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1.  Some Principles of Quantum Gravity. 

(i)  Asymptotic Safety:  A theory of QG must scale towards a 
UV fixed point with a finite number of UV-irrelevant 
couplings. 

(ii)  Relative Locality:  A theory of QG must entail that 
coincidence of events in spacetime ("locality") is relative 
to an observer's energy/momentum. 

(iii) Holography:  A theory of QG must entail that the number 
of fundamental degrees of freedom in any region O of 
spacetime cannot exceed A/4, A = surface area of O. 



2.  The Condensed Matter Approach to QG... 

• RG flow:  Generated by sucessive RG transformations. 

• Fixed point:  Point g* that is invariant under RG 
transformations (encodes a theory with scale-invariant 
parameters). 

(i)  Given theory S [g] = !a gaOa, impose cutoff "(s) = s"0. 

(ii)  Integrate out "high-energy" modes. 

(iii) Absorb changes into re-definitions of couplings. 

Renormalization Group (RG) transformation: 

• Goal:  To construct an effective field theory (EFT) of a 
condensate that mimicks GR and Standard Model. 



2.  The Condensed Matter Approach to QG... 

• Goal:  To construct an effective field theory (EFT) of a 
condensate that mimicks GR and Standard Model. 
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(a) A fixed point g* (renorm-
alized theory):  S [g*]. 

(c)  A point g'' in the neighbor-
hood of a fixed point (non-
renormalizable theory): 
 S [g''] = S [g*] + !a g''aO'a. 

g'' 
• 

(b) A point g' on an RG flow 
that intersects a fixed point 
(renormalizable theory): 
 S [g'] = !a g'aOa. 

g' • 

• Three Notions of an EFT: 
S [g] = !a gaOa 



2.  The Condensed Matter Approach to QG... 

• Goal:  To construct an effective field theory (EFT) of a 
condensate that mimicks GR and Standard Model. 

• Universality class. 

• Spontaneously 
broken symmetry. 

• Order characterized 
by symmetry. 

• Three Notions of an EFT: 

(a) A fixed point g* (renorm-
alized theory):  S [g*]. 

(b) A point g' on an RG flow 
that intersects a fixed point 
(renormalizable theory): 
 S [g'] = !a g'aOa. 

(c)  A point g'' in the neighbor-
hood of a fixed point (non-
renormalizable theory): 
 S [g''] = S [g*] + !a g''aO'a. 



2.  The Condensed Matter Approach to QG:  Two Versions. 

• Goal:  To construct an effective field theory (EFT) of a 
condensate that mimicks GR and Standard Model. 

Version A:  Focus on condensates characterized by sponta-
neously broken symmetries and universality. 

• Example:  EFT of superfluid 3He-A belongs to same 
universality class as massless sector of Standard Model 
above electroweak symmetry breaking.   (Volovik 2003) 

• Essential features: 
! EFT is characterized by an RG universality class. 
! Order characterized by symmetry. 



2.  The Condensed Matter Approach to QG:  Two Versions. 

• Goal:  To construct an effective field theory (EFT) of a 
condensate that mimicks GR and Standard Model. 

Version B:  Focus on condensates characterized by 
"topological order". 

• Example:  EFT of edge of 4-dim fractional quantum Hall 
(FQH) liquid describes (3+1)-dim zero-rest-mass fields of 
all helicities.   (Zhang & Hu 2001) 

• Essential features: 
! EFT not characterized by an RG universality class. 
! Order characterized by topology.   (Wen 2004)  



Asymptotic Safety:  A theory of QG must scale 
towards a UV fixed point with a finite number 
of UV-irrelevant couplings.   (Weinberg 1979) 

• UV fixed point:  fixed point associated with s # !. 

• IR fixed point:  fixed point associated with s # 0. 

3.  Asymptotic Safety. 

Relevant coupling w.r.t. g*:  coupling that increases towards g*. 
• UV (resp. IR) relevant:  increases as s # ! (resp. 0). 

Irrelevant coupling w.r.t. g*:  coupling that decreases towards g*. 
• UV (resp. IR) irrelevant:  decreases as s # ! (resp. 0). 



no IR-irrelevant 
finite # IR-relevant S [gIR*] = !a g*aOa 

Renormalized 
theory 

3.  Asymptotic Safety. 

finite # IR-irrelevant 
finite # IR-relevant 

Renormalizable 
theory S [g'] = !a g'aOa 

Non-renormal-
izable theory S [g''] = S [gIR*]+ !a g''aO'a 

infinite # IR-irrelevant 
finite # IR-relevant 

Asymptotically 
safe theory S [g''] = S [gUV*]+ !a g''aO'a 

finite # UV-irrelevant 
infinite # UV-relevant 

• Non-renormalizable example:  GR as an RQFT. 
! Infinite # IR-irrelevant couplings supposedly blow-up as s # !. 

