
13.  The Kinetic Theory, Part 2:  Objections. 

1.  Loschmidt's Umkehreinwand (Reversibility Objection) (1876). 

Josef Loschmidt 
(1821-1895) 

"Über die Zustand des Wärmegleichgewichtes eines Systems von Körpern mit Rucksicht auf die Schwerkraft." 

1.  Loschmidt's Reversibility Objection. 
2.  Poincaré's Recurrence Theorem. 
3.  Zermelo's Recurrence Objection. 

• Thus:  The H-Theorem is incompatible with the underlying laws of 
mechanics. 

• Time-reversal invariance implies:  For any equilibrium state of a gas that 
has evolved from a non-equilibrium state, there corresponds an equilibrium 
state that will evolve to a non-equilibrium state. 
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• H-Theorem implies that a gas in any non-equilibrium velocity 
distribution will move towards the equilibrium distribution 
and then stay there. 
- But:  The underlying laws of mechanics for the particles are time-reversal invariant. 



•  Ex:  Gas in container in initial state in which all atoms but one lie at rest on bottom. 

- Single moving atom collides with atoms at rest, eventually resulting in a stationary 
(equilibrium) state characterized by the Maxwell-Boltzmann distribution. 

- Time-reversed system should also be possible:  initial equilibrium state eventually 
evolving into a state in which all atoms but one lie at rest on bottom. 
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"Indeed, if in the above case, after a time τ which is long enough to obtain the 
stationary state, one suddenly assumes that the velocities of all atoms are 
reversed, we would obtain an initial state that would appear to have the same 
character as the stationary state.  For a fairly long time this would be appropriate, 
but gradually the stationary state would deteriorate, and after passage of the time 
τ we would inevitably return to our initial state:  only one atom has absorbed all 
kinetic energy of the system..., while all other molecules lie still on the bottom of 
the container... Obviously in every arbitrary system the course of events must be 
become retrograde when the velocities of all its elements are reversed."  



• How can the H-Theorem be understood in light of the clear truth of 
the time reversibility of the underlying micro-mechanics? 

Boltzmann's Response, Part 1 (1877a) "On the Relation of a General Mechanical 
Theorem to the 2nd Law of Thermodynamics" 

"Indeed it is clear that any individual uniform distribution, which might arise 
after a certain time from some particular initial state, is just as improbable as 
an individual non-uniform distribution; just as in the game of Lotto, any 
individual set of five numbers is an improbable as the set 1, 2, 3, 4, 5.  It is 
only because there are many more uniform distributions than non-uniform 
ones that the distribution of states will become uniform in the course of time."   

"One therefore cannot prove that, whatever may be the positions 
and velocities of the spheres at the beginning, the distribution 
must become uniform after a long time; rather one can only prove 
that infinitely many more initial states will lead to a uniform one 
after a definite length of time than to a non-uniform one."   

• All distributions f(v, t) are equally probable. 

• But:  There are many more uniform distributions than non-uniform ones. 

• So:  Choosing an initial state at random will in general lead to a uniform 
equilibrium state. 



Boltzmann's Response, Part 2 (1877b) "Über die Beziehung zwisschen dem zweiten Haubtsatze der 
mechanischen Wärmetheorie und der Wahrscheinlichkeits-
rechnung resp. dem Sätzen über das Wärmegleichgewicht" 

• The transition from kinetic theory to statistical mechanics? 

• Consider different "macrostates" of a gas: 

Why does the gas prefer to be in the equilibrium macrostate (last one)?

• Note:  Permuting any of the particles in a given macrostate with the same 
velocities doesn't change the macrostate. 

• Boltzmann's Intuition:  The equilibrium macrostate is the macrostate that 
has the maximum number of allowed permutations. 



A microstate ("komplexion") x of the gas is a specification of the 
position (3 values) and velocity (3 values) for each of its N particles. 

• Suppose the gas consists of N identical particles governed by Hamilton's 
equations of motion (the micro-dynamics). 

Within ΓE, Hamiltonian 
dynamics maps any 
initial microstate xi to 
unique final microstate xf. 
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Γ = phase space = 6N-dim space of all possible microstates. 
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ΓE = region of Γ that consists of all microstates with constant energy E. 

