
12.  The Kinetic Theory, Part 1. 
1.  Early Kinetic Theory 
• 18th-19th Century Caloric theories of heat: 

- Pressure of a gas due to repulsive force of caloric particles. 

- Temperature is a measure of amount of caloric present. 

• Early dynamical ("kinetic") theories of heat. 
- A gas is made up of many particles. 

- Motion of particles is responsible for pressure and heat. 

Bernoulli (1738):  [pressure ] ∝ [velocity ]2  

Herepath (1820):  [temperature ] ∝ [velocity ] 

Waterston (1843):  [temperture ] ∝ [velocity ]2 

Common assumption:  All particles move at same velocity.

• 1830s-50s.  Wave theory of heat: 
- Heat is a vibrational motion of the ether. 

• 1840s: 
- Joule's mechanical equivalent of heat and advocacy of the dynamical theory. 

1.  Early Kinetic Theory. 
2.  Maxwell's Velocity Distribution. 
3.  Boltzman's H-Theorem. 



"To find the average number of particles whose velocities lie between given limits, 
after a great number of collisions among a great number of equal particles." 

First Derivation (1860). 

- Velocites of gas particles should vary due to collisions. 

"Illustrations of the dynamical theory of gases" 

•  Let: N = total # of particles. 

   Nf(v)dv = average # of particles with velocity between v and v+dv. 

•  This entails: 
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•  Two Assumptions: 
 (i)  Velocities are distributed identically in x-, y-, and z-directions. 
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  (ii)  All directions of impact are equally likely. 

   So:  f(v) depends only on v = |v|. 

•  Uffink, J. (2007) "Compendium of the Foundations of Classical Statistical Physics", in J. Butterfield & J. Earman (eds.) Philosophy of Physics, Elsevier, pp. 923-1074. 

2.  Maxwell's Velocity Distribution 



Aside:  Proof. 
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.And: 

• Key concept:  f(v)dv is the probability for velocity to lie in range (v, v+dv). 

"As this assumption may appear precarious, I shall now determine 
the form of the function in a different manner."  (1866) 

• Recall:  Assumption (i):  Velocities are distributed identically in x-, y-, and 
z-directions; so f(v) takes general form f(v) = g(v
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• New derivation will appeal to collisions between gas particles. 
- Instead of assuming components of a single gas particle are independent, 

now just assume initial velocities of colliding gas particles are independent 

("Stoßzahlansatz").  

"Collision number assumption":  Term coined 

later by Ehrenfest & Ehrenfest (1912). Paul Ehrenfest 

(1880-1933) 
Tatiana Ehrenfest 

(1876-1964) 



Second Derivation (1866). "On the Dynamical Theory of Gases" 

•  Consider:  Collisions with initial velocities v1, v2 and final velocities v1', v2'. 

•  Now:  f(v) is stationary  iff  N(v1, v2) = N(v1', v2')  iff  f(v1)f(v2) = f(v1')f(v2'). 

•  And:  This entails f(v) =              (1860 result). Ce−(v
2/α2 )

•  Uffink, J. (2007) "Compendium of the Foundations of Classical Statistical Physics", in J. Butterfield & J. Earman (eds.) Philosophy of Physics, Elsevier, pp. 923-1074. 

Time-reversal invariance 

where |v2'−v1'| = |v2−v1| 
and dv1'dv2' = dv1dv2. 

•  So:  N(v1,v2) = N 2f(v1)f(v2)|v2−v1|dv1dv2rdrdθdt 

   N(v1',v2') = N 2f(v1')f(v2')|v2−v1|dv1dv2rdrdθdt 

•  Let P1 be at rest (r = 0, θ = 0, z = 0), and P2 traveling in z-direction towards P1 
(r = const., θ = const., z(t) = z0 + |v2−v1|t). 

• 

• 

v2 

z 

y x 

P1 

P2 

Assumption (Stoßzahlansatz):  Initial velocities are independent 

N(v1,v2)  = # of collisions during dt in which (v1, v2) → (v1', v2') 

 = N 2f(v1)f(v2)dv1dv2dV 

- Nf (v1)dv1 = # particles with initial velocity in (v1, v1+dv1) 

- Nf (v2)dv2 = # particles with initial velocity in (v2, v2+dv2) 

- dV = rdrdθdz = |v2−v1|rdrdθdt = volume swept out by P2. 



Aside:  Maxwell's Uniqueness Argument 

•  f(v1)f(v2) = f(v1')f(v2') means that the initial-final transition (v1, v2) → (v1', v2') is 
equally probable as the final-initial transition (v1', v2') → (v1, v2). 

•  Suppose not:  Suppose (v1, v2) → (v'1, v2') is more probable than (v1', v2') → (v1, v2). 

"...it is impossible to assign a reason why the 
successive velocities of a molecule should be arranged 
in this cycle rather than in the reverse order." 

•  But: 

•  To remain stationary, there would have to be a closed transition cycle: 

   (v1, v2) → (v1', v2') → (v1'', v2'') → ... → (v1, v2). 

•  So:  (v1, v2) → (v1', v2') → (v1'', v2'') → ... → (v1, v2). 

   must be equally probable as 

   (v1, v2) ← (v1', v2') ← (v1'', v2'') ← ... ← (v1, v2). 

