
14:  More Categories
Recall:  So far we've been talking about the category of sets, call it S.
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Topics
1. The Category of

Endomaps of Sets
2. The Category of Graphs

I. S-objects. Sets

II. S-maps. Maps between sets.  Each is defined by specifying:

  (1) a domain set A

  (2) a codomain set B

  (3) a rule:  Each point in A gets assigned exactly one point in B.

III. Identity maps. One for each S-object.

IV. Composite maps. One for each pair of S-maps f, g for which the codomain of one is the domain of the other.

V. Identity laws.

VI. Associative law.

1.  The Category S  of Endomaps of Sets

I. S -objects. Any set equipped with an endomap.

II. S -maps. These must go from one S -object X α to another Y β such that the "structure" of the

endomaps is preserved.  So:

example:

X α  = Check:  Does this define a map?
Yes:  Every point gets assigned
exactly one other point.

X

X

α or X α

Again, this means:  "If you first do α and then f,
it should be the same as first doing f and then
β."  This constraint entails that f preserves the
structure of α in the structure of β; i.e.,
whatever α does in X, β will "mirror" in Y.

X

X

α

Y

Y

β

f

f

f  α = β  f.

Defintion. An S -map                         is an S-map                  that satisfies f  α = β  f.    X 
α f⎯ →⎯ Y β   X

f⎯ →⎯ Y

•

•
••

•
•

•

•

•

A set "structured" by an endomap.
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The structure of an endomap α can be represented by the internal diagram of X α.

example:

X α  =

# fixed points = 1
# pts 1 step away from a fixed pt = 1
# pts 2 steps away from a fixed pt = 2
# 3-cycles = 1
# pts 1 step away from a 3-cycle = 2
etc...

This is the kind of structure preserved by S -maps.  If an S -object X α has it, and

                        is an S -map, then the S -object Y β has it, too.    X 
α f⎯ →⎯ Y β

III. Identity maps in S .

For S -object X α, take as identity map                          .     X 
α 1X⎯ →⎯⎯ X α

X

X

α

X

X

α

1X

1X

Check:  Must be an S -map; i.e., must have the property  1X  α = α  1X

1X  α = α identity law for S

= α  1X identity law for S

IV. Composition of maps in S .

For S -maps                          and                           let the composite of f and g be                         .    X 
α f⎯ →⎯ Y β     Y 

β g⎯ →⎯ Z γ     X 
α g f⎯ →⎯⎯ Z γ

Check:  Must be an S -map; i.e., must have the property  (g  f)  α = γ  (g  f)X

X

α

Z

Z

γ

g  f

g  f
(g  f)  α = g  (f  α) associative law for S

= g  (β  f) given (i.e., f is an S -map)

= (g  β)  f associative law for S

= (γ  g)  f given (i.e., g is an S -map)

= γ  (g  f) associative law for S

Now we just have to show that S -maps obey the identity laws and the associative law, and we'll be done

constructing S  as a category.  But it should be obvious that S -maps do obey these laws, because S -maps obey

these laws, and S -maps are certain types of S-maps.

Note:  We can use the S-
identity laws here because we're
dealing with S-maps (S -maps
are certain types of S-maps)

•

•
••

•
•

•

•

•

ASIDE:  A fixed point x of a
map α is a point in the domain
of α for which α(x) = x; i.e.,
applying α to a fixed point
yields that same point again.
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Question: What is an isomorphism in S ?  Ans.  An S -map that has an inverse.  What does it do in S ?

In S, isomorphic objects have the same number of points.

In S , isomorphic objects have:

- same number of points

- same number of fixed points

- same number of 2-cycles

- same number of points 1 step away from a fixed point

- etc...

additional structure in S 

Three Subcategories of S  -- Idempotents, Automorphisms, and Involutions

Definition. An S-endomap α is an idempotent just when α  α = α.

An S-endomap α is an automorphism just when α is also an isomorphism.

An S-endomap θ for an S-object X is an involution just when θ  θ = 1X.

example:

1. Let Se be the category of idempotent endomaps on S.

X α is an Se-object just when α is an idempotent; i.e., α  α = α.

"Applying α twice yields the same result as
applying α once".  This entails the internal diagram
of any Se-object can only contain fixed points
and/or points 1 step away from fixed points.

In Se, isomorphic objects have:

- same number of points

- same number of fixed point "fans"

1-branch "fan"

X α  =

2-branch "fan"

3-branch "fan"

0-branch "fan"

•

•

•

•

•
••

•

•
•

example:

2. Let Sa be the category of automorphisms on S.

X α is an Sa-object just when there is an inverse β of α; i.e., α  β = 1X and β  α = 1X.

X α  =
•

••

• •

•
•

•

•

•
•

•
•

All α-arrows can be "reversed".  This entails the
internal diagram of any Sa-object can only have
cycles with no branches!
Why?  Consider the simplest 1-branch fan:

•
• The result of reversing both arrows

cannot represent a map:  there would
be a point with two arrows coming out
of it, which a map cannot do.In Sa, isomorphic objects have:

- same number of points

- same number of same-type cycles
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example:

3. Let Sθ be the category of involutions on S.

X θ is an Sθ-object just when θ  θ = 1X.