Can 2nd Law be explained 
by recourse to this 
dynamics? 



A macrostate Z of the gas (a "state distribution") is a specification of the gas 
in terms of macroscopic properties (pressure, temperature, volume, etc.). 

• So:  ΓE is partitioned into a finite number of regions ΓΖ corresponding to 
macrostates, with each microstate x belonging to one region ΓΖ. 

• 
• 

• 

• 

• ΓE 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 
• 

x 

ΓΖ 

microstates

-  To each microstate x, there corresponds exactly one macrostate Z(x). 

-  Many distinct microstates x, x', x'', ... can correspond to the same macrostate:  
Z(x) = Z(x') = Z(x'') = ... 

macrostate



Boltzmann's Claim:  The region ΓΖeq
 corresponding to the 

equilibrium macrostate Zeq is vastly larger than any other 
region, so it contains the vast majority of possible microstates. 
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very small non-equilibrium 
macrostate regions

• Thus:  For any initial microstate xi, the dynamics will map xi into 
ΓΖeq

 very quickly, and then keep it there for an extremely long time. 

• Now:  How can we prove this? 



• Key Idea:  Associate probabilities with the size of macrostate regions:  the 
larger the macrostate region, the greater the probability of finding a 
microstate in it. 

"In most cases, the initial state will be a very unlikely 
state.  From this state the system will steadily evolve 
towards more likely states until it has finally reached the 
most likely state, i.e., the state of thermal equilibrium." 

• Thus: 

A system approaches equilibrium because it evolves from macro-
states of lower toward macrostates of higher probability, and the 
equilibrium macrostate is the macrostate of highest probabililty. 



• Start with the 6-dim phase space Γµ of a single particle. 

Γµ

w1 w2 w3 

• Partition Γµ into ℓ cells w1, w2, ..., wℓ of size Δw = ΔxΔv. 

• 

• 

• 

• 
• 

• 

• • 

• 
• 

• 

• 

• 

• A state of an N-particle system is given by N points in Γµ. 

Arrangement #1: 
state of P6 in w1, state of P89 in w3, etc. 

P6 

P89 

point in Γµ = single-
particle microstate. 

An arrangement is a specification of which points lie in which cells. 

ΓE = N copies of Γµ 



Arrangement #2: 
state of P89 in w1, state of P6 in w3, etc. 

P89 

P6 

• Start with the 6-dim phase space Γµ of a single particle. 

Γµ

w1 w2 w3 

• Partition Γµ into ℓ cells w1, w2, ..., wℓ of size Δw = ΔxΔv. 
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• A state of an N-particle system is given by N points in Γµ. 

An arrangement is a specification of which points lie in which cells. 

Arrangement #1: 
state of P6 in w1, state of P89 in w3, etc. 

A macrostate Z is a specification of how many 
points (regardless of which ones) lie in each cell. 

• Note:  More than one arrangement can correspond to the same macrostate. 

Macrostate: 
(1, 0, 2, 0, 1, 1, ...) 

Takes form Z = (n1, n2, ..., nℓ), 
where nj = # of points in wj. 

point in Γµ = single-
particle microstate. 

ΓE = N copies of Γµ 



•  How many arrangements G(Z) are compatible with a given macrostate Z=(n1, ...,nℓ)? 

Check: 

- Let Z1 = (N, 0, ..., 0) and Z2 = (N−1, 1, 0, ..., 0). 

- G(Z1) = N !/N ! = 1.  (Only one way for all N particles to be in w1.) 

- G(Z2) = N !/(N−1)! = N(N−1)(N−2)"1/(N−1)(N−2)"1 = N. 

 (There are N different ways w2 could have one point in it; namely, if 
P1 was in it, or if P2 was in it, or if P3 was in it, etc...) 

G(Z)=
N !

n1 !n2 !!nℓ !
Answer: 

n!  =  n(n−1)(n−2)"1 
 =  # of ways to arrange n distinguishable objects 

0!  = 1 

•  Thus:  The size of ΓZ is |ΓZ | = G(Z)ΔwN =
N !

n1 !n2 !!nℓ !
ΔwN

•  What is the size of the region ΓZ corresponding to a macrostate Z? 

-  Note:  The size of the region ΓZ is given by the number of points it contains (i.e., the 
number of arrangements compatible with Z) multiplied by a volume element of ΓE. 

