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1. NQFTs and Particles

e Relativistic quantum field theory (RQFT) = A QFT
invariant under the symmetries of a Lorentzian spacetime.

e Non-relativistic quantum field theory (NQFT) = A

QFT invariant under the symmetries of a classical
spacetime.



1. NQFTs and Particles
Arena for RQFTs: Lorentzian spacetime (M, g,,).

e g, - pseudo-Riemannian metric with Lorentzian signature (1, 3).

e V., g,, = 0 for unique V_, (compatibility)

FEx. 1: Minkowski spacetime (spatiotemporally flat): R%,., = 0.

o No unique way to separate time from space:

-~

_____

surfaces of simultaneity

Any O and O' disagree on:
e Time interval between any two events.
O O’ e Spatial interval between any two events.

o Symmetry group generated by £ g, = 0. (Poincaré group)



1. NQFTs and Particles
Arena for RQFTs: Lorentzian spacetime (M, g,,).

e g, - pseudo-Riemannian metric with Lorentzian signature (1, 3).

e V., g,, = 0 for unique V_, (compatibility)

FEx. 1: Minkowski spacetime (spatiotemporally flat): R%,., = 0.

Ex. 2: Vacuum Einstein spacetime (Ricci flat): R, = 0.

Comparison:

o Different metrical structure, different curvature, same metric signature
(i.e., "in the small", isomorphic to Minkowski spacetime).

e Different types of RQFTs, in flat (Minkowski) and curved Lorentzian
spacetimes.



1. NQFTs and Particles
Arena for NQFTs: Classical spacetime (M, h, t,, V).
e he  t , - degenerate metrics with signatures (0, 1, 1, 1) and (1, 0, 0, 0).
e h’t , =0 (orthogonality)
e Vht=0=V_t, (compatibility) = fails to uniquely determine V

a

e Unique way exists to separate time from space:

//
/ Any O and O' agree on:
e Time interval between any two events.
/ e Spatial interval between any two
/ simultaneous events.

e Symmetry group generated by £ h% = £ ¢, = 0.



1. NQFTs and Particles

Arena for NQFTs: Classical spacetime (M, h*, t,, V).
e h t, - degenerate metrics with signatures (0, 1, 1, 1) and (1, 0, 0, 0).

o h't , =0 (orthogonality)
e V.ht=0=V_, (compatibility) = fails to uniquely determine V

Ex. 1: Neo-Newtonian spacetime (spatiotemporally flat): R¢,., = 0.

o Symmetry group generated by £ h, = £t, = £ = 0. (Galilei group)

Ezx. 2: Maxwellian spacetime (rotationally flat): R®_ , = 0.

o Symmetry group generated by £ h, = £, =L£I'% =0. (Mazxwell group)

Comparison:

e Same metrical structure, different curvature.

e Different types of NQFTs, in flat (Neo-Newtonian) and curved classical

spacetimes.



1. NQFTs and Particles

Recetved View on Particles: (Arageorgis, Earman, Ruetsche 2003; Halvorson
2007; Halvorson and Clifton 2002; Fraser 2008)

Necessary conditions for a particle interpretation:

(A) The QFT must admit a Fock space formulation in which local number
operators appear that can be interpreted as acting on a state of the
system associated with a bounded region of spacetime and returning

the number of particles in that region.

(B) The QFT must admit a unique Fock space formulation in which a total
number operator appears that can be interpreted as acting on a state

of the system and returning the total number of particles in that state.



1. NQFTs and Particles
Claim 1: Conditions (A) and (B) fail in RQFTs.
Against (B) in RQFTs:

e Problem of Privilege: RQFTs admit unitarily inequivalent Fock space

representations of their CCRs.

e Minkowski spacetime exemption? Kay (1979): Minkowski quantization is
unique up to unitary equivalence.

e But: The Unruh Effect (in one guise) says: "No!" (at least to some authors).

e In any event: Haag's Theorem says "No!" for realistic (interacting) RQFTs.

rRepresentations of the CCRs for both a )
non-interacting and an interacting
RQFT cannot be constructed so that they
_are unitarily equivalent at a given time.

Haag's Theorem —>

e F'ree particle total number operators cannot be used in interacting RQFT's.

e No consistent method for constructing "interacting" total number operators.



1. NQFTs and Particles
Claim 1: Conditions (A) and (B) fail in RQFTs.
Against (A) in RQFTs:

o Separability Corollary (Streater & Wightman 2000): Let A be a local algebra of
operators associated with a bounded region O of spacetime. If

(i) the vacuum state is cyclic for A ("local cyclicity");
(ii) O has non-trivial causal complement;

(iii) relativistic local commutativity holds; e
. . | Forany A € A, if AQ =0, !
then the vacuum state is separating for A. — =" then 4 — 0. / |

______________________________________

e Reeh-Schlieder theorem secures (i) for Minkowski spacetime.
e Structure of Minkowski spacetime secures (ii).
e RQFTs satisfy (iii).

e Thus: Annihilation operators, hence number operators, cannot be defined in A
for RQFTs in Minkowski spacetime.




