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• Relativistic quantum field theory (RQFT) = A QFT
invariant under the symmetries of a Lorentzian spacetime.

• Non-relativistic quantum field theory (NQFT) = A
QFT invariant under the symmetries of a classical
spacetime.

1.  NQFTs and Particles1.  NQFTs and Particles



• gab - pseudo-Riemannian metric with Lorentzian signature (1, 3).

• ∇agbc = 0 for unique ∇a   (compatibility)

Ex. 1:  Minkowski spacetime (spatiotemporally flat):  Ra
bcd = 0.

1.  NQFTs and Particles1.  NQFTs and Particles
Arena for RQFTs:  Lorentzian spacetime (M, gab).

 Symmetry group generated by £xgab = 0.  (Poincaré group)

Any O and O' disagree on:
•Time interval between any two events.
• Spatial interval between any two events.O

surfaces of simultaneity

O'

 No unique way to separate time from space:



Ex. 2:  Vacuum Einstein spacetime (Ricci flat):  Rab = 0.

• gab - pseudo-Riemannian metric with Lorentzian signature (1, 3).

• ∇agbc = 0 for unique ∇a   (compatibility)

1.  NQFTs and Particles1.  NQFTs and Particles

Comparison:

• Different metrical structure, different curvature, same metric signature
(i.e., "in the small", isomorphic to Minkowski spacetime).

• Different types of RQFTs, in flat (Minkowski) and curved Lorentzian
spacetimes.

Arena for RQFTs:  Lorentzian spacetime (M, gab).

Ex. 1:  Minkowski spacetime (spatiotemporally flat):  Ra
bcd = 0.



• hab, tab - degenerate metrics with signatures (0, 1, 1, 1) and (1, 0, 0, 0).

• habtab = 0   (orthogonality)

• ∇chab = 0 = ∇ctab   (compatibility)  ⇒  fails to uniquely determine ∇a

1.  NQFTs and Particles1.  NQFTs and Particles
Arena for NQFTs:  Classical spacetime (M, hab, tab, ∇a).

Any O and O' agree on:
• Time interval between any two events.
• Spatial interval between any two

simultaneous events.

O O'

• Unique way exists to separate time from space:

• Symmetry group generated by £xhab = £xtab = 0.



• hab, tab - degenerate metrics with signatures (0, 1, 1, 1) and (1, 0, 0, 0).

• habtab = 0   (orthogonality)

• ∇chab = 0 = ∇ctab   (compatibility)  ⇒  fails to uniquely determine ∇a

Ex. 1:  Neo-Newtonian spacetime (spatiotemporally flat):  Ra
bcd = 0.

1.  NQFTs and Particles1.  NQFTs and Particles

Ex. 2:  Maxwellian spacetime (rotationally flat):  Rab
cd = 0.

Comparison:

• Same metrical structure, different curvature.

• Different types of NQFTs, in flat (Neo-Newtonian) and curved classical
spacetimes.

Arena for NQFTs:  Classical spacetime (M, hab, tab, ∇a).

 Symmetry group generated by £xhab = £xtab = £xΓa
bc = 0.  (Galilei group)

 Symmetry group generated by £xhab = £xtab = £xΓab
c = 0.  (Maxwell group)



Received View on Particles:

(A) The QFT must admit a Fock space formulation in which local number
operators appear that can be interpreted as acting on a state of the
system associated with a bounded region of spacetime and returning
the number of particles in that region.

1.  NQFTs and Particles1.  NQFTs and Particles

(B) The QFT must admit a unique Fock space formulation in which a total
number operator appears that can be interpreted as acting on a state
of the system and returning the total number of particles in that state.

(Arageorgis, Earman, Ruetsche 2003; Halvorson
2007; Halvorson and Clifton 2002; Fraser 2008)

Necessary conditions for a particle interpretation:



Against (B) in RQFTs:

• Problem of Privilege:  RQFTs admit unitarily inequivalent Fock space
representations of their CCRs.

• Minkowski spacetime exemption?  Kay (1979):  Minkowski quantization is
unique up to unitary equivalence.

• But:  The Unruh Effect (in one guise) says:  "No!"  (at least to some authors).

