

16: Products

Topics

1. Products of Objects
2. Calculating Products
3. Multiplicative Identity

1. Products of Objects

Consider: What does it mean to multiply 2 by 3, when 2 and 3 are represented as sets?

Take the set and reproduce it 3 times: "stretch" it over the set

Now consider how elements of the "stretched" set relate to elements of the base sets.

Organize them in the following way:

Any element of P , say a , represents a pair of elements, $a = (4, 1)$, taken from the base sets B_1, B_2 .

The "projection" map $p_1 : P \rightarrow B_1$ takes a to 1. $p_1(a) = 1$.

The "projection" map $p_2 : P \rightarrow B_2$ takes a to 4. $p_2(a) = 4$.

The "product" of B_1 and B_2 , then, must be not only the big set P , but *also* these projection maps p_1, p_2 .

Definition. A **product** of two objects B_1, B_2 is an object P together with a pair of maps $p_1 : P \rightarrow B_1$ and $p_2 : P \rightarrow B_2$, such that, for any object X with maps $f_1 : X \rightarrow B_1, f_2 : X \rightarrow B_2$, there is *exactly one* map $f : X \rightarrow P$ for which $f_1 = p_1 \circ f$ and $f_2 = p_2 \circ f$.

Call P , " $B_1 \times B_2$ "

Think of P as consisting of *pairs* of elements (b_1, b_2) , one from B_1 and one from B_2 . The "projection" maps p_1, p_2 take each element of a given pair to its home.

So: P is supposed to have this "internal" pair-structure to its elements.

But: We can't directly talk about "internal" elements of an object in category theory! So we need to construct the right external "probe" X that encodes the "internal" pair structure of P .

Require: If some X gets mapped to both B_1 and B_2 , there must be only one way to map it to P ; namely, the way that "respects" the P -pairs.

So: P is a product just when, for every

there is exactly one $X \xrightarrow{f} P$ that makes the pieces "fit together" (i.e., "commute"):

Important Note: A product is not *just* an object P , but P together with two maps p_1, p_2 and two other objects B_1, B_2 . A product is a kinda triangley-shaped figure.

Example 1: A product in \mathcal{S} .

Is this a product? For any other set X with maps $f_1: X \rightarrow B_1$, $f_2: X \rightarrow B_2$, there is *exactly one* map $f: X \rightarrow P$ such that $f_1 = p_1 \circ f$ and $f_2 = p_2 \circ f$?

Check for a simple case:

Does this entail there is exactly one $f: X \rightarrow P$ such that $f_1 = p_1 \circ f$ and $f_2 = p_2 \circ f$?

Check:

1. Require $f_1(x) = p_1(f(x))$ for all x in X .
 $f_1(\alpha) = 1 = p_1(f(\alpha)) \Rightarrow f(\alpha) = a$ or d .
 $f_1(\beta) = 2 = p_1(f(\beta)) \Rightarrow f(\beta) = b$ or e .
 $f_1(\gamma) = 3 = p_1(f(\gamma)) \Rightarrow f(\gamma) = c$ or f .
 $f_1(\delta) = 3 = p_1(f(\delta)) \Rightarrow f(\delta) = c$ or f .
2. Require $f_2(x) = p_2(f(x))$ for all x in X .
 $f_2(\alpha) = 4 = p_2(f(\alpha)) \Rightarrow f(\alpha) = a$ or b or c .
 $f_2(\beta) = 4 = p_2(f(\beta)) \Rightarrow f(\beta) = a$ or b or c .
 $f_2(\gamma) = 5 = p_2(f(\gamma)) \Rightarrow f(\gamma) = d$ or e or f .
 $f_2(\delta) = 5 = p_2(f(\delta)) \Rightarrow f(\delta) = d$ or e or f .

So: $\begin{cases} f(\alpha) = a \\ f(\beta) = b \\ f(\gamma) = f \\ f(\delta) = f \end{cases}$

$\left. \begin{array}{l} \\ \\ \\ \end{array} \right\}$ Only one such f ! (The unique f that "respects" the pairs in P .)

How about products in \mathcal{S}^\odot ?

$P^{\odot\gamma}$ consists of pairs (a, b) , a in A and b in B , such that $\gamma(a, b) = (\alpha(a), \beta(b))!$

$$\begin{array}{ccc}
 P & \xrightarrow{p_2} & A \\
 \gamma \downarrow & & \downarrow \alpha \\
 P & \xrightarrow{p_1} & A
 \end{array} \quad p_2 \circ \gamma = \alpha \circ p_2$$

$$\begin{array}{ccc}
 P & \xrightarrow{p_1} & B \\
 \gamma \downarrow & & \downarrow \beta \\
 P & \xrightarrow{p_1} & B
 \end{array} \quad p_1 \circ \gamma = \beta \circ p_1$$

Example 2.

$$\begin{aligned}
 \gamma(O, A) &= (\alpha(O), \beta(A)) = (C, K) \\
 \gamma(C, K) &= (\alpha(C), \beta(K)) = (O, F) \\
 \gamma(O, F) &= (\alpha(O), \beta(F)) = (C, A) \\
 \gamma(C, A) &= (\alpha(C), \beta(A)) = (O, K) \\
 \gamma(O, K) &= (\alpha(O), \beta(K)) = (C, F) \\
 \gamma(C, F) &= (\alpha(C), \beta(F)) = (O, A)
 \end{aligned}$$

So: $C_2 \times C_3 = C_6!$

Example 3. How about $C_2 \times C_4$?