• Aymptotically safe examples:  QCD; GR as an RQFT? 
! If GR as an RQFT possesses a UV fixed point (with a finite number of 

UV-irrelevant couplings), it would be a well-behaved theory of QG! 



3.  Asymptotic Safety. 

• Claim:  The EFTs in both versions of the condensed matter 
approach should aspire to be ASTs (to the extent that they 
attempt to reproduce the QCD sector of the Standard 
Model, and, possibly, the GR sector of QG). 

• Which would seem to mean:  The EFTs in both versions 
aspire to be associated with two fixed points: 
! An IR fixed point associated with the "high-energy" theory of the 

condensate. 

! A UV fixed point associated with QCD/GR sector of QG. 

• But:  Is it consistent to consider an EFT as an AST? 
! AST = fundamental theory to all orders. 

! EFT = effective theory restricted to a given energy scale, beyond 
which new physics arises. 



$ (phase space x 
µ, pµ) M (config. space x 

µ) P (mo. space pµ) 

• Idea:  Due to curvature of momentum space. 

4.  Relative Locality. 

Relative Locality:  A theory of QG must entail that 
coincidence of events in spacetime ("locality") is relative to 
an observer's energy/momentum.   (Amelino-Camelia et al. 2011) 

• In RL, there's a separate Mp = Tp*(P) for each p % P. 
• If P is curved, the Mp's will differ from point to point. 

$SR = M & P  flat  flat 

$GR = T *(M)  curved  flat 
$RL = T *(P)  flat  curved 



• Motivation:  P-space curvature entails non-commutativity of 
spacetime coordinates. 
! And:  Various approaches to QG employ non-commutative 

geometry. 

4.  Relative Locality. 

Relative Locality:  A theory of QG must entail that 
coincidence of events in spacetime ("locality") is relative to 
an observer's energy/momentum.   (Amelino-Camelia et al. 2011) 

• Moreover:  P-space curvature encodes corrections to 
relativistic particle dynamics of order E/(Planck mass). 
! And:  Such corrections may have measureable effects at 

low-energies/long distances:  time of arrival of !-ray bursts 
measured by Fermi telescope.   (Amelino-Camelia & Smolin 2009) 



• Both Versions:  Encode aspects of EFTs in aspects of P-
space topology. 

• And:  These latter can be related to P-space curvature. 

4.  Relative Locality. 

Ex:  Gauss-Bonnet-Chern theorem 

  
2(1 ! g) = 1

2"
K dA

S#
g = integer = Chern number 
K = adiabatic curvature 
S = torus 

characterizes topology 
of parameter space 

characterizes geometry 
of parameter space 

"...just as some condensed matter or fluid systems provide ana-
logues for relativity and gravity, it may be that condensed matter 
systems with curved momentum spaces may give us analogues to 
the physics of relative locality"  (Amelino-Camelia et al. 2011, 084010-12) 



4.  Relative Locality. 

Version A:   (Volovik 2003) 

(1)  Encode low-energy dynamics in P-space. 

    
N = 1

24! 2
!µ"#$Tr dS $G %pµ G

&1G %p" G
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(2)  Demonstrate stability of low-energy dynamics. 

• Green's function G(p0, p) = [ip0 - H(p)] -1. 
• Low-energy excitations are poles in G = "Fermi points" % P. 

• Invariant under continuous deformations of G. 
• Which means:  Invariant under low-energy perturbations. 
• Which means:  Defines fixed point/universality class. 

• Defines nontrivial winding number of map from ! to space 
of matrices G (element of nontrivial homotopy group). 



Version A:   (Volovik 2003) 

(1)  Encode low-energy dynamics in P-space. 

4.  Relative Locality. 

    
N = 1

24! 2
!µ"#$Tr dS $G %pµ G

&1G %p" G
&1G %p# G

&1

'(
(2)  Demonstrate stability of low-energy dynamics. 

(3)  Relate N  to P-space curvature. 

• Intuitively:  LHS encodes topology, RHS encodes geometry. 
• Can show:  In IQHE, quantized Hall conductance " given by 

topological invariant obtained from N  via dim reduction. 
• And:  " is given by adiabatic curvature.   (Thouless et al. 1982) 

• Green's function G(p0, p) = [ip0 - H(p)] -1. 
• Low-energy excitations are poles in G = "Fermi points" % P. 



Version B:   (Wen 2004) 
(1)  Encode order in ground state degeneracy (GSD). 

4.  Relative Locality. 

• Two distinctly ordered FQH states (distinct filling factors) 
can have same symmetries but different GSD. 

• Thus:  Internal order of FQH states cannot be characterized 
by symmetry, but can be (partially) characterized by GSD. 



