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Even more 
sketchy...

Possibly, but 
current 
arguments 
are sketchy.
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0.  Motivation 

Topological quantum computation 

• Claim:  Intrinsic topologically ordered 
systems (like fractional quantum Hall 
systems), exhibit these conditions. 

What is the relation between quantum entanglement and 
topological non-locality in such systems?

• Goal:  To identify conditions that 
allow qubits to be encoded as 
quantum entangled states in a 
topologically non-local way that 
protects them against local errors. 
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Localization = requirement that observables 
must be localized in finite regions of space. 

1.  Two Types of Non-Locality 

Ex.  Representing an observable by an ℓ-local operator :  
An operator O

loc
 that acts non-trivially only on a set X 

of lattice sites of diameter ℓ. 

O 

O 

O 

O 

O 
O

loc
 = {⊗

i∉X
I
i
} ⊗ {⊗

j∈X
O

j
} 

1 subsystem per edge, 

H(n) = ⊗n

i=1Vi
 

ℓ 
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Ex.  Representing an observable by a non-contractible loop operator :  
An operator O

loop
 that acts non-trivially only on lattice sites that 

form a non-contractible loop in a non-simply connected space. 

c3 

c1 

c2 

• c1, c2 are non-contractible. 

• c3 is contractible. 

Topological non-locality.  Occurs when the observables 
of interest are, or encoded in, topological properties. 

1.  Two Types of Non-Locality 



c1 

c2 

c3 
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1 subsystem per edge, 

H(n) = ⊗n

i=1Vi
 

O 

O 

O 

O 

O
loop 

= {⊗
i∉c2

I
i
} ⊗ {⊗

j∈ c2
O

j
} 

Topological non-locality.  Occurs when the observables 
of interest are, or encoded in, topological properties. 

Ex.  Representing an observable by a non-contractible loop operator :  
An operator O

loop
 that acts non-trivially only on lattice sites that 

form a non-contractible loop in a non-simply connected space. 

1.  Two Types of Non-Locality 
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Quantum entanglement non-locality.  Occurs when the 
observables of interest exhibit distant correlations that 
violate a Bell inequality. 

(ii)  Distant correlation = no direct cause explanation 
(a)  〈ψ|A

X
B

Y
|ψ〉 ≠ 〈ψ|A

X
|ψ〉〈ψ|B

Y
|ψ〉,   for some ψ. 

(b)  dist(X,Y) > vΔt,   v = bound on causal propagation 

(i)  Correlation = statistical dependence 

 〈ψ|A
X
B

Y
|ψ〉 ≠ 〈ψ|A

X
|ψ〉〈ψ|B

Y
|ψ〉,   for some ψ. 

More than 
just this! 

• Let A
X
, B

Y
 be operators with support on lattice site sets X, Y. 

1.  Two Types of Non-Locality 

(iii) Bell inequality-violating correlation = no common cause explanation 
(a)  〈ψ|A

X
B

Y
|ψ〉 ≠ 〈ψ|A

X
|ψ〉〈ψ|B

Y
|ψ〉,   for some ψ. 

(b)  〈ψ|A
X
B

Y
|ψ〉λ ≠ 〈ψ|A

X
〉λ〈ψ|BY

|ψ〉λ ,   for some ψ, and all λ. 

conditional statistical dependence 
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Ex.  Some observables associated with maximally entangled 2-qubit 
Bell state for relevantly large separation distance between qubits. 

  ρ = (1/2) (|0102〉 + |1112〉) (〈0102| + 〈1112|) 

Maximally entangled composite system state: 
• ρ

i
 = Tr

j
(ρ) = I/2,     i, j = 1, 2 

• Relative to subsystem decomposition. 

Quantum entanglement non-locality.  Occurs when the 
observables of interest exhibit distant correlations that 
violate a Bell inequality. 

1.  Two Types of Non-Locality 
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(1) is a violation of localization. 

(2) is consistent with localization. 

Are there circumstances in which topological non-
locality entails quantum entanglement non-locality?

2.  Can Top. Non-Locality ⇒ Quant. Ent. Non-Locality? 

(2)  Quantum entanglement non-locality.  Occurs when the 
observables of interest exhibit distant correlations that 
violate a Bell inequality. 

(1)  Topological non-locality.  Occurs when the observables 
of interest are, or encoded in, topological properties. 
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Topological Quantum Order (ℓ-TQO)   (Bravyi, et al. 2006) 

An n-partite state ψ1∈H(n) has ℓ-TQO iff there is another state 
ψ2 orthogonal to it such that, for any ℓ-local operator O

loc
, 

(i)  〈ψ1|Oloc
|ψ2〉 = 0, and 

(ii)  〈ψ1|Oloc
|ψ1〉 = 〈ψ2|Oloc

|ψ2〉. 