• In any event:  Haag's Theorem says "No!" for realistic (interacting) RQFTs.

Claim 1: Conditions (A) and (B) fail in RQFTs.

1.  NQFTs and Particles1.  NQFTs and Particles

Haag's Theorem ⇒
Representations of the CCRs for both a
non-interacting and an interacting
RQFT cannot be constructed so that they
are unitarily equivalent at a given time.

• Free particle total number operators cannot be used in interacting RQFTs.

• No consistent method for constructing "interacting" total number operators.



1.  NQFTs and Particles1.  NQFTs and Particles

Against (A) in RQFTs:

• Reeh-Schlieder theorem secures (i) for Minkowski spacetime.

• Structure of Minkowski spacetime secures (ii).

• RQFTs satisfy (iii).

• Thus:  Annihilation operators, hence number operators, cannot be defined in A
for RQFTs in Minkowski spacetime.

Claim 1: Conditions (A) and (B) fail in RQFTs.

(i) the vacuum state is cyclic for A ("local cyclicity");
(ii) O has non-trivial causal complement;
(iii) relativistic local commutativity holds;

then the vacuum state is separating for A.

• Separability Corollary (Streater & Wightman 2000):  Let A be a local algebra of
operators associated with a bounded region O of spacetime.  If

For any A ∈ A, if AΩ = 0,
then A = 0.



1.  NQFTs and Particles1.  NQFTs and Particles

To what extent does the Separability Corollary hold for RQFTs in Lorentzian
spacetimes in general?

As soon as a classical field satisfies a certain hyperbolic partial differential
equation, a state over the field algebra of the quantized theory, which is a
ground- or KMS-state with respect to the group of time translations, has the
Reeh-Schlieder property [i.e., local cyclicity].  (Strohmeier 2000, pg. 106.)

• Local cyclicity holds for RQFTs in ultrastatic and stationary Lorentzian
spacetimes (Verch 1993, Bar 2000, Strohmeier 1999, 2000).

• Is local cyclicity a generic feature of globally hyperbolic Lorentzian spacetimes?

- Global hyperbolicity is not a necessary condition for the existence of an RQFT
in a Lorentzian spacetime.  (Fewster and Higuchi 1996.)

• If so, then local cyclicity is not a generic feature of RQFTs in Lorentzian
spacetimes:



1.  NQFTs and Particles1.  NQFTs and Particles

To what extent does the Separability Corollary hold for RQFTs in Lorentzian
spacetimes in general?

As soon as a classical field satisfies a certain hyperbolic partial differential
equation, a state over the field algebra of the quantized theory, which is a
ground- or KMS-state with respect to the group of time translations, has the
Reeh-Schlieder property [i.e., local cyclicity].  (Strohmeier 2000, pg. 106.)

• Local cyclicity holds for RQFTs in ultrastatic and stationary Lorentzian
spacetimes (Verch 1993, Bar 2000, Strohmeier 1999, 2000).

• Is local cyclicity a generic feature of states analytic in the energy?

- Vacuum states for NQFTs are analytic but not locally cyclic for local algebras
defined on spatial regions.

• Perhaps for RQFTs in Lorentzian spacetimes, but not for NQFTs in classical
spacetimes:



Claim 2: Conditions (A) and (B) hold in NQFTs due to the absolute
temporal metric of classical spacetimes.

1.  NQFTs and Particles1.  NQFTs and Particles

Condition (A) in NQFTs:

• Non-relativistic local commutivity ⇒ distinction between spatiotemporal local
algebras and spatial local algebras.

• For spatiotemporal local algebra:

- Requardt (1982) ⇒ Vacuum is locally cyclic.
- But:  Absolute temporal structure ⇒ Causal complement of O is trivial.
- Hence:  Vacuum is not separating.

• For spatial local algebras:

- No local cyclicity result.
- Hence:  Vacuum is not separating.



1.  NQFTs and Particles1.  NQFTs and Particles
Why does local cyclicity fail for local algebras associated with spatial regions of a
classical spacetime?

• Case 1:  Hyperbolic PDE in Lorentzian spacetime.

