17: Sums

1. Sums of Objects

Topics

1. Sums of Objects
2. Sums Involving Terminal Objects
3. Negative Objects

Consider: What does it mean to add 3 and 2 , when 3 and 2 are represented as sets?

Take the elements of the sets
 and "inject" them into a new set S $\bullet \bullet \quad \bullet$ that has as elements all and only all elements of the first two.

- How do we guarantee that S has all and only all elements of the first two in the "external" talk of category theory?
- Require that any map from S to any other object X preserves the "injections".

Definition: A sum of two objects B_{1}, B_{2} is an object S together with a pair of maps $j_{1}: B_{1} \rightarrow S, j_{2}: B_{2} \rightarrow S$, such that, for any object X with maps $f_{1}: B_{1} \rightarrow X, f_{2}: B_{2} \rightarrow X$, there is exactly one map $f: S \rightarrow X$ such that $f_{1}=f \circ j_{1}$ and $f_{2}=f \circ j_{2}$.

Call S, " $B_{1}+B_{2}$ "
j_{1} and j_{2} are the "sum injections".
f is required to do the same thing to the elements of S that f_{1}, f_{2} do.
$\underline{S o}: f$ takes the " B_{1}-elements" of S to X separately from the " B_{2}-elements".

So:

is a sum just when, for every

there is exactly one $X \longleftarrow \quad f$ that makes the pieces "fit together" (i.e., "commute").

Claim: This defines a sum: For any other set X with maps $f_{1}: B_{1} \rightarrow X, f_{2}: B_{2} \rightarrow X$, there is exactly one map $f: S \rightarrow X$ such that $f_{1}=f \circ j_{1}$ and $f=f_{2} \circ j_{2}$.

Proof. Suppose X is any set with maps $f_{1}: B_{1} \rightarrow X, f_{2}: B_{2} \rightarrow X$. Now define a map $f: S \rightarrow X$ in the following way;

$$
f(s)=\left\{\begin{array}{lll}
f_{1}\left(s^{\prime}\right) & \text { if } s=j_{1}\left(s^{\prime}\right) & \text { This guarantees that } f_{1}(s)=f\left(j_{1}(s)\right) \\
f_{2}\left(s^{\prime \prime}\right) & \text { if } s=j_{2}\left(s^{\prime \prime}\right) & \left(\text { or } f_{1}=f \circ j_{1}\right) \\
f_{2}(s)=f\left(j_{2}(s)\right) & \left(\text { or } f_{2}=f \circ j_{2}\right)
\end{array}\right.
$$

Is there only one such f ?
$\underline{\text { Yes! }}$ Because 1. j_{1}, j_{2} are injective (every dot in domain gets only one dot in codomain).
2. $\quad j_{1}, j_{2}$ together are exhaustive of S (no dots in S left over).
3. $\quad j_{1}, j_{2}$ don't overlap in S (no dots in S common to both of them).

Particular case:

Whatever f_{1}, f_{2} do, f has to replicate.

2. Sums Involving Terminal Objects

$\underline{\text { Set case } \mathcal{S}}$

$1+1+1=\bullet \bullet \bullet=" 3 "$ etc...

Graph case $^{\mathfrak{S}}{ }^{\downarrow \downarrow}$

$1=0$
$1+1=0 \quad 0 \quad 0 \quad=2 "$ etc...

But! Also have:

$D=$

Additional "numbers" for arithmetic in $\mathcal{S}^{\downharpoonright: \downarrow}$

2. "Negative" Objects

Question: What is the negative of the number 3?
Answer: The solution to $3+x=0$, or $x=-3$.

Definition: Let A be any object in any category with initial object $\mathbf{0}$. Then the negative of A is the object B such that $A+B=\mathbf{0}$.
$\underline{\text { Recall: }} \quad$ A sum $\mathbf{0}=A+B$ is an object $\mathbf{0}$ together with a pair of maps $j_{1}: A \rightarrow \mathbf{0}, j_{2}: A \rightarrow \mathbf{0}$

such that for any object X with maps $f_{1}: A \rightarrow X, f_{2}: B \rightarrow X$

there is exactly one $X \longleftarrow \quad f \quad \mathbf{0}$ such that $f_{1}=f \circ j_{1}$ and $f_{2}=f \circ j_{2}$.

$f_{2}=f \circ j_{2}$
Note: Only one $f: \mathbf{0} \rightarrow X \quad$ ($\mathbf{0}$ is the initial object)
So: \quad Only one pair $\left(f_{1}, f_{2}\right) \quad$ (since j_{1}, j_{2} are injective)
So: \quad Only one $f_{1}: A \rightarrow X$ and only one $f_{2}: B \rightarrow X$.
So: $\quad A, B$ must both be the initial object, too!
$\underline{\text { Thus; }}$ If $A+B=\mathbf{0}$ in any category, then $A=B=\mathbf{0}$! Only initial objects have negatives.
Similarly: Can prove that if $A \times B=\mathbf{1}$, then $A=B=\mathbf{1}$.