2.  Can Top. Non-Locality ⇒ Quant. Ent. Non-Locality? 

•  ℓ-TQO states are "locally 
indistinguishable". 

Topological non-
locality, perhaps... 

•  ℓ-TQO states are maximally 
entangled with respect to 
H(n)=H(ℓ)⊗H(n−ℓ).   (Preskill 1999) 

Quantum 
entanglement 
non-locality! 

A possible link?

Suggestive but not definitive! 

does the same thing to both 

can't map one into the other 
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Goal:  To perform operations on qubits that are immune to 
environmental "noise". 

A stronger link:  Intrinsic Topological Order (ITO)! 

Proposal: 

• Use 2-dim composite system 
that exhibits low-energy 
quasiparticle excitations that 
obey fractional stats. 

• Represent operations on 
qubits by braiding operations 

on quasiparticles. 

• In 2-dim, braids are topolo-
gical invariants:  immune to 
local perturbations! 

Simon (2010) 

2.  Can Top. Non-Locality ⇒ Quant. Ent. Non-Locality? 
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Paradigm Example:  A fractional quantum Hall (FQH) system. 

A stronger link:  Intrinsic Topological Order (ITO)! 

• 2-dim conductor in external 
magnetic field B. 

• At low temps, longitudinal 
resistance vanishes, and 
transverse (Hall) resistance 
becomes quantized. 

• Prediction:  Low-energy 
anyonic excitations. 

• Other characteristics: 
-  Topology-dependent ground 

state degeneracy. 
-  ℓ-TQO ground states. 
-  Finite energy gap. 

2.  Can Top. Non-Locality ⇒ Quant. Ent. Non-Locality? 
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Intrinsic Topological Order (ITO)   (e.g., Wen 2013) 

A physical system possesses ITO just when: 

(a)  It exhibits a topology-dependent ground state degeneracy. 

(b)  It exhibits anyonic low-energy excitations. 

(c)  Its grounds states exhibit ℓ-TQO. 

(d)  Its ground states exhibit a finite energy gap. 

But:  (d) entails ground state correlations decay exponentially!

A stronger link?

2.  Can Top. Non-Locality ⇒ Quant. Ent. Non-Locality? 

Topological non-
locality, definitely! •  (a) & (b) are topological properties. 

•  (a) & (b) entail (c)! 
 (Kitaev 2003; Wen & Niu 1990) 

Quantum entangle-
ment non-locality! 
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Exponential Clustering Theorem   (Nachtergaele & Sims 2006) 

Let ψ be a ground state with gap Δ of a reasonably local, non-
relativistic Hamiltonian, and let A

X
, B

Y
 be local observables 

with support on disjoint sets X, Y.  Then 

 |〈ψ|A
X
B

Y
|ψ〉 − 〈ψ|A

X
|ψ〉〈ψ|B

Y
|ψ〉| ≤ C(Δ)e−µdist(X,Y)  

•  Implication:  ITO ground states approximate product 
states across sufficiently separated sets of lattice sites. 

•  Apparent Conundrum: 
Where did the quantum entanglement non-locality go?

•  Obvious Response: 
It was never there to begin with!

2.  Can Top. Non-Locality ⇒ Quant. Ent. Non-Locality? 
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• Not So Obvious Response: 
It's associated with "hidden long-range correlations"...

"In FQH systems, the correlation of any local operators are 
short ranged.  This seems to imply that FQH states are 
'short sighted' and they cannot know the topology of space... 
However, the fact that ground-state degeneracy does depend 
on the topology of space implies that FQH states are not 
short sighted... So, despite the short-range correlations of 
any local operators, the FQH states must contain certain 
hidden long-range correlation[s]."   (Chen, Gu, and Wen 2010)  

•  In other words:  "Hidden long-range correlations" are required 
to explain the topology-dependent degeneracy of ITO ground 
states, in the absence of an explanation underwritten by 

ground state correlations between local observables. 

2.  Can Top. Non-Locality ⇒ Quant. Ent. Non-Locality? 
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"Since a direct-product state is a state with trivial topological order 
[ITO], we see that a state with a short-range entanglement also has 
trivial topological order.  This leads us to conclude that a nontrivial 
topological order is related to long-range entanglement."   (CGW 2010) 

Short-range/long-range entanglement.  A non-product state ψ is short-

range entangled iff ψ=Uψprod, where U is a local unitary evolution, and 
ψprod is a product state.  Otherwise, ψ is long-range entangled. 

3.  ITO and Long-Range Entanglement 

Claim:  ITO ground states are "long-range entangled".   (CGW 2010) 

Lemma.  Two gapped ground states ψ1, ψ2 
are in the same quantum phase iff ψ1 = Uψ2, 
where U is a local unitary evolution. 

