16: Products

1. Products of Objects

3. Multiplicative Identity

Consider: What does it mean to multiply 2 by 3 , when 2 and 3 are represented as sets?
Take the set • and reproduce it 3 times: "stretch" it over the set

Now consider how elements of the "stretched" set relate to elements of the base sets.
Organize them in the following way:

Any element of P, say a, represents a pair of elements, $a=(4,1)$, taken from the base sets B_{1}, B_{2}.
The "projection" map $p_{1}: P \rightarrow B_{1}$ takes a to 1. $p_{1}(a)=1$.
The "projection" map $p_{2}: P \rightarrow B_{2}$ takes a to 4. $p_{2}(a)=4$.

The "product" of B_{1} and B_{2}, then, must be not only the big set P, but also these projection maps p_{1}, p_{2}.

Definition. A product of two objects B_{1}, B_{2} is an object P together with a pair of maps $p_{1}: P \rightarrow B_{1}$ and $p_{2}: P \rightarrow B_{2}$, such that, for any object X with maps $f_{1}: X \rightarrow B_{1}, f_{2}: X \rightarrow B_{2}$, there is exactly one $\operatorname{map} f: X \rightarrow P$ for which $f_{1}=p_{1} \circ f$ and $f_{2}=p_{2} \circ f$.

Call $P,{ }^{\prime \prime} B_{1} \times B_{2} "$
Think of P as consisting of pairs of elements $\left(b_{1}, b_{2}\right)$, one from B_{1} and one from B_{2}. The "projection" maps p_{1}, p_{2} take each element of a given pair to its home.

So: $\quad P$ is supposed to have this "internal" pair-structure to its elements.
$\underline{\boldsymbol{B u t}}: \quad$ We can't directly talk about "internal" elements of an object in category theory! So we need to construct the right external "probe" X that encodes the "internal" pair structure of P.

Require: If some X gets mapped to both B_{1} and B_{2}, there must be only one way to map it to P; namely, the way that "respects" the P-pairs.
 is a product just when, for every

there is exactly one $X \xrightarrow{f} P$ that makes the pieces "fit together" (i.e., "commute"):

Important Note: A product is not just an object P, but P together
 with two maps p_{1}, p_{2} and two other objects B_{1}, B_{2}. A product is a kinda triangley-shaped figure.

Example 1: A product in \mathcal{S}.

$$
\begin{aligned}
& p_{2}(a)=p_{2}(b)=p_{2}(c)=4 \\
& p_{2}(d)=p_{2}(e)=p_{2}(f)=5 \\
& p_{1}(a)=p_{1}(d)=1 \\
& p_{1}(b)=p_{1}(e)=2 \\
& p_{1}(c)=p_{1}(f)=3
\end{aligned}
$$

Is this a product? For any other set X with maps $f_{1}: X \rightarrow B_{1}, f_{2}: X \rightarrow B_{2}$, there is exactly one map $f: X \rightarrow P$ such that $f_{1}=p_{1} \circ f$ and $f_{2}=p_{2} \circ f$?

Check for a simple case:

Does this entail there is exactly one $f: X \rightarrow P$ such that $f_{1}=p_{1} \circ f$ and $f_{2}=p_{2} \circ f$?

Check:

1. Require $f_{1}(x)=p_{1}(f(x))$ for all x in X.

$$
\begin{aligned}
& f_{1}(\alpha)=1=p_{1}(f(x)) \Rightarrow f(\alpha)=a \text { or } d . \\
& f_{1}(\beta)=2=p_{1}(f(x)) \Rightarrow f(\beta)=b \text { or } e . \\
& f_{1}(\gamma)=3=p_{1}(f(x)) \Rightarrow f(\gamma)=c \text { or } f . \\
& f_{1}(\delta)=3=p_{1}(f(x)) \Rightarrow f(\delta)=c \text { or } f .
\end{aligned}
$$