• Let S be an open spatial region of spacetime.

- If φ(t, x) vanishes on S, then it vanishes in D(S).

- D(S) has non-zero temporal extent.
- If φ vanishes on S, then it vanishes in an open set in time, and thus

everywhere (Edge of the Wedge theorem).

• Case 2:  Parabolic PDE in classical spacetime.
- D(S) has zero temporal extent.
- If φ vanishes on S, then it need not vanish in an open set in time.
- Thus:  If φ ≠ 0, then it can vanish on S.  Anti-locality fails for spatial regions.

- φ(t, x) is a boundary value of a holomorphic function.

• Let φ(t, x) be a positive-frequency solution to a well-posed PDE.

Segal and Goodman (1965)

- Thus:  If φ ≠ 0, then it cannot vanish on S.  Anti-locality for spatial regions.



Condition (B) in NQFTs:

1.  NQFTs and Particles1.  NQFTs and Particles

• No Problem of Privilege:  The absolute temporal metric guarantees a unique
global time function on the spacetime, and this guarantees a unique means to
construct a one-particle structure over the classical phase space (barring
topological mutants).

Claim 2: Conditions (A) and (B) hold in NQFTs due to the absolute
temporal metric of classical spacetimes.



1.  NQFTs and Particles1.  NQFTs and Particles

General Moral:

To the extent that Conditions (A) and (B) require the existence of an
absolute temporal metric, they are informed by a non-relativistic concept
of time, and thus are inappropriate in informing interpretations of RQFTs.



2.  Newtonian Quantum Gravity2.  Newtonian Quantum Gravity
I. Theories of Newtonian Gravity (NG) with a grav. potential field Φ.

(M, hab, tab, ∇a, Φ, ρ)

habtab = 0 = ∇chab = ∇ctab Orthogonality/compatibility

hab∇a∇bΦ = 4πGρ Poisson equation

ξa∇aξb = −hab∇aΦ Equation of motion

Ex. 1:  Neo-Newtonian NG
Ra

bcd = 0

Ex. 2:  "Island Universe" Neo-Newtonian NG
Ra

bcd = 0,   Φ → 0 as xi → ∞

Ex. 3:  Maxwellian NG
Rab

cd = 0



Ex. 3:  Strong NCG (recovers Poisson equ.)
R[a

[b
c]

d] = 0,   Rab
cd = 0

2.  Newtonian Quantum Gravity2.  Newtonian Quantum Gravity
II. Theories of Newton-Cartan Gravity (NCG) that subsume Φ into

connection.  (M, hab, tab, ∇a, ρ)

habtab = 0 = ∇chab = ∇atab Orthogonality/compatibility

Rab = 4πGρtab Generalized Poisson equation

ξa∇aξb = 0 Equation of motion

Ex. 2:  Asymptotically spatially flat weak NCG (recovers Poisson equ.)
R[a

[b
c]

d] = 0,    Rabcd = 0 at spatial infinity

Ex. 1:  Weak NCG (1/c → 0 limit of GR)
R[a

[b
c]

d] = 0



2.  Newtonian Quantum Gravity2.  Newtonian Quantum Gravity

Newtonian Quantum Gravity (NQG)

• Interacting (extended) Maxwell-invariant QFT of gravity in curved
classical spacetime ("strong Newton-Cartan" spacetime).

• Satisfies Conditions (A) and (B).

• Gravitational degrees of freedom are dynamic:  Compare with RQFTs in
curved Lorentzian spacetimes.

• Gravitational degrees of freedom are quantized:  Compare with semi-
classical quantum gravity.

Strong NCG

• Christian (1997):  constrained Hamiltonian system, reduced phase space.

• Unique one-parameter family of time evolution maps ⇒ Unique Fock
space quantization



3.  Intertheoretic Relations3.  Intertheoretic Relations

•

•

•

••

•

•

•SR

CM

NCG NQG

GQM

RQFT

GR QG



1/c

G

Christian (1997)

1/c → 0 limit
• Contraction of Poincaré Group?  (Bacry & Levy-Leblond 1968)

• SR → CM, RQFT → GQM:  Depends on dynamics.  (Brown & Holland 2003)

• GR → NCG:  No.