-  And:  A volume element of ΓE is given by N copies of a volume element Δw of Γµ. 



•  Note:  ln |ΓZ| = ln
N !

n1 !n2 !!nℓ !
ΔwN

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟

= ln N ! − ln n1! − ...− ln nℓ! + N lnΔw 

≈ (N ln N−N)−(n1 ln n1−n1)− ...−(nℓ ln nℓ−nℓ) + N lnΔw 

Stirling's approx: 
ln(n!) ≈ nlogn−n 

= N lnN − ni lnni
i=1

ℓ

∑ +N lnΔw n1 + ... + nℓ = N 

•  So:  ln |ΓZ | ≈ −NH 

≈ N f (x,v) ln f (x,v)+ lnN + lnΔw ]( )dxdv∫
= NH +N lnN +N lnΔw

•  Then: ni lnnii∑  = Nf (xi,vi )ln[Nf (xi,vi )Δw ]ΔxiΔvii∑

•  Suppose:  ni = Nf(xi,vi)Δw = Nf(xi,vi)ΔxiΔvi  
number of particles with 
position in range Δxi and 
velocity in range Δv

i
. 

A measure of 
the size of ΓZ!

SB ≡ k ln|ΓZ | 
   
ST =

R

δQR

Ti

f

∫
A measure of absolute changes in 
heat per temp of a reversible process!

•  Now:  Define the "Boltzmann entropy" SB ≡ k ln|ΓZ |, k = const. 

•  Then:  SB ∝ −H. 



How is this a response to Loschmidt's objection? 

• Boltzmann says:  Any initial microstate xi will evolve under Hamiltonian 
dynamics to a region with greater probability (as measured by its size). 

What is the notion of probability? 

• Probability of macrostate = volume of macrostate region. 

• Earlier work (Maxwell 1860, 1866; Boltzman 1872):  A distribution 
defines a probability measure over the states of gas particles. 
- Probabilities are assigned to the states of gas particles. 

• Boltzmann (1877b):  A distribution (macrostate), instead of defining a 
probability, is now assigned a probability. 
-  Probabilities are not assigned to particle states, but to the state of the gas as 

a whole. 

• But:  Nothing in Hamiltonian dynamics entails that states associated with 
low probabilities evolve into states associated with high probabilities. 
- Ex:  Any state in ΓE cannot evolve into a region, no matter how large, outside ΓE 

(conservation of energy). 



Theorem:  For every mechanical system with a bounded phase 
space, almost every initial state of the system will, after some 
finite time, return to a state arbitrarily close to the initial state. 

•  Consider:  Gas consisting of N particles governed by Hamilton's equations of motion. 

•  Recall:  A microstate of the gas is a specification of the position (3 values) and 
velocity (3 values) for each of its N particles. 

-  Γ = phase space = 6N-dim space of 
all possible microstates. 

2.  Poincaré's Recurrence Theorem (1890). 

Henri Poincaré 
(1854-1912) 
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-  ΓE = region of Γ that consists of all 
microstates with constant energy E. 
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-  Hamilton's equations define a map 
φt : Γ → Γ that maps any initial 
state xi in ΓE to a unique final 
state xf in ΓE. 

-  Key property:  φt preserves volumes. 

"On the 3-body Problem and the Equations of Dynamics" 



Aside:  Informal Proof. 
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•  We know:  Trajectories in phase space do not intersect (because φt is deterministic:  
any given state cannot have evolved from two separate initial states). 

•  And:  Phase space volumes are preserved by φt. 

•  So:  A tube swept out by φt from an initial region A can never cross regions it has 
already crossed. 

•  And:  Assuming phase space is finite and φt preserves volumes, at some point, all 
of phase space will be swept out. 

•  Thus:  In order to continue evolving, the tube must connect back to A (otherwise 
it would intersect a region it's already crossed). 



"I do not know if it has been remarked that the English kinetic theories 
can extricate themselves from this contradiction. The world, according 
to them, tends at first toward a state where it remains for a long time 
without apparent change; and this is consistent with experience; but it 
does not remain that way forever, if the theorem cited above is not vio-
lated; it merely stays there for an enormously long time, a time which 
is longer the more numerous are the molecules. This state will not be 
the final death of the universe, but a sort of slumber, from which it will 
awake after millions of millions of centuries. According to this theory, 
to see heat pass from a cold body to a warm one, it will not be neces-
sary to have the acute vision, the intelligence, and the dexterity of 
Maxwell's demon; it will suffice to have a little patience." 

