14: More Categories

$\underline{\text { Recall: }}$ So far we've been talking about the category of sets, call it \mathcal{S}.

Topics

1. The Category of Endomaps of Sets
2. The Category of Graphs

I. \mathcal{S}-objects.
 Sets

II. \mathcal{S}-maps.

Maps between sets. Each is defined by specifying:
(1) a domain set A
(2) a codomain set B
(3) a rule: Each point in A gets assigned exactly one point in B.
III. Identity maps. One for each \mathcal{S}-object.
IV. Composite maps. One for each pair of \mathcal{S}-maps f, g for which the codomain of one is the domain of the other.
V. Identity laws.
VI. Associative law.

1. The Category $\mathcal{S} \circ$ of Endomaps of Sets

I. \mathcal{S}°-objects. Any set equipped with an endomap. \longleftarrow set "structured" by an endomap. $_{\hookleftarrow}$

example:

Check: Does this define a map? Yes: Every point gets assigned exactly one other point.
II. \mathcal{S}^{\ominus}-maps. \quad These must go from one $\mathcal{S}^{-}{ }^{-}$object $X^{\ominus \alpha}$ to another $Y^{\ominus \beta}$ such that the "structure" of the endomaps is preserved. So:

Defintion. An $\mathcal{S}{ }^{\circ}$-map $X \ominus^{\alpha} \longrightarrow \quad Y \ominus^{\beta}$ is an \mathcal{S}-map $X \xrightarrow{f} Y$ that satisfies $f \circ \alpha=\beta \circ f$.

Again, this means: "If you first do α and then f, it should be the same as first doing f and then β." This constraint entails that f preserves the structure of α in the structure of β; i.e., whatever α does in X, β will "mirror" in Y.

The structure of an endomap α can be represented by the internal diagram of $X^{\ominus \alpha}$.

example:

ASIDE: A fixed point x of a map α is a point in the domain of α for which $\alpha(x)=x$; i.e., applying α to a fixed point yields that same point again.

This is the kind of structure preserved by $\mathcal{S} \bullet^{-}$maps. If an $\mathcal{S}{ }^{\bullet}$-object $X^{\bullet \alpha}$ has it, and $X \ominus^{\alpha} \xrightarrow{f} Y^{\ominus^{\beta}}$ is an \mathcal{S}^{\bullet}-map, then the \mathcal{S}°-object $Y^{\ominus \beta}$ has it, too.
III. Identity maps in \mathcal{S}^{\bullet}.

Check: Must be an $\mathcal{S} \circ$-map; i.e., must have the property $1_{X} \circ \alpha=\alpha \circ 1_{X}$
$1_{X} \circ \alpha=\alpha \quad$ identity law for $\mathcal{S} \quad$ Note: We can use the \mathcal{S} $\xlongequal{\checkmark} \alpha \circ 1_{X} \quad$ identity law for $\boldsymbol{\mathcal { S }}$
identity laws here because we're dealing with \mathcal{S}-maps (\mathcal{S}^{\bullet}-maps are certain types of \mathcal{S}-maps)

IV. Composition of maps in \mathcal{S}^{\bullet}.

Check: Must be an $\mathcal{S} \circ$-map; i.e., must have the property $(g \circ f) \circ \alpha=\gamma \circ(g \circ f)$

$$
\begin{aligned}
(g \circ f) \circ \alpha & =g \circ(f \circ \alpha) & & \text { associative law for } \mathcal{S} \\
& =g \circ(\beta \circ f) & & \text { given (i.e., f is an } \mathcal{S} \circ \text {-map }) \\
& =(g \circ \beta) \circ f & & \text { associative law for } \mathcal{S} \\
& =(\gamma \circ g) \circ f & & \text { given (i.e., } g \text { is an } \mathcal{S} \circ \text {-map }) \\
& \underline{\underline{v}} \gamma \circ(g \circ f) & & \text { associative law for } \mathcal{S}
\end{aligned}
$$

Now we just have to show that $\mathcal{S}{ }^{\bullet}$-maps obey the identity laws and the associative law, and we'll be done constructing $\mathcal{S} \bigcirc$ as a category. But it should be obvious that $\mathcal{S}{ }^{\circ}$-maps do obey these laws, because \mathcal{S}-maps obey these laws, and $\mathcal{S} \bigcirc$-maps are certain types of \mathcal{S}-maps.

Question: What is an isomorphism in $\mathcal{S} \bullet$? Ans. An $\mathcal{S} \bigcirc$-map that has an inverse. What does it do in $\mathcal{S} \bigcirc$?
In \mathcal{S}, isomorphic objects have the same number of points.
In $\mathcal{S} \oslash$, isomorphic objects have:

- same number of points
- same number of fixed points
- same number of 2-cycles
- same number of points 1 step away from a fixed point - etc...

