriate) generalization (#DOF) = log(#values) N is now 
disanalogous with the definition of Boltzmann entropy SB = ln N. 

  Recall:  One motivation for the latter is that SB is supposed to be an 
additive version of N: 

Concerns with Holographic Principle: 

-  The thermodynamic entropy of a composite system is the sum of 
the thermodynamic entropies of the parts:  S12 = S1 + S2. 

-  The total number of states of a composite system is the product 
of the total number of states of the parts:  N12 = N1 × N2. 

  But (#DOF) is, supposedly, conceptually distinct from N, and not just an 
additive version of N:  (#DOF) = # essential properties, N = # states. 

• Requires three steps: 

(1)  Positing a relation between (#DOF) and N; namely, (#DOF) = ln N. 

(2)  Using this relation to identify (#DOF) with Boltzmann entropy SB. 

(3)  Assuming the entropy S of matter in the GSL is Boltzmann entropy SB. 



• Concern with Step (3). 

  Requires a "Boltzmann version" of black hole entropy Sbh. 

  Which requires:  Identifying the microstates of a black hole and relating 
them to the area. 

  Some results in string theory (Strominger and Vafa 1996) and loop 
quantum gravity (Ashetekar, Baez, Corichi, and Krasnov 1998). 

Concerns with Holographic Principle: 
• Requires three steps: 

(1)  Positing a relation between (#DOF) and N; namely, (#DOF) = ln N. 

(2)  Using this relation to identify (#DOF) with Boltzmann entropy SB. 

(3)  Assuming the entropy S of matter in the GSL is Boltzmann entropy SB. 




