12: Article II - Isomorphisms

## 1. Isomorphisms

Idea: Isomorphisms are maps that preserve "similarity".

Suppose we have 4 collections:


If you didn't know about numbers, how could you say $A$ and $B$ are similar to each other, but not to $C$ or $D$ ? Do it in terms of maps:

Can map each element of $A$ to a unique element of $B$ such that no elements in $B$ are left over.


This map doesn't send elements in $A$ to unique elements in $C$.


This map leaves an element in D left over.

ASIDE: Recall the essential characteristic of a map: It must take every element in its domain to exactly one element in its codomain. So each of these 3 examples does define a map.


This map takes each element of $A$ to a unique element of $B$ such that no elements of $B$ are left over.

Essential characteristic of $f$ - it has an inverse map, call it $g$.


Definition. A map $A \xrightarrow{f} B$ is called an isomorphism (or invertible map) if there is a map $B \xrightarrow{g} A$ for which $g \circ f=1_{A}$ and $f \circ g=1_{B}$. Such a map $g$ is called an inverse for $f$.

Two objects $A$ and $B$ are isomorphic if there is at least one isomorphism between them.

Note: There can be more than one isomorphism between two objects.

## example:



How many isomorphisms are there in this case?
( $3^{3}=27$ possible maps, of which 6 are isomorphisms!*)
What is the inverse for $f_{2}$ ?

* ASIDE: We (should) understand how to calculate the total number of possible maps between any given domain and codomain (homework assignment). For the number of particular maps that are isomorphisms, consider the following. Suppose there are $n$ elements in the domain. The game is to hook each one of them up with a unique element in the codomain, which in this case has the same number $n$ of elements, so that no elements in the codomain are left over. So: There are $n$ different ways to hook up the first element.
Once the first is hooked up, there are $n-1$ different ways to hook up the second.
There are then $n-2$ different ways to hook up the third, etc....
When we get to the last, there will only be one way to hook it up (there will only be one element in the domain left).
So there will be a total of $n \times(n-1) \times(n-2) \times \ldots \times 1$ different ways to play this game. For instance, when there are $n$ $=3$ elements in the domain, there will be $3 \times(3-1) \times(3-2)=6$ different ways to hook up elements. In other words, 6 different isomorphisms. (The expression $n \times(n-1) \times(n-2) \times \ldots . \times 1$ is called " $n$ factorial" and is abbreviated by $n!$.)

Exercise 1 : Show that $A \xrightarrow{1_{A}} A$ is an isomorphism.
From the definition, we need to find an inverse for $1_{A}$.
So: Need a map $A \xrightarrow{g} A$ such that

$$
g \circ 1_{A}=1_{A} \quad \text { and } \quad 1_{A} \circ g=1_{A}
$$

Note: The identity laws tell us that $g \circ 1_{A}=g$ and $1_{A} \circ g=g$.
So: Let $g=1_{A}$ ! In other words, an inverse for $1_{A}$ is just $1_{A}$.

Exercise 2 : ( $A$ map can have at most one inverse.) Suppose $B \xrightarrow{g} A$ and $B \xrightarrow{k} A$ are both inverses for $A \xrightarrow{f} B$. Show that $g=k$.

If $g, k$ are inverses for $f$, then

$$
g \circ f=1_{A}=k \circ f \quad \text { and } \quad f \circ g=1_{B}=f \circ k
$$

So: $\left.\begin{array}{rlrl}g & =1_{A} \circ g & & \text { identity law } \\ & =(k \circ f) \circ g & & \text { given } \\ & =k \circ(f \circ g) & & \text { associative law } \\ & =k \circ 1_{B} & & \text { given } \\ & \xlongequal{ } k & & \text { identity law }\end{array}\right\}$
Note: Our first proof in the game of category theory. We want to establish that $g=k$. We do this by linking $g$ with $k$ by means of a series of justified steps. The only things we can use are what's given to us in the problem (indicated by "given" on the right), and the game rules (i.e., the rules for category theory).

Notation: The inverse of $A \xrightarrow{f} B$ is denoted $f^{-1}$.

Exercise 3a: (If a map $f$ has an inverse, then $f$ can be cancelled on the left.)


Proof: First let's identify what we're given. We're given a map $f$ with an inverse $f^{-1}$. This means we're given

$$
f^{-1 \circ} f=1_{A} \quad \text { and } \quad f \circ f^{-1}=1_{B}
$$

We're also given two maps $h, k$ with codomain $A$ such that

$$
f \circ h=f \circ k
$$

Given this, we want to now show that $h=k$. So begin with $h$ and see if we can get $k$ from what we're given and the rules of category theory:

$$
\begin{aligned}
h & =1_{A} \circ h & & \text { identity law } \\
& =\left(f^{-1 \circ} \circ f\right) \circ h & & \text { given } \\
& =f^{-1} \circ(f \circ h) & & \text { associative law } \\
& =f^{-1} \circ(f \circ k) & & \text { given } \\
& =\left(f^{-1} \circ f\right) \circ k & & \text { associative law } \\
& =1_{A} \circ k & & \text { given } \\
& \xlongequal{=} k & & \text { identity law }
\end{aligned}
$$

Note: As in Ex. \#2, the tricky part here is the first step. There are two versions of the identity law ("left-handed" and "righthanded"), so be careful to use the right one.