G → 0 limit:  Ricci vs Riemann flatness

3.  Intertheoretic Relations3.  Intertheoretic Relations

• GR → SR:  Vacuum Einstein spacetime vs Minkowski spacetime

• NCG → CM, NQG → GQM:  Ricc-flat classical spacetime vs Neo-Newtonian
spacetime

•

•

•

••

•

•

•SR

CM

NCG NQG

GQM

RQFT

GR QG



1/c

G

Christian (1997)



3.  Intertheoretic Relations3.  Intertheoretic Relations

 → 0 limit:  Problem of Privilege
• RQFT → SR:  No unique (up to unitary equivalence) representation of CCRs.

• GQM → CM, NQG → NCG:  No problem (barring topological mutants).

•

•

•

••

•

•

•SR

CM

NCG NQG

GQM

RQFT

GR QG



1/c

G

Christian (1997)



3.  Intertheoretic Relations3.  Intertheoretic Relations

Structural Problem

• What is the referant of "GQM"?  Where do NQFTs fit in?

Proposal:  Add another axis for N = degrees of freedom

• Let "NQM" refer to non-relativistic finite-dimensional quantum theories of
particle dynamics.

• Consider NQMs to be the N → 0 limit of NQFTs.

•

•

•

••

•

•

•SR

CM

NCG NQG

GQM

RQFT

GR QG



1/c

G

Christian (1997)



• Particle vs field theories (N axis).

• Relativistic vs non-relativitic theories (1/c axis).

• Gravitational vs non-gravitational theories (G axis).

• Classical vs quantum theories ( axis).

3.  Intertheoretic Relations3.  Intertheoretic Relations

•

•

•

••

•

•

•
RCM

NCM

NCFT NQFT

NQM

RQM

RCFT RQFT



1/c

N



Turning off G in field theories:

3.  Intertheoretic Relations3.  Intertheoretic Relations

•

•

•

••

•

•

•
RCM

NCM

NCFT NQFT

NQM

RQM

RCFT RQFT



1/c

N

• Non-relativistic classical field theory of gravity → NCFT

• Asymptotically spatially flat NCG = "Island Universe" Neo-Newtonian NG

• G → 0:  Galilei-invariant classical field theory in Neo-Newtonian spacetime



3.  Intertheoretic Relations3.  Intertheoretic Relations

•

•

•

••

•

•

•
RCM

NCM

NCFT NQFT

NQM

RQM

RCFT RQFT



1/c

N

Turning off G in field theories:
• Relativistic classical field theory of gravity → RCFT

• GR

• G → 0:  Relativistic classical field theory in Ricci-flat Lorentzian spacetime



3.  Intertheoretic Relations3.  Intertheoretic Relations

•

•

•

••

•

•

•
RCM

NCM

NCFT NQFT

NQM

RQM

RCFT RQFT



1/c

N

Turning off G in field theories:
• Non-relativistic quantum field theory of gravity → NQFT

• NQG

• G → 0:  NQFT in Ricci-flat classical spacetime



3.  Intertheoretic Relations3.  Intertheoretic Relations

Turning on quantum gravity:
• Quantizing GR.

•

•

•

•

•

NQG

RQMG

RQFT

GR QG



3.  Intertheoretic Relations3.  Intertheoretic Relations

Turning on quantum gravity:
• Quantizing GR.

• Turning on gravity in an RQFT.

•

•

•

•

•

NQG

RQMG

RQFT

GR QG



3.  Intertheoretic Relations3.  Intertheoretic Relations

Turning on quantum gravity:
• Quantizing GR.

• Turning on gravity in an RQFT.

• Relativizing NQG.

•

•

•

•

•

NQG

RQMG

RQFT

GR QG



3.  Intertheoretic Relations3.  Intertheoretic Relations

Turning on quantum gravity:
• Quantizing GR.

• Turning on gravity in an RQFT.

• Relativizing NQG.

• Taking the "thermodynamic limit" of an RQMG.

•

•

•

•

•

NQG

RQMG

RQFT

GR QG




