16: Products

1. Products of Objects

<u>Consider</u>: What does it mean to multiply 2 by 3, when 2 and 3 are represented as sets?

Take the set (•) and reproduce it 3 times: "stretch" it over the set ••

Now consider how elements of the "stretched" set relate to elements of the base sets. Organize them in the following way:

Any element of P, say a, represents a pair of elements, a = (4, 1), taken from the base sets B_1 , B_2 . The "projection" map $p_1: P \to B_1$ takes a to 1. $p_1(a) = 1$. The "projection" map $p_2: P \to B_2$ takes a to 4. $p_2(a) = 4$.

The "product" of B_1 and B_2 , then, must be not only the big set P, but *also* these projection maps p_1, p_2 .

Topics

- 1. Products of Objects
- 2. Calculating Products

Definition. A **product** of two objects B_1 , B_2 is an object P together with a pair of maps $p_1 : P \to B_1$ and $p_2 : P \to B_2$, such that, for any object X with maps $f_1 : X \to B_1$, $f_2 : X \to B_2$, there is exactly one map $f : X \to P$ for which $f_1 = p_1 \circ f$ and $f_2 = p_2 \circ f$.

Call $P, "B_1 \times B_2"$

Think of P as consisting of *pairs* of elements (b_1, b_2) , one from B_1 and one from B_2 . The "projection" maps p_1 , p_2 take each element of a given pair to its home.

- <u>So</u>: P is supposed to have this "internal" pair-structure to its elements.
- **<u>But</u>**: We can't directly talk about "internal" elements of an object in category theory! So we need to construct the right external "probe" X that encodes the "internal" pair structure of P.
- **<u>Require</u>**: If some X gets mapped to both B_1 and B_2 , there must be only one way to map it to P; namely, the way that "respects" the P-pairs.

<u>Is this a product?</u> For any other set X with maps $f_1: X \to B_1, f_2: X \to B_2$, there is exactly one map $f: X \to P$ such that $f_1 = p_1 \circ f$ and $f_2 = p_2 \circ f$?

Check for a simple case:

Does this entail there is exactly one $f\colon\ X\to P$ such that $f_1=\,p_1\circ f\,\text{and}\,\,f_2=\,p_2\circ f?$

Check:

1. Require $f_1(x) = p_1(f(x))$ for all x in X .	2. Require $f_2(x) = p_2(f(x))$ for all x in X .
$f_1(\alpha) = 1 = p_1(f(x)) \Rightarrow f(\alpha) = a \text{ or } d.$	$f_2(\alpha) = 4 = p_2(f(x)) \implies f(\alpha) = a \text{ or } b \text{ or } c.$
$f_1(\beta) = 2 = p_1(f(x)) \implies f(\beta) = b \text{ or } e.$	$f_2(\beta) = 4 = p_2(f(x)) \implies f(\beta) = a \text{ or } b \text{ or } c.$
$f_1(\gamma) = 3 = p_1(f(x)) \Rightarrow f(\gamma) = c \text{ or } f.$	$f_2(\gamma) = 5 = p_2(f(x)) \Rightarrow f(\gamma) = d \text{ or } e \text{ or } f.$
$f_1(\delta) = 3 = p_1(f(x)) \Rightarrow f(\delta) = c \text{ or } f.$	$f_2(\delta) = 5 = p_2(f(x)) \Rightarrow f(\delta) = d \text{ or } e \text{ or } f.$

$$\begin{array}{ccc} \underline{So}: & f(\alpha) = a \\ & f(\beta) = b \\ & f(\gamma) = f \\ & f(\delta) = f \end{array} \end{array} \right\} \quad \text{Only one such } f! \text{ (The unique } f \\ \text{ that "respects" the pairs in } P.) \end{array}$$

How about products in \mathcal{S}^{\odot} ?

 $P^{\odot\gamma}$ consists of pairs (a, b), a in A and b in B, such that $\gamma(a, b) = (\alpha(a), \beta(b))!$

$$\begin{split} \gamma(O, A) &= (\alpha(O), \beta(A)) = (C, K) \\ \gamma(C, K) &= (\alpha(C), \beta(K)) = (O, F) \\ \gamma(O, F) &= (\alpha(O), \beta(F)) = (C, A) \\ \gamma(C, A) &= (\alpha(C), \beta(A)) = (O, K) \\ \gamma(O, K) &= (\alpha(O), \beta(K)) = (C, F) \\ \gamma(C, F) &= (\alpha(C), \beta(F)) = (O, A) \end{split}$$

 $\underline{So}: \quad C_2 \times C_3 = C_6!$

Example 3. How about $C_2 \times C_4$?

Note that $P^{\odot\gamma}$ can be re-arranged into:

$$\underline{So}: \quad C_2 \times C_4 = 2C_4$$

2. Calculating Products

Again:

there is exactly one $A \xrightarrow{f} B_1 \times B_2$ such that $f_1 = p_1 \circ f$ and $f_2 = p_2 \circ f$.

Another way to say this:

$$\underbrace{A \to B_1 \times B_2}_{A \to B_1, A \to B_2} \longleftarrow \underbrace{The \ maps \ A \to B_1 \times B_2 \dots}_{\dots \ correspond \ to \ the \ pairs \ of \ maps \ A \to B_1, \ A \to B_2 \dots}_{\dots \ correspond \ to \ the \ pairs \ of \ maps \ A \to B_1, \ A \to B_2 \dots}_{\dots \ correspond \ to \ the \ pairs \ of \ maps \ A \to B_1, \ A \to B_2 \dots}_{\dots \ correspond \ to \ the \ pairs \ of \ maps \ A \to B_1, \ A \to B_2 \dots$$

<u>Upshot:</u> We can determine the product $B_1 \times B_2$ as soon as we've determined the maps $A \to B_1 \times B_2$, and thus as soon as we've determined the *pairs* of maps $A \to B_1$, $A \to B_2$.

<u>Now</u>: Suppose we let A be the separating object.

1. Set case: S

In \mathcal{S} the separating object is the terminal object, **1**.

<u>2. Graph case: $S^{\downarrow:\downarrow}$ </u>

In $\boldsymbol{S}^{\downarrow:\downarrow}$ the separating objects are the "generic arrow" graph A and the "generic dot" graph D:

$$A = \underbrace{\begin{smallmatrix} s & t \\ \bullet & a \end{smallmatrix}} D = \underbrace{\bullet}$$

<u>*Claim*</u>: To calculate any product of graphs $B_1 \times B_2$, just need to calculate $A \to B_1 \times B_2$ and $D \to B_1 \times B_2$. <u>*Example*</u>: Calculate $A \times A = A^2$.

First: Find the dots of A^2

<u>So</u>: A^2 has 4 dots: (s, t), (s, s), (t, s), (t, t)

Second: Find the arrows of A^2

<u>So</u>: A^2 has 1 arrow: (a, a)

<u>Now</u>: Is it a "regular" arrow or a "loop"? Are its source and target dots distinct or the same? <u>**Recall**</u>: A loop arrow is a graph point. So: How many points are there in A^2 ?

But there are no loops in A. So there can be none in A^2 . So the arrow (a, a) in A^2 is not a loop!

3. Terminal Object as Multiplicative Identity

<u>*Claim*</u>: $B \times \mathbf{1} = B$, for any object B and terminal object $\mathbf{1}$.

<u>Proof</u>: First need to determine the appropriate projection maps:

Need to show that for any object X, and maps $f: X \to B, X \to 1$, there is just one map $x: X \to B$ such that $1_B \circ x = f$.