1. NQFTs and Particles

To what extent does the Separability Corollary hold for RQFTs in Lorentzian
spacetimes in general?

e Local cyclicity holds for RQFT's in ultrastatic and stationary Lorentzian
spacetimes (Verch 1993, Bar 2000, Strohmeier 1999, 2000).

As soon as a classical field satisfies a certain hyperbolic partial differential
equation, a state over the field algebra of the quantized theory, which is a
ground- or KMS-state with respect to the group of time translations, has the
Reeh-Schlieder property [i.e., local cyclicity]. (Strohmeier 2000, pg. 106.)

e Is local cyclicity a generic feature of globally hyperbolic Lorentzian spacetimes?

e If so, then local cyclicity is not a generic feature of RQFTs in Lorentzian
spacetimes:

- Global hyperbolicity is not a necessary condition for the existence of an RQFT
in a Lorentzian spacetime. (Fewster and Higuchi 1996.)



1. NQFTs and Particles

To what extent does the Separability Corollary hold for RQFTs in Lorentzian
spacetimes in general?

e Local cyclicity holds for RQFT's in ultrastatic and stationary Lorentzian
spacetimes (Verch 1993, Bar 2000, Strohmeier 1999, 2000).

As soon as a classical field satisfies a certain hyperbolic partial differential
equation, a state over the field algebra of the quantized theory, which is a
ground- or KMS-state with respect to the group of time translations, has the
Reeh-Schlieder property [i.e., local cyclicity]. (Strohmeier 2000, pg. 106.)

e Is local cyclicity a generic feature of states analytic in the energy?

e Perhaps for RQFTs in Lorentzian spacetimes, but not for NQFT's in classical
spacetimes:

- Vacuum states for NQFT's are analytic but not locally cyclic for local algebras
defined on spatial regions.



1. NQFTs and Particles
Claim 2: Conditions (A) and (B) hold in NQFTs due to the absolute

temporal metric of classical spacetimes.

Condition (A) in NQFTs:

e Non-relativistic local commutivity = distinction between spatiotemporal local

algebras and spatial local algebras.

e For spatiotemporal local algebra:

- Requardt (1982) = Vacuum is locally cyclic.
- But: Absolute temporal structure = Causal complement of O is trivial.

- Hence: Vacuum is not separating.

e For spatial local algebras:

- No local cyclicity result.
- Hence: Vacuum is not separating.



1. NQFTs and Particles

Why does local cyclicity fail for local algebras associated with spatial regions of a
classical spacetime?

e Let ¢(t, x) be a positive-frequency solution to a well-posed PDE.

- ¢(t, x) is a boundary value of a holomorphic function.

e Let S be an open spatial region of spacetime.
- If ¢(t, x) vanishes on S, then it vanishes in D(S).

e (lase 1: Hyperbolic PDE in Lorentzian spacetime.
- D(S) has non-zero temporal extent.
- If ¢ vanishes on &, then it vanishes in an open set in time, and thus
everywhere (Edge of the Wedge theorem).
- Thus: If ¢ = 0, then it cannot vanish on S. Anti-locality for spatial regions.
Segal and Goodman (1965)
e (lase 2: Parabolic PDE in classical spacetime.
- D(S) has zero temporal extent.
- If ¢ vanishes on &, then it need not vanish in an open set in time.

- Thus: If ¢ = 0, then it can vanish on S. Anti-locality fails for spatial regions.



1. NQFTs and Particles
Claim 2: Conditions (A) and (B) hold in NQFTs due to the absolute

temporal metric of classical spacetimes.
Condition (B) in NQFTs:

e No Problem of Privilege: The absolute temporal metric guarantees a unique
global time function on the spacetime, and this guarantees a unique means to
construct a one-particle structure over the classical phase space (barring

topological mutants).




T
: 1. NQFTs and Particles

General Moral:

To the extent that Conditions (A) and (B) require the existence of an
absolute temporal metric, they are informed by a non-relativistic concept
of time, and thus are inappropriate in informing interpretations of RQFTs.