$\underline{\text { Three Subcategories of } \mathcal{S} \text {-- Idempotents, Automorphisms, and Involutions }}$

Definition. An \mathcal{S}-endomap α is an idempotent just when $\alpha \circ \alpha=\alpha$.
An \mathcal{S}-endomap α is an automorphism just when α is also an isomorphism.
An \mathcal{S}-endomap θ for an \mathcal{S}-object X is an involution just when $\theta \circ \theta=1_{X}$.

1. Let $\boldsymbol{\mathcal { S }}^{e}$ be the category of idempotent endomaps on \mathcal{S}.
$X^{\bigcirc \alpha}$ is an \mathcal{S}^{e}-object just when α is an idempotent; i.e., $\alpha \circ \alpha=\alpha$.
example:
additional structure in $\mathcal{S} \bigcirc$

In \mathcal{S}^{e}, isomorphic objects have:

- same number of points
- same number of fixed point "fans"

2. Let \mathcal{S}^{a} be the category of automorphisms on \mathcal{S}.
$X^{\circ \alpha}$ is an \mathcal{S}^{a}-object just when there is an inverse β of α; i.e., $\alpha \circ \beta=1_{X}$ and $\beta \circ \alpha=1_{X}$.

example:

In \mathcal{S}^{a}, isomorphic objects have:

All α-arrows can be "reversed". This entails the internal diagram of any \mathcal{S}^{a}-object can only have cycles with no branches!
Why? Consider the simplest 1-branch fan:

The result of reversing both arrows cannot represent a map: there would be a point with two arrows coming out of it, which a map cannot do.

- same number of points
- same number of same-type cycles

3. Let $\boldsymbol{\mathcal { S }}^{\theta}$ be the category of involutions on $\boldsymbol{\mathcal { S }}$.
$X^{\bigcirc \theta}$ is an \mathcal{S}^{θ}-object just when $\theta \circ \theta=1_{X}$.
example:

"Applying θ twice gets you back to where you started." This entails the internal diagram of any \mathcal{S}^{θ}-object can only consist of fixed points and/or 2-cycles!

In \mathcal{S}^{θ}, isomorphic objects have:

- same number of fixed points
- same number of 2-cycles

Application of $\mathcal{S} \bigcirc$: Dynamical Systems

Let $X=$ set of possible states of a system
$\alpha=$ "evolution" map (evolves states in time)
example: Lamp with on/off switch

$$
X=\{o n, o f f\}
$$

$\mathcal{S} \bigcirc^{-}$map $X \ominus^{\alpha} \xrightarrow{f} Y^{\ominus^{\beta}}$ sends a state x of $X{ }^{\bigcirc \alpha}$-machine to a state $f(x)$ of $Y^{\bigcirc \beta}$-machine that evolves under β in the same way that x evolves under α.

Exercise \#1, pg. 161
Suppose $x^{\prime}=\alpha^{3}(x)$ and $X ๖^{\alpha} \xrightarrow{f} Y^{\oslash^{\beta}}$ is an $\mathcal{S} \bullet^{-}$map. Let $y=f(x)$ and $y^{\prime}=\beta^{3}(y)$. Then $f\left(x^{\prime}\right)=y^{\prime}$.

Given:

(1) $x^{\prime}=\alpha(\alpha(\alpha(x)))$
(3) $y^{\prime}=\beta(\beta(\beta(y)))$
(2) $y=f(x)$
(4) f o $\alpha=\beta$ o f or $f(\alpha(x))=\beta(f(x))$, for any x in X

So: $\quad f\left(x^{\prime}\right)=f(\alpha(\alpha(\alpha(x))) \quad$ given (1)

$$
=\beta(f(\alpha(\alpha(x))) \quad \text { given (4) }
$$

$$
=\beta(\beta(f(\alpha(x))) \quad \text { given (4) }
$$

$$
=\beta(\beta(\beta(f(x))) \quad \text { given }(4)
$$

$$
=\beta(\beta(\beta(y))) \quad \text { given }(2)
$$

$$
\xlongequal{\vee} y^{\prime} \quad \text { given }(3)
$$

2. The Category $\mathcal{S}^{\downarrow: \downarrow}$ of Irreflexive Graphs

I. $\quad \mathcal{S}^{\downarrow} \downarrow_{\text {-objects. }} \quad$ A pair of \mathcal{S}-maps s, t with the same domain and the same codomain.

