## 14: Generalized Elements in $\mathcal{S}$

## Structure-preserving maps from a cycle to another endomap

Let $X^{\bigcirc \alpha}$ and $Y^{\ominus \beta}$ be the $\mathcal{S}^{\ominus}$-objects (i.e., dynamical systems):


Find an $\mathcal{S} \bullet^{-}$map $X \vartheta^{\alpha} \xrightarrow{f} Y \vartheta^{\beta}$ such that $f(0)=y$.


To specify $f$, we need to say what it does to each element $x$ of $X^{\ominus \alpha}$ :
$x=0: \quad f(\alpha(0))=\beta(f(0))$, or $f(1)=\beta(y)=z$
$x=1: \quad f(\alpha(1))=\beta(f(1))$, or $f(2)=\beta(z)=y$

How many other maps are there?
(Only other one takes 0 to z.)
$x=2: \quad f(\alpha(2))=\beta(f(2))$, or $f(3)=\beta(y)=z$
$x=3: \quad f(\alpha(3))=\beta(f(3))$, or $f(0)=\beta(z)=y$

Definition: $\quad$ An element $x$ of an $\mathcal{S}^{\bullet}$-object $X^{\ominus \alpha}$ has period $n$ just when $\alpha^{n}(x)=x$.

Definition: For any natural number $n$, the cycle of length $n, C_{n}$, is the set of $n$ elements $\{0,1,2, \ldots, n\}$ with the "successor" endomap, with the successor of $n-1$ being 0 .


Note: $\mathcal{S} \ominus^{\ominus}$-maps $C_{4} \xrightarrow{f} Y^{\ominus^{\beta}}$ correspond to all elements of $Y^{\ominus \beta}$ with period 4 !


$$
\begin{array}{ll}
\underline{\text { Two elements with period } 4} & \\
\cline { 1 - 2 }: \beta^{4}(y)=y & \begin{array}{l}
\text { Two maps } C_{4} \xrightarrow{f}(0)=y, f_{1}(1)=z, f_{1}(2)=y, f_{1}(3)=z \\
z: \\
f_{1}(z)=z
\end{array} \\
f_{2}(0)=z, f_{2}(1)=y, f_{2}(2)=z, f_{2}(3)=y
\end{array}
$$

 elements of $Y^{\bigcirc \beta}$ with period $n$.

Terminology: The $\mathcal{S} \bigcirc^{\circ}$-maps $C_{n} \xrightarrow{f} Y{ }^{\circ}$ name the elements of $Y^{\bigcirc \beta}$ with period $n$.

Question: How can we name arbitrary or "generalized" elements of an $\mathcal{S}$ - object?
example 1:

$\beta^{4}(z)=z$; so $z$ has period 4 $x$ has no period; but $x$ has the "positive property" of "being two steps away from a 4-cycle"
example 2:

$\mathbb{N}=$ set of natural numbers $\{0,1,2,3, \ldots\}$
$\mathbb{N} \xrightarrow{\sigma} \mathbb{N}$ is the "successor" map $\sigma(n)=n+1$

0 has no positive properties

In particular: For each element $y$ of $Y^{\ominus \beta}$, there is a unique map $\mathbb{N}^{\circ} \xrightarrow{f} Y \vartheta^{\beta}$ such that $f(0)=y$.

Now: Show that any other $\mathcal{S}{ }^{\bullet}-\operatorname{map} \mathbb{N}^{\ominus^{\sigma} \longrightarrow g} Y \ominus^{\beta}$ is such that, if $g(0)=f(0)$, then $g=f$.

Given: (1) $f \circ \sigma=\beta \circ f$
(2) $g \circ \sigma=\beta \circ g$
(3) $g(0)=f(0)$


Then: $\quad f(1)=f(\sigma(0)) \quad$ given (definition of $\sigma$ )

$$
=\beta(f(0)) \quad \text { given }(1)
$$

$$
=\beta(g(0)) \quad \text { given }(3)
$$

$$
=g(\sigma(0)) \quad \text { given (2) }
$$

$$
=g(1) \quad \text { given }(\text { definition of } \sigma)
$$

So: If $f$ and $g$ agree on 0 , then they agree on 1 .
Now: Suppose for any $n, g(n)=f(n)$. Call this assumption ( $\left.3^{\prime}\right)$.
Does this then entail $f(n+1)=g(n+1)$ ?

Check: $f(n+1)=f(\sigma(n)) \quad$ given (definition of $\sigma$ )

$$
=\beta(f(n)) \quad \text { given }(1)
$$

$$
=\beta(g(n)) \quad \text { given }\left(3^{\prime}\right)
$$

$$
=g(\sigma(n)) \quad \text { given (2) }
$$

$$
=g(n+1) \quad \text { given (definition of } \sigma)
$$

So: We've shown that if $f(0)=g(0)$, then $f(1)=g(1)$. And if $f(n)=g(n)$ for any $n$, then $f(n+1)=g(n+1)$. This means, if $f$ and $g$ agree on 0 , then they agree on 1 , and hence 2 , and hence 3 , etc. So they agree on all elements of $\mathbb{N}$.

So: $\quad f=g!$