"A theorem, easy to prove, tells us that a bounded world, governed only 
by the laws of mechanics, will always pass through a state very close to its 
initial state. On the other hand, according to accepted experimental laws 
(if one attributes absolute validity to them, and if one is willing to press 
their consequences to the extreme), the universe tends toward a certain 
final state, from which it will never depart. In this final state, which will 
be a kind of death, all bodies will be at rest at the same temperature." 

• Poincare (1893) "Le mécanisme et l'expérience". 



3.  Zermelo's Wiederkehreinwand (Recurrence Objection) (1896). 

"Hence, in such a system irreversible processes are impossible 
since (aside from singular initial states) no single-valued 
continuous function of the state variables, such as entropy, can 
continually increase; if there is a finite increase, then there must 
be a corresponding decrease when the initial state recurs." 

Ernst Zermelo 
(1871-1953) 

"Poincaré's theorem says that in a system of mass-points under 
the influence of forces that depend only on position in space [i.e., 
a conserved Hamiltonian system], in general any state of motion 
(characterized by configurations and velocities) must recur arbi-
trarily often, at least to any arbitrary degree of approximation 
even if not exactly, provided that the coordinates and velocities 
cannot increase to infinite [i.e., the phase space is bounded]." 

• In other words:  For any continuous function F(x) on phase space, F(φtx) 
cannot be monotonically increasing in time (except for when the initial 
state x is a singular state). 

• So:  The H-Theorem is incompatible with the underlying mechanical laws 
of motion. 

"On a Theorem of Dynamics and the Mechanical Theory of Heat" 



Options 
(1)  Drop assumption that phase space is bounded:  allow infinite velocities or 

infinite distances.  But:  Not realistic for gases. 

(2)  Drop assumption that dynamics is Hamiltonian.  But:  Physical systems 
obey Hamilton's equations. 

(3)  Assume only singular states exist (states in regions with measure zero). 

"...in order to establish the general validity of the second law of 
thermodynamics, one would have to assume that only those initial 
states that lead to irreversible processes are actually realized in nature, 
despite their smaller number, while the other states, which from a 
mathematical viewpoint are more probable, actually do not occur."  

•  But:  Overwhelming majority of possible states are not singular; why should Nature 
only realize singular states? 

•  And:  Smallest change in variables can change a singular state into a recurring state. 

"[This assumption would be]... quite unique in physics and I do 
not believe that anyone would be satisfied with it for very long."  

"It is now necessary to formulate either the Carnot-Clausius 
principle or the mechanical theory in an essentially different 
way, or else decide to give up the latter theory altogether."   



Boltzmann's Response, Part 1 (1896) 

H(t) 

t →  
Hmin  

• Consider:  "H-curve" for a gas in a container with finite particles and t → ∞, 
for any "non-singular" initial state: 

• H(t) is usually very close to Hmin (Maxwell equilibrium distribution). 

• Fluctuations away from Hmin are rare. 

• Probability of a fluctuation decreases with its height. 

• So:  Given a non-singular initial microstate far from equilibrium, at any later 
time it should have evolved into a microstate very close to equilibrium. 

"Rely to Zermelo's Remarks on the Theory of Heat" 



H(t) 

t →  
Hmin  

• Consider:  "H-curve" for a gas in a container with finite particles and t → ∞, 
for any "non-singular" initial state: 

"Zermelo thinks that he can conclude from Poincaré's theorem that it is 
only for certain singular initial states, whose number is infinitesimal com-
pared to all possible initial states, that the Maxwell distribution will be 
approached, while for most initial states this law is not obeyed. This 
seems to me to be incorrect. It is just for certain singular initial states 
that the Maxwell distribution is never reached, for example when all the 
molecules are initially moving in a line perpendicular to two sides of the 
container. For the overwhelming majority of initial conditions, on the 
other hand, the H-curve has the character mentioned above." 