X		
$s \downarrow \downarrow^{X} t$	$s=$ "source" map	Terminology:
$t=$ "target" map		$X=$ set of "arrows"
P		$P=$ set of "dots"
$s(x)=$ source dot of arrow x in X		
$t(x)=$ target dot of arrow x in X		

Represents a graph consisting of "arrows" and "dots":

example:

$$
\begin{array}{ll}
s(a)=k & t(a)=m \\
s(b)=m & t(b)=m \\
s(c)=k & t(c)=m \\
s(d)=p & t(d)=q \\
s(e)=m & t(e)=r
\end{array}
$$

Note: This is not an internal diagram of an $\mathcal{S}: \downarrow$-object! It's literally a graph: a drawing that could represent cities (dots) and roads connecting them (arrows), for example; or anything else you want. In particular, the "arrows" do not represent maps, and the dots do not represent points. (Unfortunantly, we're using the same term "arrow" for both these graph "arcs" and maps.)
II. $\mathcal{S}^{\downarrow: \downarrow_{\text {-maps }} .}$

$X \xrightarrow{f_{A}} Y, P \xrightarrow{f_{D}} Q$ for which
(1) $f_{D} \circ s=s^{\prime} \circ f_{A}$
(2) $f_{D} \circ t=t^{\prime} \circ f_{A}$

f preserves the source and target relations of the graphs
III. Identity maps in $\mathcal{S}^{\downarrow \downarrow \downarrow}$.

Check: Must be an $\mathcal{S} \quad$-l-map:

$$
\text { (1) } \begin{array}{rlrl}
1_{P} \circ s & =s & & \text { identity law for } \mathcal{S} \\
& \underline{\underline{\imath}} s \circ 1_{X} & & \text { identity law for } \mathcal{S} \\
\text { (2) } & 1_{P} \circ t & =t & \\
& & \text { identity law for } \mathcal{S} \\
& & { }^{\circ} \circ 1_{X} & \\
\text { identity law for } \mathcal{S}
\end{array}
$$

IV. Composite maps in $\mathcal{S}^{\downarrow!\downarrow}$.

For $\mathcal{S}^{\downarrow \vDash \downarrow_{-} \text {maps }}$

and

Check: Must be an $\mathcal{S} \quad$:l-map; i.e., we must show:
(1) $\left(g_{D} \circ f_{D}\right) \circ s=s^{\prime \prime} \circ\left(g_{A} \circ f_{A}\right)$
(2) $\left(g_{D} \circ f_{D}\right) \circ t=t^{\prime \prime} \circ\left(g_{A} \circ f_{A}\right)$
and we're given that $\left(f_{A}, f_{D}\right)$ and $\left(g_{A}, g_{D}\right)$ are \mathcal{S} :l- -maps; i.e., we're given:
(i) $f_{D} \circ s=s^{\prime} \circ f_{A}$
(iii) $g_{D} \circ s^{\prime}=s^{\prime \prime} \circ g_{A}$
(ii) $f_{D} \circ t=t^{\prime} \circ f_{A}$
(iv) $g_{D} \circ t^{\prime}=t^{\prime \prime} \circ g_{A}$

So:
(1) $\left(g_{D} \circ f_{D}\right) \circ s=g_{D} \circ\left(f_{D} \circ s\right) \quad$ assoc law for \mathcal{S}
(2) $\left(g_{D} \circ f_{D}\right) \circ t=g_{D} \circ\left(f_{D} \circ t\right) \quad$ assoc law for \mathcal{S}
$=g_{D} \circ\left(s^{\prime} \circ f_{A}\right) \quad$ given
$=\left(g_{D} \circ s^{\prime}\right) \circ f_{A} \quad$ assoc law for \mathcal{S}
$=g_{D} \circ\left(t^{\prime} \circ f_{A}\right) \quad$ given
$=\left(s^{\prime \prime} \circ g_{A}\right) \circ f_{A} \quad$ given
$=\left(g_{D} \circ t^{\prime}\right) \circ f_{A} \quad$ assoc law for \mathcal{S}
$\xlongequal{\underline{ }} s^{\prime \prime} \circ\left(g_{A} \circ f_{A}\right) \quad$ assoc law for \mathcal{S}
$=\left(t^{\prime \prime} \circ g_{A}\right) \circ f_{A} \quad$ given
$\xlongequal{\vee} t^{\prime \prime} \circ\left(g_{A} \circ f_{A}\right) \quad$ assoc law for \mathcal{S}

Now we just have to show that $\mathcal{S}^{\downarrow: \downarrow}$ _maps obey the identity laws and the associative law, and we'll be done

$\underline{\text { Applications of }} \boldsymbol{\mathcal { S }}^{\downarrow \downarrow \downarrow}$

- electric circuits
- transportation (road systems/towns, etc.)
- linguistics (dots $=$ nouns, arrows $=$ verbs, etc.)
- conspiracy theories...

