15: Terminal Objects and Initial Objects

- Topics
- 1. Terminal Objects
- 2. Points
- 3. Map-Separating Objects

4. Initial Objects

1. Terminal Objects

<u>Definition</u>: An object S of a category \mathcal{C} is a terminal object of \mathcal{C} if for each object X of \mathcal{C} , there is exactly one \mathcal{C} -map $X \to S$.

Consider:

How many maps $X \to 1$? (exactly one!)

<u>So</u>: 1 is a terminal object in S.

<u>Question 2:</u> What is a terminal object in \mathcal{S}^{\bigcirc} (category of endomaps of sets)?

Consider:

 $T \circ^{\gamma} =$

<u>Check:</u> For any other $X^{\odot^{\alpha}}$ in \mathcal{S}^{\odot} , is there only one \mathcal{S}^{\odot} -map $X^{\odot^{\alpha}} \to T^{\odot^{\gamma}}$?

<u>We know:</u> Only one \mathcal{S} -map $X \xrightarrow{f} \mathbf{1}$ for any X.

<u>So</u>: $TO^{\gamma} =$

Is this unique \mathcal{S} -map f also an \mathcal{S}^{\bigcirc} -map? If so, it must satisfy

$$f \circ \alpha = \gamma \circ j$$

<u>Claim</u>: It does. <u>Because</u>: $f \circ \alpha$ is a map $X \to \mathbf{1}$, and $\gamma \circ f$ is a map $X \to \mathbf{1}$, and there is only one such map (since $\mathbf{1}$ is a terminal object of \boldsymbol{S}).

is a terminal object in \boldsymbol{S}^{\odot} .

<u>Question 3:</u> What is a terminal object in $S^{\downarrow:\downarrow}$ (category of irreflexive graphs)?

example:

internal diagram

 $\underline{\textbf{\textit{Recall:}}} \hspace{0.1 in } \boldsymbol{\mathcal{S}}^{\downarrow:\downarrow} \text{-map: } 2 \hspace{0.1 in } \boldsymbol{\mathcal{S}} \text{-maps} \hspace{0.1 in } (f_A, f_D)$

$$X \xrightarrow{f_A} Y$$

$$s \bigvee_{t} t \xrightarrow{s'}_{t} \bigvee_{t'} (1) \quad f_D \circ s = s' \circ f_A$$

$$P \xrightarrow{f_D} Q$$

$$(1) \quad f_D \circ t = t' \circ f_A$$

<u>**So**</u>: The question is: What should the Y/Q object be so that there's only one pair (f_A, f_D) ?

How about:

 $Y = \underbrace{\bullet}^{a}$ $Q = \underbrace{\bullet}_{p}$

<u>Now Check:</u> Is it the case that the following hold?

 $\begin{array}{ll} (1) & f_D \circ s = s' \circ f_A \\ (2) & f_D \circ t = t' \circ f_A \end{array}$

<u>Yes</u>! Since $\bullet p$ is a terminal object in S, there is only one *S*-map from X to it. So both (1) and (2) must be true: any two maps from $\bullet p$ to X must be the same.

<u>Furthermore</u>: By the same reasoning, s' = t'.

<u>**So</u></u>: A terminal object for \boldsymbol{S}^{\downarrow:\downarrow} is</u>**

 $internal\ diagram$

Any other terminal objects in $\boldsymbol{S}^{\downarrow:\downarrow?}$

How about the single-dot graph (with no arrows)?

<u>Check</u>: Is there exactly one map from any $S^{\downarrow:\downarrow}$ -object to the single-dot graph?

Theorem: (In any category, the terminal object is "unique up to isomorphism".)

Suppose \mathcal{C} is any category and T_1 , T_2 are both terminal objects in \mathcal{C} . Then T_1 and T_2 are isomorphic: There are maps $T_1 \xrightarrow{f} T_2$, $T_2 \xrightarrow{g} T_1$ such that $g \circ f = 1_{T_1}$, and $f \circ g = 1_{T_2}$.

<u>Proof:</u> We're given that T_1 , T_2 are terminal objects.

- $\begin{array}{lll} \underline{So:} & T_1 & \stackrel{f}{\longrightarrow} T_2 & \text{is unique (since } T_2 \text{ is terminal).} \\ & T_2 & \stackrel{g}{\longrightarrow} T_1 & \text{is unique (since } T_1 \text{ is terminal).} \end{array}$
- <u>So</u>: $T_1 \xrightarrow{g \circ f} T_1$ is unique (since both f and g are unique). $T_2 \xrightarrow{f \circ g} T_2$ is unique ((since both f and g are unique).

<u>So</u>: Since the identities on T_1 and T_2 must exist, it must be that $g \circ f = 1_{T_1}$, and $f \circ g = 1_{T_2}$.

2. Points of an Object

<u>Definition</u>: A point of an object X in any category \mathcal{C} is a map $T \to X$ where T is the terminal object in \mathcal{C} .

<u>Recall</u>: In \mathcal{S} , points of a set X are maps

 $1 \xrightarrow{e} X \text{ is a point of } X.$

Points of a set are just its elements.

What about points in other categories?

What are the points of an \mathcal{S}^{\odot} -object?