2. Newtonian Quantum Gravity

[. Theories of Newtonian Gravity (NG) with a grav. potential field ®.
(M7 hab, taba vaa (1)7 10)

ht , = 0=V h*=Vt, Orthogonality /compatibility
h*V .V, & = 4rGp Poisson equation
&V &= —h,V o Equation of motion

FEx. 1: Neo-Newtonian NG
Rabcd —

Fx. 2: "Island Universe" Neo-Newtonian NG
RY.,=0, ® -0as2 — o0

Fx. 3: Maxwellian NG
Rabcd —




2. Newtonian Quantum Gravity
II. Theories of Newton-Cartan Gravity (NCG) that subsume ® into
connection. (M, h®, t ., V. p)

ht , =0=V h?*=V_1, Orthogonality /compatibility
R, = 4nGpt,, Generalized Poisson equation
£V £ =0 Equation of motion

Ex. 1: Weak NCG (1/¢ — 0 limit of GR)

Rla = d] —

Ezx. 2: Asymptotically spatially flat weak NCG (recovers Poisson equ.)
Rloyd, =0, Reed = 0 at spatial infinity

FEx. 3: 3 Strong NCG (recovers Poisson equ.)
Rleyd, =0, R,=0



2. Newtonian Quantum Gravity
Strong NCG

e Christian (1997): constrained Hamiltonian system, reduced phase space.

e Unique one-parameter family of time evolution maps = Unique Fock
space quantization

Newtonian Quantum Gravity (NQG)

e Interacting (extended) Maxwell-invariant QFT of gravity in curved
classical spacetime ("strong Newton-Cartan" spacetime).

e Satisfies Conditions (A) and (B).

e Gravitational degrees of freedom are dynamic: Compare with RQFTSs in
curved Lorentzian spacetimes.

e Gravitational degrees of freedom are quantized: Compare with semi-
classical quantum gravity.



L 3. Intertheoretic Relations

G
NCG NQG Christian (1997)
GR ____\:\_'I QG
CM GQM | |
R \RQFT
1/c
1/c — 0 limat

e Contraction of Poincaré Group? (Bacry & Levy-Leblond 1968)
e SR — CM, RQFT — GQM: Depends on dynamics. (Brown & Holland 2003)

¢ GR — NCG: No.




3. Intertheoretic Relations

G
NCG NQG Christian (1997)
GR ____\:\'I QG
CM GQM | |
\ \RQFT
1/c

G — 0 limit: Ricct vs Riemann flatness

e GR — SR: Vacuum Einstein spacetime vs Minkowski spacetime

e NCG — CM, NQG — GQM: Ricc-flat classical spacetime vs Neo-Newtonian
spacetime



3. Intertheoretic Relations

G
NCG NQG Christian (1997)
GR ____\:\'I QG
CM GQM | |
\ \RQFT
1/c

h — 0 limit: Problem of Privilege

e RQFT — SR: No unique (up to unitary equivalence) representation of CCRs.
e GQM — CM, NQG — NCG: No problem (barring topological mutants).



3. Intertheoretic Relations

G
NCG NQG Christian (1997)
GR ____\:\'I QG
CM GQM | |
\ \RQFT
1/c

Structural Problem
e What is the referant of "GQM"? Where do NQFT's fit in?

Proposal: Add another axis for N = degrees of freedom

o Let "NQM" refer to non-relativistic finite-dimensional quantum theories of
particle dynamics.

e Consider NQMs to be the N — 0 limit of NQFTs.



L 3. Intertheoretic Relations

N

NCFT

NQFT

NCM

RCEFT

NQM

RQFT

RCM

1/c

e Particle vs field theories (N axis).

e Classical vs quantum theories (h axis).

RQM

e Relativistic vs non-relativitic theories (1/¢ axis).

e Gravitational vs non-gravitational theories (G axis).

Y




3. Intertheoretic Relations

N
NCFT NQFT
RCET RQFT
NCM NQM L
RCM RQM
1/c

Turning off G in field theories:
e Non-relativistic classical field theory of gravity — NCFT

e Asymptotically spatially flat NCG = "Island Universe" Neo-Newtonian NG

e (G — 0: Galilei-invariant classical field theory in Neo-Newtonian spacetime




L 3. Intertheoretic Relations

N
NCFT NQFT
RCFT RQFT
NCM NQM L
RCM RQM
1/c

Turning off G in field theories:
e Relativistic classical field theory of gravity — RCFT

e GR
e (G — 0: Relativistic classical field theory in Ricci-flat Lorentzian spacetime




L 3. Intertheoretic Relations

N
NCFT NQFT
RCET RQFT
NCM NQM L
RCM RQM
1/c

Turning off G in field theories:

e Non-relativistic quantum field theory of gravity — NQFT
e NQG

e G — 0: NQFT in Ricci-flat classical spacetime




L 3. Intertheoretic Relations

GR

Turning on quantum gravity:

e Quantizing GR.

RQFT




L 3. Intertheoretic Relations

CR

Turning on quantum gravity:

e Quantizing GR.

RQFT

e Turning on gravity in an RQFT.




L 3. Intertheoretic Relations

CR

Turning on quantum gravity:

e Quantizing GR.

e Relativizing NQG.

RQFT

e Turning on gravity in an RQFT.




L 3. Intertheoretic Relations

JGR N, QG

RQFT

Turning on quantum gravity:

e Quantizing GR.

e Turning on gravity in an RQFT.

e Relativizing NQG.

e Taking the "thermodynamic limit" of an RQMG.