2. Require $f_{2}(x)=p_{2}(f(x))$ for all x in X.

$$
\begin{aligned}
& f_{2}(\alpha)=4=p_{2}(f(x)) \Rightarrow f(\alpha)=a \text { or } b \text { or } c . \\
& f_{2}(\beta)=4=p_{2}(f(x)) \Rightarrow f(\beta)=a \text { or } b \text { or } c . \\
& f_{2}(\gamma)=5=p_{2}(f(x)) \Rightarrow f(\gamma)=d \text { or } e \text { or } f . \\
& f_{2}(\delta)=5=p_{2}(f(x)) \Rightarrow f(\delta)=d \text { or } e \text { or } f .
\end{aligned}
$$

So: $\left.\begin{array}{l}f(\alpha)=a \\ f(\beta)=b \\ f(\gamma)=f \\ f(\delta)=f\end{array}\right\} \quad \begin{aligned} & \\ & \text { Only one such } f!\text { (The unique } f \\ & \text { that "respects" the pairs in P.) }\end{aligned}$

How about products in $\mathcal{S} \odot$?

$P^{\circ \gamma}$ consists of pairs $(a, b), a$ in A and b

$$
\begin{aligned}
& \begin{aligned}
P \\
\begin{aligned}
& P \\
& \downarrow \\
& P \\
& \\
& p_{p_{1}} \\
& p_{1} \\
& B
\end{aligned} \quad p_{1} \circ \gamma=\beta \circ p_{1}
\end{aligned}
\end{aligned}
$$

in B, such that $\gamma(a, b)=(\alpha(a), \beta(b))$!

Example 2.

So: $\quad C_{2} \times C_{3}=C_{6}!$

Example 3. How about $C_{2} \times C_{4}$?

Note that $P^{\ominus^{\gamma}}$ can be re-arranged into:

So: $\quad C_{2} \times C_{4}=2 C_{4}$

2. Calculating Products

Again:

is a product just when, for every

there is exactly one $A \xrightarrow{f} B_{1} \times B_{2} \quad$ such that $f_{1}=p_{1} \circ f$ and $f_{2}=p_{2} \circ f$.

$$
f(a)=\left(f_{1}(a), f_{2}(a)\right)
$$

Another way to say this:

$$
\frac{A \rightarrow B_{1} \times B_{2}}{A \rightarrow B_{1}, A \rightarrow B_{2}} \longleftarrow \longleftarrow \text { The maps } A \rightarrow B_{1} \times B_{2} \cdots .
$$

Upshot: We can determine the product $B_{1} \times B_{2}$ as soon as we've determined the maps $A \rightarrow B_{1} \times B_{2}$, and thus as soon as we've determined the pairs of maps $A \rightarrow B_{1}, A \rightarrow B_{2}$.

Now: Suppose we let A be the separating object.

1. Set case:

In \mathcal{S} the separating object is the terminal object, $\mathbf{1}$.

2. Graph case: $\mathcal{S}{ }^{\downarrow \downarrow}$

In $\mathcal{S}^{l} \downarrow$ the separating objects are the "generic arrow" graph A and the "generic dot" graph D :

$$
A=\stackrel{s}{\stackrel{s}{\bullet} \quad t} \begin{array}{|c}
\bullet \\
\bullet
\end{array}
$$

$\underline{\text { Claim: }}$ To calculate any product of graphs $B_{1} \times B_{2}$, just need to calculate $A \rightarrow B_{1} \times B_{2}$ and $D \rightarrow B_{1} \times B_{2}$.

Example: Calculate $A \times A=A^{2}$.

First: Find the dots of A^{2}

So: A^{2} has 4 dots: $(s, t),(s, s),(t, s),(t, t)$

Second: Find the arrows of A^{2}

So: A^{2} has 1 arrow: (a, a)
Now: Is it a "regular" arrow or a "loop"? Are its source and target dots distinct or the same?
Recall: A loop arrow is a graph point. So: How many points are there in A^{2} ?

But there are no loops in A. So there can be none in A^{2}. So the arrow (a, a) in A^{2} is not a loop!

3. Terminal Object as Multiplicative Identity

Claim: $\quad B \times \mathbf{1}=B$, for any object B and terminal object $\mathbf{1}$.

Proof. First need to determine the appropriate projection maps:

So: Need to demonstrate that

Need to show that for any object X, and maps $f: X \rightarrow \mathrm{~B}, X \rightarrow \mathbf{1}$, there is just one map $x: X \rightarrow B$ such that $1_{B} \circ x=f$.

Let $x=f$