Distinct ITO systems 
are in distinct 
quantum phases. 



CGW's Argument, Reconstructed 
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(ψ is an ITO ground state) ⇒ (ψ is not SRE) 
Granting Premise 3:

(ψ is LRE) 

3.  ITO and Long-Range Entanglement 

"...we see that a 
state with a short-
range entanglement 
also has trivial 
topological order." 

4.  Thus, an SRE gapped ground state w.r.t. an 
ℓ× (n−ℓ) decomp cannot be an ITO ground state. 

"Since a direct-
product state is a 
state with trivial 
topological order 
[ITO]..." 

1.  An n-partite product state w.r.t. an ℓ× (n−ℓ) 
decomp does not have ℓ-TQO, hence it is not an 
ITO ground state.  (Preskill 1999 & Def. of ITO.) 

2.  An SRE gapped ground state and a product gapped 
ground state belong to the same quantum phase.  
(Def. of SRE & Lemma.) 

3.  If two ground states are in the same quantum phase, 
then if one is not an ITO ground state, neither is 
the other.  (Assump.) 
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Concerns 

(i)  What characterizes LRE correlations? 

•  An ITO ground state cannot exhibit distant correlations between 
topologically non-local observables. 

- Topologically non-local observables are metric-indepedent.

•  An ITO ground state cannot exhibit distant correlations between 
local observables that violate a Bell inequality. 

- Exponential Clustering Theorem rules this out.

What's left?

3.  ITO and Long-Range Entanglement 
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Concerns 

(ii)  Ambiguity of entanglement. 

•  Regardless:  Does it exhibit quantum entanglement non-locality? 

•  An FQH Hilbert space can be decomposed in empirically 
indistinguishable ways: 

- electron subsystems
- composite fermion subsystems
- composite boson subsystems

Which is the "physical" 
decomposition with respect to 
which we should define LRE? 

•  An LRE state fails to be a product state in a particular way. 

- Hence an LRE state exhibits correlations under particular conditions.

3.  ITO and Long-Range Entanglement 
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(iii) Is LRE necessary to understand ITO systems? 

•  Clustering theorem entails ITO ground state correlations 
between local observables decay exponentially. 

- So:  An explanation of the topology-dependent ground state degeneracy 
of an ITO system in terms of correlated local observables is problematic.

But:  Why should we require such an explanation?

•  Diagnosis:  Assumption that an explanation of a topological 
property must take the form of a localized mechanistic 
(although perhaps non-causal) explanation. 

- LRE as microphysical mechanism underlying ITO.   (Wen 2013)

Why can't a mathematical/structural explanation suffice?

Concerns 

3.  ITO and Long-Range Entanglement 
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Localized mechanistic explanation: 

Appeal to a microphysical mechanism in the form of a collection 
of entities and activities: 
- Electrons in long-range entangled states.

Structural explanation: 

Appeal to the mathematical structure of a theory as a constraint 
on admissible phenomena: 
- Non-simply connected lattice space places constraints on 

kinematically possible states that an ITO system can be in.

Explanandum:  Topology-dependent ground state degeneracy.

3.  ITO and Long-Range Entanglement 
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Conclusion 

• Two distinct types of non-locality are claimed to be 
present in intrinsic topologically ordered systems: 

- Topological non-locality

- Quantum entanglement non-locality

• Topological non-locality is certainly exhibited. 

• Quantum entanglement non-locality is less clear. 

- Long-range entanglement doesn't necessarily entail it.

- Long-range entanglement isn't necessary to account for 
the topological properties of ITO systems.



References 

• Bravyi, Hastings, & Verstraete (2006) 'Lieb-Robinson bounds and the generation of 
correlations and topological quantum order', Phys Rev Lett 97, 050401.  

• Chen, Gu, & Wen (2010) 'Local unitary transformation, long-range quantum entanglement, 
wave function renormalization, and topological order', Phys Rev B82, 155138. 

• Kitaev (2003) 'Fault-tolerant quantum computation by anyons', Ann Phys 303, 2. 

• Nachtergaele & Sims (2006) 'Lieb-Robinson Bounds and the Exponential Clustering 
Theorem', Comm Math Phys 265, 119.   

• Preskill (1999) Lecture Notes on QECCs <http://www.theory.caltech.edu/people/preskill/
ph229/notes/chap7.pdf>. 

• Simon, S. (2010) 'Quantum computing with a twist', Physics World, September 2010, 35. 

• Wen (2013) 'Topological order:  From long-range entangled quantum matter to a unified 
origin of light and electrons', ISRN Condensed Matter Physics 2013, 1. 

• Wen & Niu (1990) 'Ground-state degeneracy of the fractional quantum Hall states in the 
presence of a random potential and on high-genus Riemann surfaces', Phy Rev B41, 9377. 


