12: Article II - Isomorphisms

Suppose we have 4 collections:

1. Isomorphisms

Idea: Isomorphisms are maps that preserve "similarity".

<u>Topics</u>

Isomorphisms
 Retractions and Sections

If you didn't know about numbers, how could you say A and B are similar to each other, but not to C or D? Do it in terms of **maps**:

Can map each element of A to a *unique* element of B such that *no* elements in B are left over.

Essential characteristic of f- it has an *inverse map*, call it g.

<u>Definition</u>. A map $A \xrightarrow{f} B$ is called an *isomorphism* (or *invertible* map) if there is a map $B \xrightarrow{g} A$ for which $g \circ f = 1_A$ and $f \circ g = 1_B$. Such a map g is called an *inverse* for f.

Two objects A and B are *isomorphic* if there is at least one isomorphism between them.

<u>Note</u>: There can be more than one isomorphism between two objects.

example:

How many isomorphisms are there in this case? $(3^3 = 27 \text{ possible maps, of which 6 are isomorphisms!*})$ What is the inverse for f_2 ?

*<u>ASIDE</u>: We (should) understand how to calculate the total number of possible maps between any given domain and codomain (homework assignment). For the number of particular maps that are *isomorphisms*, consider the following. Suppose there are *n* elements in the domain. The game is to hook each one of them up with a unique element in the codomain, which in this case has the same number *n* of elements, so that no elements in the codomain are left over. So: There are *n* different ways to hook up the first element. Once the first is hooked up, there are n - 1 different ways to hook up the second. There are then n - 2 different ways to hook up the third, *etc...*. When we get to the last, there will only be one way to hook it up (there will only be one element in the domain left). So there will be a total of $n \times (n - 1) \times (n - 2) \times \dots \times 1$ different ways to play this game. For instance, when there are *n* are *n* and *n* and *n* are *n* are *n* are *n* are *n*.

So there will be a total of $n \times (n-1) \times (n-2) \times \dots \times 1$ different ways to play this game. For instance, when there are n = 3 elements in the domain, there will be $3 \times (3-1) \times (3-2) = 6$ different ways to hook up elements. In other words, 6 different isomorphisms. (The expression $n \times (n-1) \times (n-2) \times \dots \times 1$ is called "*n* factorial" and is abbreviated by *n*!.)

<u>**Exercise**</u> 1 : Show that $A \xrightarrow{1_A} A$ is an isomorphism.

From the definition, we need to find an inverse for 1_A .

<u>So</u>: Need a map $A \xrightarrow{g} A$ such that

 $g \circ 1_A = 1_A$ and $1_A \circ g = 1_A$

<u>Note</u>: The identity laws tell us that $g \circ 1_A = g$ and $1_A \circ g = g$. <u>So</u>: Let $g = 1_A$! In other words, an inverse for 1_A is just 1_A .

<u>Exercise 2</u>: (A map can have at most one inverse.) Suppose $B \xrightarrow{g} A$ and $B \xrightarrow{k} A$ are both inverses for $A \xrightarrow{f} B$. Show that g = k.

If g, k are inverses for f, then

$$g \circ f = 1_A = k \circ f$$
 and $f \circ g = 1_B = f \circ k$

\underline{So} :	$g = 1_A \circ g$	identity law
	$= (k \circ f) \circ g$	given
	$= k \circ (f \circ g)$	associative law
	$= k \circ 1_B$	given
	$\stackrel{\checkmark}{=} k$	identity law

Note: Our first proof in the game of category theory. We want to establish that g = k. We do this by linking g with k by means of a series of justified steps. The only things we can use are what's given to us in the problem (indicated by "given" on the right), and the game rules (*i.e.*, the rules for category theory).

<u>Notation</u>: The inverse of $A \xrightarrow{f} B$ is denoted f^{-1} .

<u>Exercise 3a</u>: (If a map f has an inverse, then f can be cancelled on the left.) <u>Claim</u>: Suppose $A \xrightarrow{f} B$ has an inverse. Then for any h, k with codomain A, if $f \circ h = f \circ k$, then h = k.

<u>*Proof*</u>: First let's identify what we're given. We're given a map f with an inverse f^{-1} . This means we're given

 $f^{-1\circ} f = 1_A$ and $f \circ f^{-1} = 1_B$

We're also given two maps h, k with codomain A such that

 $f \circ h = f \circ k$

Given this, we want to now show that h = k. So begin with h and see if we can get k from what we're given and the rules of category theory:

$h = 1_A \circ h$	identity law	
$= (f^{-1} \circ f) \circ h$	given	<u>Note</u> : As in Ex. #2, the tricky part here is
$= f^{-1} \circ (f \circ h)$	associative law	the first step. There are two versions of the
$= f^{-1} \circ (f \circ k)$	given	identity law ("left-handed" and "right- handed"), so be careful to use the right one.
$= (f^{-1} \circ f) \circ k$	associative law	
$= 1_A \circ k$	given	
$\stackrel{\checkmark}{=} k$	identity law	

2. Retractions and Sections ("left-inverses", "right-inverses")

<u>Definition</u>. A retraction for a map $A \xrightarrow{f} B$ is a map $B \xrightarrow{r} A$ for which $r \circ f = 1_A$.

$$f \xrightarrow{B} r \qquad r \circ f = 1_A \qquad r \text{ is a "left-inverse" for } f$$

$$A \xrightarrow{1_A} A$$

<u>Definition</u>. A section for a map $A \xrightarrow{f} B$ is a map $B \xrightarrow{s} A$ for which $f \circ s = 1_{B^*}$.

$$s \xrightarrow{A} f f f \circ s = 1_B$$

$$B \xrightarrow{I_B} B$$

$$s \text{ is a "right-inverse" for } f$$

Proposition 1 now tells us that if a map f has a *section*, then we can do "*right-handed*" division with it. Proposition 1* tells us that if a map f has a *retraction*, then we can do "*left-handed*" division with it.