X θ  =
•

•

• •

•

• •

In Sθ, isomorphic objects have:

- same number of fixed points

- same number of 2-cycles

"Applying θ twice gets you back to where

you started."  This entails the internal

diagram of any Sθ-object can only consist of

fixed points and/or 2-cycles!

Application of S :  Dynamical Systems

Let X = set of possible states of a system

α = "evolution" map (evolves states in time)

example:    Lamp with on/off switch

X = {on, off}

X α  =
•

•

on

off

S -map                        sends a state x of X α-machine to a state f(x) of Y β-machine that evolves under β in the

same way that x evolves under α.
    X 

α f⎯ →⎯ Y β

Exercise #1, pg. 161

Suppose x' = α3(x) and                        is an S -map.  Let y = f(x) and y' = β3(y).  Then f(x') = y'.    X 
α f⎯ →⎯ Y β

Given:

(1) x' = α(α(α(x))) (3)  y' = β(β(β(y)))

(2) y = f(x) (4)  f o α = β o f   or   f(α(x)) = β(f(x)), for any x in X

So: f(x') = f(α(α(α(x))) given (1)

= β(f(α(α(x))) given (4)

= β(β(f(α(x))) given (4)

= β(β(β(f(x))) given (4)

= β(β(β(y))) given (2)

= y' given (3)
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2.  The Category S↓:↓ of Irreflexive Graphs

I. S↓:↓-objects. A pair of S-maps s, t with the same domain and the same codomain.

X

P

s t s = "source" map
t = "target" map

Terminology: X = set of "arrows"

P = set of "dots"

s(x) = source dot of arrow x in X

t(x) = target dot of arrow x in X

example:

s(a) = k t(a) = m

s(b) = m t(b) = m

s(c) = k t(c) = m

s(d) = p t(d) = q

s(e) = m t(e) = r

Represents a graph consisting of "arrows" and "dots":

c
•

•
•

• •

k

m

b

a

•

e

r

p
q

d

n

Note:  This is not an internal diagram of an S↓:↓-object!  It's literally a graph:  a drawing that could represent cities (dots) and

roads connecting them (arrows), for example; or anything else you want.  In particular, the "arrows" do not represent maps, and

the dots do not represent points.  (Unfortunantly, we're using the same term "arrow" for both these graph "arcs" and maps.)

II. S 
↓:↓-maps.

X

P

s t

fA Y

Q

s' t'

fD

(1) fD  s = s'  fA
(2) fD  t = t'  fA

Definition.  An S 
↓:↓-map

X

P

s t
f

Y

Q

s' t' is a pair of S-maps

                 ,                   for which  X
fA⎯ →⎯ Y   P

fD⎯ →⎯⎯ Q

f preserves the source and
target relations of the graphs

III. Identity maps in S 
↓:↓.

For  S 
↓:↓-object             take as identity map the pair of S-maps                   and                  .

X

P

s t    X
1X⎯ →⎯⎯ X    P

1P⎯ →⎯⎯ P

X

P

s t

1X X

P

s t

1P

Check:  Must be an S ↓:↓-map:

(1) 1P  s = s identity law for S
= s  1X identity law for S

(2) 1P  t = t identity law for S
= t  1X identity law for S
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IV. Composite maps in S 
↓:↓.

X

P

s t

Z

R

s'' t''

gA  fA

gD  fD

For  S 
↓:↓-maps

X

P

s t

Y

Q

s' t'

fA

fD

Y

Q

s' t'

Z

R

s'' t''

gA

gD

and

let their composite S 
↓:↓-map be the pair of S-maps gA  fA, gD  fD.

Check:  Must be an S ↓:↓-map; i.e., we must show:

(1) (gD  fD)  s = s''  (gA  fA)

(2) (gD  fD)  t = t''  (gA  fA)

and we're given that (fA, fD) and (gA, gD) are S ↓:↓-maps; i.e., we're given:

(i) fD  s = s'  fA
(ii) fD  t = t'  fA

(iii) gD  s' = s''  gA

(iv) gD  t' = t''  gA

So:

(1) (gD  fD)  s = gD  (fD  s) assoc law for S

= gD  (s'  fA) given

= (gD  s')  fA assoc law for S

= (s''  gA)  fA given

= s''  (gA  fA) assoc law for S

(2) (gD  fD)  t = gD  (fD  t) assoc law for S

= gD  (t'  fA) given

= (gD  t')  fA assoc law for S

= (t''  gA)  fA given

= t''  (gA  fA) assoc law for S

Now we just have to show that S 
↓:↓-maps obey the identity laws and the associative law, and we'll be done

constructing S 
↓:↓ as a category.  But it should be obvious that S 

↓:↓-maps do obey these laws, because S -maps obey

these laws, and S 
↓:↓-maps are certain types of pairs of S-maps.

Applications of S 
↓:↓

- electric circuits

- transportation (road systems/towns, etc.)

- linguistics (dots = nouns, arrows = verbs, etc.)

- conspiracy theories...