4.  Relative Locality. 

Version B:   (Wen 2004) 
(1)  Encode order in ground state degeneracy (GSD). 

• For FQH states, GSD depends on spatial topology. 
• GSD is robust against arbitrary permutations. 

(3)  Relate GSD to P-space curvature.   (Wen 1990) 

• FQH states classified by matrices K, and 
described by TQFT L = (1/4#)KIJ !µ$%aIµ &$aJ%. 

(2)  Demonstrate stability of GSD.   (Wen & Niu 1990) 

• GSD = |K |. 
• K can be encoded in Berry phase characterizing 

adiabatic deformations of FQH Hamiltonian. 



5.  Holography. 

Holography:  A theory of QG must entail that the number of 
fundamental degrees of freedom N in any region O of 
spacetime cannot exceed A/4, A = surface area of O. 

• Informally:  The "information" encoded in a physical system is 
contained, not in its volume, but in its boundary. 

• Version A:  No explicit reference to such things. 

• Version B:  Edge states of FQH liquid (partially) encode order of 
bulk states. 

"This phenomenon of 2-dim topological orders being encoded in 1-dim 
edge states shares some similarities with the holomorphic principle in 
superstring theory and quantum gravity."   (Wen 2004, pg. 346.) 



5.  Holography. 

Holography:  A theory of QG must entail that the number of 
fundamental degrees of freedom N in any region O of 
spacetime cannot exceed A/4, A = surface area of O. 

• Two Steps:   (Bousso 2002) 

 (II) Appeal to various entropy bounds. 

Ex. Spherical Entropy Bound:   (Susskind 1995) 

S(O) " A/4, O is spatial region with radius R, 
A is area of black hole with radius R. 

 (I)  Identify N ' ln N = Boltzmann entropy SB, 
where N = (# states). 

• Motivation for (II):  Generalized 2nd Law (GSL):   (Bekenstein 1973) 

 (Sbh + (S # 0, where Sbh = A/4. 



5.  Holography. 

• Concern with Step (1). 

• So:  Holography really requires three steps: 

(1) Positing a relation between N and N:  N = ln N. 
(2) Using this to identify N with Boltzmann entropy SB. 
(3) Assuming the entropy of matter S in the GSL is SB. 

 ! This suggests the naive generalization N = log(#values) N. 

The number of Boolean DOF in any region of 
spacetime cannot exceed A/(4 ln 2).   ('t Hooft 1993) 

 ! Motivated by theories with Boolean degrees of freedom for 
which (#Boolean DOF) = log2 N. 



• Concern with Step (2). 
 ! The naive generalization N = log(#values)N is disanalogous 

with the definition of Boltzmann entropy SB = lnN. 

5.  Holography. 

 ! But:  N is conceptually distinct from N, and not just 
an additive version of N: 

   N = (#essential properties), N = (#states). 

(1) Positing a relation between N and N:  N = ln N. 
(2) Using this to identify N with Boltzmann entropy SB. 
(3) Assuming the entropy of matter S in the GSL is SB. 

• So:  Holography really requires three steps: 

 ! Recall:  One motivation for the 
latter is that SB is supposed to 
be an additive version of N. 

S12 = S1 + S2 

N12 = N1 & N2 



• Concern with Step (3). 
 ! Requires a "Boltzmann version" of black hole entropy Sbh. 
 ! Which requires:  Identifying the microstates of a black hole 

and relating them to the area. 
 ! Some results in string theory and loop quantum gravity   

(Strominger & Vafa 1996; Ashetekar, et al. 1998). 

5.  Holography. 

• So:  Holography really requires three steps: 

(1) Positing a relation between N and N:  N = ln N. 
(2) Using this to identify N with Boltzmann entropy SB. 
(3) Assuming the entropy of matter S in the GSL is SB. 



6.  Conclusion. 

Principle 

holography 

Version A 
asymptotic safety 

relative locality 

Version B 

• Asymptotic safety:  Both versions should aspire to be ASTs. 

yes (?) yes (?) 

! But:  Can an AST be an EFT? 



• Relative locality:  Both versions encode relevant quantities in 
P-space topological invariants. 

• And:  These invariants generate nontrivial P-space curvature. 
! But:  Version A uses topological invariants to encode low-

energy dynamics (universality classes of interacting 
theories). 
! Version B uses topological invariants to encode low-energy 

kinematics (categorization of ordered states). 

6.  Conclusion. 

Principle 

holography 

Version A 
yes (?) asymptotic safety 

relative locality 

Version B 
yes (?) 

yes yes 



• Holography:  Version A makes no appeal to holography; 
Version B, charitably, does. 
! But:  Holography is suspect... 

6.  Conclusion. 

Principle 

holography 

Version A 
yes (?) asymptotic safety 

relative locality 

Version B 
yes (?) 

yes 

yes (?) 

yes 

no 
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