Boltzmann's Response, Part 1 (1896) "Rely to Zermelo's Remarks on the Theory of Heat" 



H(t) 

t →  
Hmin  

• Consider:  "H-curve" for a gas in a container with finite particles and t → ∞, 
for any "non-singular" initial state: 

"If the initial state lies on an enormously high peak, i.e. if it is completely dif-
ferent from the Maxwellian state, then the state will approach this velocity dis-
tribution with enormously large probability, and during an enormously long 
time it will deviate from it by only vanishingly small amounts. Of course if one 
waits an even longer time, he may observe an even higher peak, and indeed the 
initial state will eventually recur; in a mathematical sense one must have an in-
finite time duration infinitely often. Zermelo is therefore completely correct 
when he asserts that the motion is periodic in a mathematical sense; but, far 
from contradicting my theorem, this periodicity is in complete harmony with it." 

Boltzmann's Response, Part 1 (1896) "Rely to Zermelo's Remarks on the Theory of Heat" 

• 



H(t) 

t →  
Hmin  

• Consider:  "H-curve" for a gas in a container with finite particles and t → ∞, 
for any "non-singular" initial state: 

"We therefore arrive at the following result: if one considers heat to be 
molecular motion which takes place according to the general equations 
of mechanics, and assumes that the complexes of bodies that we observe 
are at present in very improbable states, then one can obtain a theorem 
which agrees with the second law for phenomena observed up to now." 

• 

Boltzmann's Response, Part 1 (1896) "Rely to Zermelo's Remarks on the Theory of Heat" 



H(t) 

t →  
Hmin  

• Consider:  "H-curve" for a gas in a container with finite particles and t → ∞, 
for any "non-singular" initial state: 

• 

"It is not sufficient to show that all perturbations finally relax 
to a long-lasting equilibrium state; rather it is necessary to 
show that changes always take place in the same sense, in the 
direction of equalization; that the H-function always only 
decreases during observable times, or at least that there can 
only be very small, practically unnoticeable increases, which 
will always be immediately washed out by stronger decreases." 

Zermelo's Counter-Response (1896) "On the Mechanical Explanation of Irreversible Processess." 



H(t) 

t →  
Hmin  

• Consider:  "H-curve" for a gas in a container with finite particles and t → ∞, 
for any "non-singular" initial state: 

• 

"In my opinion this proof is as little possible for the H-function as for 
any other function. Clearly the initial state, whose probability can 
depend only on the initial value H0, can just as well lie on a rising as a 
falling branch of the curve, and in the former case there must first be 
an increase, which can last just as long as the subsequent decrease." 

• 

If intial state lies on a "rising 
branch", then gas will evolve towards 
increasing H (decreasing entropy)! 

Zermelo's Counter-Response (1896) "On the Mechanical Explanation of Irreversible Processess." 



• Why does the initial state of a system lie on a maximum of the H-curve 
(or just past the maximum)? 

"[Suppose] the universe considered as a mechanical system -- or at least a 
very large part of it which surrounds us -- started from a very improb-
able state, and is still in an improbable state.  Hence if one takes a smal-
ler system of bodies in the state in which he actually finds them, and 
suddenly isolates this system from the rest of the world, then the system 
will initially be in an improbable state, and as long as the system 
remains isolated it will always proceed toward more probable states." 

• The Past Hypothesis:  The initial macrostate of the universe was a 
macrostate with a large H-value (i.e., low entropy). 

• Idea:  No states before initial state of universe. 

• But:  Just because the entropy of the global macrostate of the universe 
increases doesn't imply that the entropy of the macrostate of a small 
subsystem increases, too. 

Boltzmann's Response, Part 2 (1897) "On Zermelo's Paper 'On the Mechanical 
Explanation of Irreversible Processes." 

"[This hypothesis]... is, 
of course, unprovable." 

• Moreover: 



"On the other hand, if we do not make any assumption about the 
present state of the universe, then of course we cannot expect to find 
that a system isolated from the universe, whose initial state is complete-
ly arbitrary, will be in an improbable state initially rather than later. 
On the contrary it is to be expected that at the moment of separation 
the system will be in thermal equilibrium. In the few cases where this 
does not happen, it will almost always be found that if the state of the 
isolated system is followed either backwards or forwards in time, it will 
almost immediately pass to a more probable state. Much rarer will be 
the cases in which the state becomes still more improbable as time goes 
on; but such cases will be just as frequent as those where the state 
becomes more improbable as one follows it backwards in time." 