•  But:  This just means that (v1, v2) → (v1', v2') is equally probable as 
 (v1', v2') → (v1, v2). 



•  Let:  f(v1, t)dv1 = # particles with velocities in (v1, v1+dv1) at time t 

•  Note:  f(v1, t+dt)dv1  = # particles with velocities in (v1, v1+dv1) at time t+dt 

    = f(v1, t)dv1 + [changes] 

"Further Studies on the Thermal Equilibrium of Gas Molecules" 

Ludwig Boltzmann 
(1844-1906) 

"If one wants... to build up an exact theory... it is before all neces-
sary to determine the probabilities of the various states that one 
and the same molecule assumes in the course of a very long time, 
and that occur simultaneously for different molecules. That is, one 
must calculate how the number of those molecules whose states lie 
between certain limits relates to the total number of molecules." . 

•  So: 
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•  Uffink, J. (2007) "Compendium of the Foundations of Classical Statistical Physics", in J. Butterfield & J. Earman (eds.) Philosophy of Physics, Elsevier, pp. 923-1074. 
•  Janssen, M. (preprint) "Dogs, Fleas, and Tree Trunks:  The Ehrenfests Marking the Territory of Boltzmann's H-Theorem". 

3.  Boltzmann's (1872) H-Theorem 

•  Task:  Determine how f(v1, t) changes between t and t +dt. 



•  So:  [changes] = N 2
dv1dt∫ r dr∫ dθ∫ d v2(f(v1',t)f(v2', t)− f(v1,t)f(v2, t)) | v2− v1| 

Two types of [changes]: 

(i)  Collisions during dt in which particles with initial velocities in (v1,v1+dv1) end 
up with velocities outside (v1,v1+dv1).  Subtract from f(v1, t)dv1. 

(ii) Collisions during dt in which particles with initial velocities outside (v1,v1+dv1) 
end up with velocities inside (v1,v1+dv1).  Add to f(v1, t)dv1. 

•  Thus (Boltzmann Equation): 
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•  Now:  ∂f(v1, t)/∂t has a minimum when f(v1', t) f(v2', t) = f(v1, t) f(v2, t). 

•  And:  This entails f(v) =              (Maxwell's result). Ce−(v
2/α2 )
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Assumption (Stoßzahlansatz): 



Boltzmann's Uniqueness Argument: 

•  Then: 
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•  Note:  Integrand has form (x−y) ln[y/x ]. 

•  And:  This is always less than or equal to zero! 

x > y  ⇒  (x−y) is pos, ln[y/x ] is neg. 

x < y  ⇒  (x−y) is neg, ln[y/x ] is pos. 

x = y  ⇒  (x−y) = ln[y/x ] = 0. 

•  So: dH
dt
≤ 0.

•  Define "H-function": H[f (v,t)]= dvf (v,t)ln f (v,t)∫

•  And:  The Maxwell distribution is the unique distribution for which dH/dt = 0. 

•  Now:  What is H? 



"It has thus been rigorously proved that whatever may have been the initial 
distribution of kinetic energy, in the course of time it must necessarily 
approach the form found by Maxwell... This [proof] actually gains much in 
significance because of its applicability to the theory of multi-atomic gas 
molecules. There too, one can prove for a certain quantity [H] that, because 
of the molecular motion, this quantity can only decrease or in the limiting 
case remain constant. Thus, one may prove that because of the atomic 
movement in systems consisting of arbitrarily many material points, there 
always exists a quantity which, due to these atomic movements, cannot 
increase, and this quantity agrees, up to a constant factor, exactly with the 
value that I found [in an earlier paper] for the well-known integral ∫dQ/T."  

"This provides an analytical proof of the Second Law in a way complete-
ly different from those attempted so far. Up till now, one has attempted 
to proof that ∫dQ/T = 0 for a reversible cyclic process, which however 
does not prove that for an irreversible cyclic process, which is the only 
one that occurs in nature, it is always negative; the reversible process 
being merely an idealization, which can be approached more or less but 
never perfectly. Here, however, we immediately reach the result that 
∫dQ/T is in general negative and zero only in a limit case..."  

•  H is proportional to −S, where S is the thermodynamic entropy! 



Does the H-Theorem prove the 2nd Law? 

•  In particular:  Has Boltzmann demonstrated irreversibility purely on the basis of 
Newtonian mechanics? 

•  Problem (Burbury 1894; Bryan 1894):  The Stoßzahlansatz is implicitly a time-
asymmetric assumption! 

-  Stoßzahlansatz sez:  The number of collisions of the kind (v1, v2) → (v1', v2') is 
proportional to the product f(v1)f(v2) of two functions of initial velocities. 

-  And:  From this (and other assumptions), Boltzmann derives dH/dt ≤ 0. 

-  Suppose:  We replace the Stoßzahlansatz with the assumption that the number of 
collisions of the kind (v1, v2) → (v1', v2') is proportional to the product f(v1')f(v2'), 
of two functions of final velocities. 

-  Then:  Can derive dH/dt ≥ 0! 