Note that $P^{\odot\gamma}$ can be re-arranged into:

$$\text{So: } C_2 \times C_4 = 2C_4$$

2. Calculating Products

Again:

$$P = B_1 \times B_2 \xrightarrow{p_1} B_1 \quad \xrightarrow{p_2} B_2$$

is a product just when, for every

$$A \xrightarrow{f_1} B_1 \quad \xrightarrow{f_2} B_2$$

there is exactly one $A \xrightarrow{f} B_1 \times B_2$ such that $f_1 = p_1 \circ f$ and $f_2 = p_2 \circ f$.

$$A \xrightarrow{f} B_1 \times B_2 \xrightarrow{f_1} B_1 \quad \xrightarrow{f_2} B_2$$

$f(a) = (f_1(a), f_2(a))$

Another way to say this:

$$\frac{A \rightarrow B_1 \times B_2}{A \rightarrow B_1, A \rightarrow B_2} \quad \begin{array}{l} \text{The maps } A \rightarrow B_1 \times B_2 \dots \\ \dots \text{ correspond to the pairs of maps } A \rightarrow B_1, A \rightarrow B_2. \end{array}$$

Upshot: We can determine the product $B_1 \times B_2$ as soon as we've determined the maps $A \rightarrow B_1 \times B_2$, and thus as soon as we've determined the pairs of maps $A \rightarrow B_1, A \rightarrow B_2$.

Now: Suppose we let A be the *separating object*.

1. Set case: \mathcal{S}

In \mathcal{S} the separating object is the terminal object, 1 .

$$\frac{1 \rightarrow B_1 \times B_2}{1 \rightarrow B_1, 1 \rightarrow B_2} \quad \begin{array}{l} \text{The points of a set product...} \\ \text{... correspond to pairs of points of its "factors"} \end{array}$$

2. Graph case: $\mathcal{S}^{\downarrow:\downarrow}$

In $\mathcal{S}^{\downarrow:\downarrow}$ the separating objects are the "generic arrow" graph A and the "generic dot" graph D :

$$A = \boxed{\begin{array}{c} s \\ \bullet \xrightarrow{a} \bullet \\ t \end{array}} \quad D = \boxed{\bullet}$$

Claim: To calculate any product of graphs $B_1 \times B_2$, just need to calculate $A \rightarrow B_1 \times B_2$ and $D \rightarrow B_1 \times B_2$.

Example: Calculate $A \times A = A^2$.

First: Find the dots of A^2

$$\frac{D \rightarrow A^2}{D \rightarrow A, D \rightarrow A} \quad \begin{array}{l} \text{The dots of } A^2... \\ \text{... are pairs of dots of } A \end{array}$$

So: A^2 has 4 dots: $(s, t), (s, s), (t, s), (t, t)$

Second: Find the arrows of A^2

$$\frac{A \rightarrow A^2}{A \rightarrow A, A \rightarrow A} \quad \begin{array}{l} \text{The arrows of } A^2... \\ \text{... are pairs of arrows of } A \end{array}$$

So: A^2 has 1 arrow: (a, a)

Now: Is it a "regular" arrow or a "loop"? Are its source and target dots distinct or the same?

Recall: A loop arrow is a graph point. So: How many *points* are there in A^2 ?

$$\frac{1 \rightarrow A^2}{1 \rightarrow A, 1 \rightarrow A} \quad \begin{array}{l} \text{The points (loops) of } A^2... \\ \text{... are pairs of points (loops) of } A \end{array}$$

But there *are* no loops in A . So there can be none in A^2 . So the arrow (a, a) in A^2 is not a loop!

So:

3. Terminal Object as Multiplicative Identity

Claim: $B \times \mathbf{1} = B$, for any object B and terminal object $\mathbf{1}$.

Proof: First need to determine the appropriate projection maps:

$$B \times \mathbf{1} = B \begin{array}{l} \xrightarrow{p_1} B \\ \xrightarrow{p_2} \mathbf{1} \end{array} \quad \begin{array}{l} p_1 = 1_B \\ p_2 = \text{unique (since } \mathbf{1} \text{ is terminal object)} \end{array}$$

So: Need to demonstrate that B is a product.

$$B \begin{array}{l} \xrightarrow{1_B} B \\ \xrightarrow{\quad} \mathbf{1} \end{array}$$

Need to show that for any object X , and maps $f: X \rightarrow B$, $X \rightarrow \mathbf{1}$, there is just one map $x: X \rightarrow B$ such that $1_B \circ x = f$.

$$X \xrightarrow{x=?} B \quad \begin{array}{l} f \\ \curvearrowright \\ 1_B \\ \curvearrowright \\ \mathbf{1} \end{array} \quad \text{Let } x = f$$