17: Sums

1. Sums of Objects

<u>Consider</u>: What does it mean to add 3 and 2, when 3 and 2 are represented as sets?

- How do we guarantee that S has all and only all elements of the first two in the "external" talk of category theory?
- Require that any map from S to any other object X preserves the "injections".

Definition: A sum of two objects B_1 , B_2 is an object S together with a pair of maps $j_1 : B_1 \to S$, $j_2 : B_2 \to S$, such that, for any object X with maps $f_1 : B_1 \to X$, $f_2 : B_2 \to X$, there is exactly one map $f : S \to X$ such that $f_1 = f \circ j_1$ and $f_2 = f \circ j_2$.

Call S, " $B_1 + B_2$ " j_1 and j_2 are the "sum injections". f is required to do the same thing to the elements of S that f_1 , f_2 do. <u>So</u>: f takes the " B_1 -elements" of S to X separately from the " B_2 -elements".

Topics

1. Sums of Objects

Negative Objects

Sums Involving Terminal Objects

there is exactly one $X \xleftarrow{f} S$ that makes the pieces "fit together" (*i.e.*, "commute").

<u>Example 1</u>: A sum in \mathcal{S} .

<u>Claim</u>: This defines a sum: For any other set X with maps $f_1 : B_1 \to X, f_2 : B_2 \to X$, there is exactly one map $f : S \to X$ such that $f_1 = f \circ j_1$ and $f = f_2 \circ j_2$.

Proof: Suppose X is any set with maps $f_1: B_1 \to X, f_2: B_2 \to X$. Now define a map $f: S \to X$ in the following way;

$$f(s) = \begin{cases} f_1(s') & \text{if } s = j_1(s') \\ f_2(s'') & \text{if } s = j_2(s'') \end{cases}$$
This guarantees that $f_1(s) = f(j_1(s)) & (\text{or } f_1 = f \circ j_1) \\ f_2(s) = f(j_2(s)) & (\text{or } f_2 = f \circ j_2) \end{cases}$

Is there only *one* such f?

<u>**Yes**</u>! Because 1. j_1, j_2 are *injective* (every dot in domain gets only one dot in codomain).

2. j_1, j_2 together are exhaustive of S (no dots in S left over).

3. j_1, j_2 don't overlap in S (no dots in S common to both of them).

Particular case:

Whatever f_1 , f_2 do, f has to replicate.

2. Sums Involving Terminal Objects

Set case S

recovers arithmetic on the natural numbers $\mathbb N$

etc...

$\underline{\textit{Graph case } \mathcal{S}}^{\downarrow:\downarrow}$

etc...

Additional "numbers" for arithmetic in $\boldsymbol{\mathcal{S}}^{\downarrow:\downarrow}$

2. "Negative" Objects

Question: What is the *negative* of the number 3?

<u>Answer</u>: The solution to 3 + x = 0, or x = -3.

<u>Definition</u>: Let A be any object in any category with initial object **0**. Then the *negative* of A is the object B such that $A + B = \mathbf{0}$.

<u>Recall</u>: A sum $\mathbf{0} = A + B$ is an object $\mathbf{0}$ together with a pair of maps $j_1: A \to \mathbf{0}, j_2: A \to \mathbf{0}$

<u>Thus</u>; If $A + B = \mathbf{0}$ in any category, then $A = B = \mathbf{0}$! Only initial objects have negatives. <u>Similarly</u>: Can prove that if $A \times B = \mathbf{1}$, then $A = B = \mathbf{1}$.