<u>**Prop. 1**</u>. If a map $A \xrightarrow{f} B$ has a section, then for any object T and any map $T \xrightarrow{y} B$, there exists a map $T \xrightarrow{x} A$ for which $f \circ x = y$.

Proof: We can summarize what we're given in the following diagram:

<u>Strategy</u>: We want to show that an x exists that "fills in" the dotted line in the diagram so that $f \circ x = y$. In other words, first doing this x, and then doing f, should be the same as just doing y. Look at the diagram and ask, How can we get from T to A (which is what x should do) using just compositions of s, y, and/or f?

 $f \circ s = 1_B$ <u>Let</u>: $x = s \circ y$. <u>Now</u>: Show that x, so-defined, satisfies $f \circ x = y$.

$$\begin{array}{ll} f \circ x = f \circ (s \circ y) & assumption \\ = (f \circ s) \circ y & associative \ law \\ = 1_B \circ y & given \\ \stackrel{\checkmark}{=} y & identity \ law \end{array}$$

Prop. 1*. If a map $A \xrightarrow{f} B$ has a *retraction*, then for any object T and any map $A \xrightarrow{g} T$, there exists a map $B \xrightarrow{t} T$ for which $t \circ f = g$.

In other words:

Proposition 2 tells us that a map f with a *retraction* is "*left-cancellable*": if $f \circ x_1 = f \circ x_2$, for any x_1, x_2 , then $x_1 = x_2$. Proposition 2* tells us that if a map f with a *section* is "*right-cancellable*": if $t_1 \circ f = t_2 \circ f$, for any t_1, t_2 , then $t_1 = t_2$.

Prop. 2. If a map $A \xrightarrow{f} B$ has a *retraction*, then for any object T and any maps $T \xrightarrow{x_1} A$, $T \xrightarrow{x_1} A$, if $f \circ x_1 = f \circ x_2$, then $x_1 = x_2$.

<u>*Proof*</u>: Suppose f has a retraction r. So $r \circ f = 1_A$. Then:

$x_1 = 1_A \circ x_1$	$identity \ law$
$= (r \circ f) \circ x_1$	given
$= r \circ (f \circ x_1)$	associative law
$= r \circ (f \circ x_2)$	given
$= (r \circ f) \circ x_2$	associative law
$= 1_A \circ x_2$	given
$\stackrel{\checkmark}{=} x_2$	identity law

 $\underline{Prop. \ 2^*}. \text{ If a map } A \xrightarrow{f} B \text{ has a section, then for any object } T \text{ and any maps } B \xrightarrow{t_1} T, B \xrightarrow{t_2} T, \text{ if } t_1 \circ f = t_2 \circ f, \text{ then } t_1 = t_2.$

<u>*Proof*</u>: Homework. Very similar to the proof for Prop. 2.

<u>Definition</u>. A monic is a left-cancellable map. In other words, a monic is a map $A \xrightarrow{f} B$ with the property that, for any object T and any maps $T \xrightarrow{x_1} A$, $T \xrightarrow{x_1} A$, if $f \circ x_1 = f \circ x_2$, then $x_1 = x_2$.

<u>Definition</u>. An *epic* is a *right-cancellable* map. In other words, an epic is a map $A \xrightarrow{f} B$ with the property that, for any object T and any maps $B \xrightarrow{t_1} T$, $B \xrightarrow{t_2} T$, if $t_1 \circ f = t_2 \circ f$, then $t_1 = t_2$.

<u>ASIDE</u>: By Props 2, 2^{*}, if a map has a retraction, then it's a monic; and if a map has a section, then it's an epic. But the converse isn't always true. If you're a monic, it's not necessarily the case that you have a retraction, and if you're a section, it's not necessarily the case that you're an epic. (See homework assignment.)

<u>**Theorem.**</u> If a map $A \xrightarrow{f} B$ has both a retraction r and a section s, then r = s.

<u>*Proof*</u>: Suppose f has a retraction r and a section s. So $r \circ f = 1_A$ and $f \circ s = 1_B$. Then:

$r = r \circ 1_B$	$identity \ law$
$= r \circ (f \circ s)$	given
$= (r \circ f) \circ s$	associative law
$= 1_A \circ s$	given
$\stackrel{\checkmark}{=} s$	identity law

<u>New Improved Definition</u>. A map $A \xrightarrow{f} B$ is an *isomorphism* if there exists another map f^{-1} which is both a retraction and a section of f. Such a map f^{-1} is called *the* inverse of f.

$$A \underbrace{f}_{f^{-1}} B \qquad f \circ f^{-1} = 1_B$$
$$f^{-1} \circ f = 1_A$$

Definition. An endomorphism that is also an isomorphism is called an **automorphism**.