5

3. Map-Separating Objects

Definition: An object S in a category \mathcal{C} separates \mathcal{C} -maps just when, for any \mathcal{C} -objects X, Y and any \mathcal{C} -maps $f: X \to Y, g: X \to Y, \text{ and } x: S \to X$, if $f \circ x = g \circ x$, then f = g.

If f and g agree on all "generalized elements" x of X, then f = g.

<u>Example:</u> In \mathcal{S} , the terminal object 1 separates \mathcal{S} -maps.

Suppose $f: X \to Y$ and $g: X \to Y$ are two maps. If they agree on all *points* of X, then they are identical. In other words, if $f \circ x = g \circ x$ for all *points* $x: \mathbf{1} \to X$, then f = g.

In \mathcal{S} , if f and g agree on all points (*i.e.*, elements) x of X, then f = g.

<u>**BUT</u>**: The terminal objects in \mathcal{S}^{\odot} and $\mathcal{S}^{\downarrow;\downarrow}$ do not separate maps!</u>

Why?: Objects in \mathcal{S}^{\odot} and $\mathcal{S}^{\downarrow:\downarrow}$ may not have points!

<u>example 1.</u> (Any \mathcal{S}^{\bigcirc} -object without fixed points)

No points! (No "fixed points".) <u>So</u>: Two S^{\bigcirc} -maps $f: X^{\bigcirc\alpha} \to Y^{\oslash\beta}$, $g: X^{\oslash\alpha} \to Y^{\oslash\beta}$ with $f \neq g$ will trivially agree on all points of $X^{\odot\alpha}$ (since there are none).

example 2. (Any $\mathcal{S}^{\downarrow:\downarrow}$ -object without loop arrows)

No points! (No "loop arrows".) <u>So</u>: Two $S^{\downarrow:\downarrow}$ -maps f, g will trivially agree on all points of X (since there are none).

- <u>Claim</u>: For any graph X, each arrow in X is given by exactly one $\mathcal{S}^{\downarrow:\downarrow}$ -map $A \to X$, and each dot in X is given by exactly one $\mathcal{S}^{\downarrow:\downarrow}$ -map $D \to X$.
- <u>So</u>: Suppose $f: X \to Y$ and $g: X \to Y$ are any two $S^{\downarrow:\downarrow}$ -maps. If $f \circ x = g \circ x$ for all maps $x: A \to X$ and all maps $x: D \to X$, then f = g.

In other words, if f and g agree on all arrows and dots in X, then f = g!

<u>Map-Separating Object for S</u>

A bit trickier to visualize. For two \mathcal{S}^{\bigcirc} -maps $f, g: X^{\bigcirc \alpha} \to Y^{\bigcirc \beta}$ to be identical, they have to agree on all "generalized elements" of $X^{\bigcirc \alpha}$. How do we identify these generalized elements? Consider the \mathcal{S}^{\bigcirc} -object $\mathbb{N}^{\circ\sigma}$:

 $\mathbb{N} = set of natural numbers \{0, 1, 2, 3, ...\}$ σ is the "successor" map $\sigma(n) = n + 1$

<u>Recall</u>: S^{\bigcirc} -maps from $\mathbb{N}^{\bigcirc\sigma}$ to any S^{\bigcirc} -object $X^{\bigcirc\alpha}$ name all the elements of $X^{\bigcirc\alpha}$. These S^{\bigcirc} -maps are the "generalized elements" for S^{\bigcirc} -objects!

 $\begin{array}{ll} \underline{So}: & \mathbb{N}^{\circ\sigma} \text{ is a separating object for } S\circ: \\ & \text{Suppose } f, \ g: \ X^{\odot\alpha} \to Y^{\odot\beta} \text{ are any two } S^{\odot}\text{-maps. If } f \circ x = g \circ x \text{ for all maps } x: \ \mathbb{N}^{\circ\sigma} \to X^{\odot\alpha}, \\ & \text{ then } f = g. \end{array}$

4. Initial Objects

<u>Definition</u>: S is an *initial object* of a category \mathcal{C} if for every \mathcal{C} -object X there is exactly one \mathcal{C} -map $S \to X$.

"dual" of terminal object (the "reverse" of the definition of terminal object: exchange domain and codomain)

Claim: In \mathcal{S} , the empty set is the initial object.

Proof: There is exactly one map $\mathbf{0} \to X$. Since there are no elements in $\mathbf{0}$, it's trivially true that every element of $\mathbf{0}$ gets assigned exactly one element of X (and there's only one way to do this; namely the way in which there are no arrows between $\mathbf{0}$ and X).

<u>Claim</u>: In \mathcal{S}^{\bigcirc} and $\mathcal{S}^{\downarrow:\downarrow}$, the initial objects are also the empty set.

Proof:First Check:**0** is an object in \mathcal{S}^{\bigcirc} (why?). And **0** is also an object in $\mathcal{S}^{\downarrow;\downarrow}$ (why?).<u>Then:</u>Since there is only one \mathcal{S} -map from **0** to any set, and \mathcal{S}^{\bigcirc} -maps and $\mathcal{S}^{\downarrow;\downarrow}$ -maps are particular types of \mathcal{S} -maps, there will only be one \mathcal{S}^{\bigcirc} -map between **0** and any \mathcal{S}^{\bigcirc} -object, and there will only be one $\mathcal{S}^{\downarrow;\downarrow}$ -map between **0** and any $\mathcal{S}^{\downarrow;\downarrow}$ -object.