• So:  If we don't adopt the Past Hypothesis, then four options for the 
initial state of an isolated system: 

(i)  Most probable:  thermal equilibrium. 

(ii)  Less probable:  non-equilibrium at an H-curve maximum.  H thus decreases 
in both directions of time. 

(iii)  Even less probable:  non-equilibrium on an increasing flank of H-curve. 

(iv)  Equally probable as (iii):  non-equilibrium on a decreasing flank of H-curve. 



• We don't typically observe (i). 

• (ii) is problematic:  Value of H in 1896 should be increasing as time decreases. 

• Can (iii) and (iv) be defended? 

Possible initial states of isolated systems: 

(i)  Most probable:  thermal equilibrium. 

(ii)  Less probable:  non-equilibrium at an 
H-curve maximum.  H thus 
decreases in both directions of time. 

(iii)  Even less probable:  non-equilibrium 
on an increasing flank of H-curve. 

(iv)  Equally probable as (iii):  non-
equilibrium on a decreasing flank of 
H-curve. 

H(t) 

t →  
Hmin  



"One has the choice of two kinds of pictures. One can assume that the entire universe 
finds itself at present in a very improbable state. However, one may suppose that the 
eons during which this improbable state lasts, and the distance from here to Sirius, 
are minute compared to the age and size of the universe. There must then be in the 
universe, which is in thermal equilibrium as a whole and therefore dead, here and 
there relatively small regions of the size of our galaxy (which we call worlds), which 
during the relatively short time of eons deviate significantly from thermal equilibrium. 
Among these worlds the state probability increases as often as it decreases. For the 
universe as a whole the two directions of time are indistinguishable, just as in space 
there is no up or down. However, just as at a certain place on the earth's surface we 
can call 'down' the direction toward the centre of the earth, so a living being that 
finds itself in such a world at a certain period of time can define the time direction as 
going from less probable to more probable states (the former will be the 'past' and the 
latter the 'future') and by virtue of this definition he will find that this small region, 
isolated from the rest of the universe, is 'initially' always in an improbable state." 

• The universe is presently in a global "dead" state of thermal equilibrium 
with regions of non-equilibrium that support life. 
- Most probable state of universe is equilibrium. 
- But:  The universe is big, so the probability of a relatively small region being in any 

state (including an improbable non-equilibrium state) can be as large as we please. 

• Anthropic Principle:  We find ourselves in a region of non-equilibrium, since 
non-equilibrium is essential for the existence of living beings. 



"One has the choice of two kinds of pictures. One can assume that the entire universe 
finds itself at present in a very improbable state. However, one may suppose that the 
eons during which this improbable state lasts, and the distance from here to Sirius, 
are minute compared to the age and size of the universe. There must then be in the 
universe, which is in thermal equilibrium as a whole and therefore dead, here and 
there relatively small regions of the size of our galaxy (which we call worlds), which 
during the relatively short time of eons deviate significantly from thermal equilibrium. 
Among these worlds the state probability increases as often as it decreases. For the 
universe as a whole the two directions of time are indistinguishable, just as in space 
there is no up or down. However, just as at a certain place on the earth's surface we 
can call 'down' the direction toward the centre of the earth, so a living being that 
finds itself in such a world at a certain period of time can define the time direction as 
going from less probable to more probable states (the former will be the 'past' and the 
latter the 'future') and by virtue of this definition he will find that this small region, 
isolated from the rest of the universe, is 'initially' always in an improbable state." 

• In regions of non-equilibrium, H increases as often as it 
decreases (cases (iii) and (iv)). 

• But:  The direction of time is just the direction in which one 
goes from less to more probable states. 

• So:  Cases (iii) and (iv) are indistinguishable:  both involve H 
decreasing (and thus entropy increasing) as time increases. 



"The combination of cosmological speculation, transendental 
deduction, and definitional dissolution in these short remarks has been 
credited by many as one of the most ingenious proposals in the history 
of science, and disparaged by others as the last patently desperate, ad 
hoc attempt to save an obviously failed theory."  (Sklar 1993, pg. 44.) 