## 2. Retractions and Sections ("left-inverses", "right-inverses")

Definition. A retraction for a map $A \xrightarrow{f} B$ is a map $B \xrightarrow{r} A$ for which $r \circ f=1_{A}$.




$$
f \circ s=1_{B} \quad s \text { is a "right-inverse" for } f
$$

Proposition 1 now tells us that if a map $f$ has a section, then we can do "right-handed" division with it. Proposition 1* tells us that if a map $f$ has a retraction, then we can do "left-handed" division with it.

Prop. 1. If a map $A \xrightarrow{f} B$ has a section, then for any object $T$ and any map $T \xrightarrow{y} B$, there exists a map $T \xrightarrow{x} A$ for which $f \circ x=y$.

In other words:

|  | $A$ |  | $A$ |
| :---: | :---: | :---: | :---: |
| If we have |  | then we can find $x$ in |  |
|  | $f \circ s=1_{B}$ |  | $f \circ x=y$ |

## Analogy with numbers:

Suppose we have a right-inverse for 4 , call it $1 / 4$. This means $4 \times 1 / 4=1$. We can now do "righthanded" division with 4 . We can solve problems like $4 \times x=5$. What is $x$ ? It's 5 divided by 4 . How do we compute this? If we have the right-inverse $1 / 4$, we compute it as $x=5 \times 1 / 4$.

Proof: We can summarize what we're given in the following diagram:


$$
f \circ s=1_{B}
$$

Strategy: We want to show that an $x$ exists that "fills in" the dotted line in the diagram so that $f \circ x=y$. In other words, first doing this $x$, and then doing $f$, should be the same as just doing $y$. Look at the diagram and ask, How can we get from $T$ to $A$ (which is what $x$ should do) using just compositions of $s, y$, and/or $f$ ?

Let: $\quad x=s \circ y$.
Now: Show that $x$, so-defined, satifies $f \circ x=y$.

$$
\begin{aligned}
f \circ x & =f \circ(s \circ y) & & \text { assumption } \\
& =(f \circ s) \circ y & & \text { associative law } \\
& =1_{B} \circ y & & \text { given } \\
& =y & & \text { identity law }
\end{aligned}
$$

$\underline{\text { Prop. 1 }}$. If a map $A \xrightarrow{f} B$ has a retraction, then for any object $T$ and any map $A \xrightarrow{g} T$, there exists a map $B \xrightarrow{t} T$ for which $t \circ f=g$.

In other words:

If we have


$$
r \circ f=1_{A}
$$

then we can find $t$ in

$t \circ f=g$

Proof: Homework. Very similar to the proof for Prop. 1.

Proposition 2 tells us that a map $f$ with a retraction is "left-cancellable": if $f \circ x_{1}=f \circ x_{2}$, for any $x_{1}, x_{2}$, then $x_{1}=x_{2}$. Proposition 2* tells us that if a map $f$ with a section is "right-cancellable": if $t_{1} \circ f=t_{2} \circ f$, for any $t_{1}, t_{2}$, then $t_{1}=t_{2}$.

Prop. 2. If a map $A \xrightarrow{f} B$ has a retraction, then for any object $T$ and any maps $T \xrightarrow{x_{1}} A, T \xrightarrow{x_{1}} A$, if $f \circ x_{1}=f \circ x_{2}$, then $x_{1}=x_{2}$.

Proof: Suppose $f$ has a retraction $r$. So $r \circ f=1_{A}$. Then:

$$
\begin{aligned}
x_{1} & =1_{A} \circ x_{1} & & \text { identity law } \\
& =(r \circ f) \circ x_{1} & & \text { given } \\
& =r \circ\left(f \circ x_{1}\right) & & \text { associative law } \\
& =r \circ\left(f \circ x_{2}\right) & & \text { given } \\
& =(r \circ f) \circ x_{2} & & \text { associative law } \\
& =1_{A} \circ x_{2} & & \text { given } \\
& \xlongequal{=} x_{2} & & \text { identity law }
\end{aligned}
$$

Prop. 2*. If a map $A \xrightarrow{f} B$ has a section, then for any object $T$ and any maps $B \xrightarrow{t_{1}} T, B \xrightarrow{t_{2}} T$, if $t_{1} \circ f=t_{2} \circ f$, then $t_{1}=t_{2}$.

Proof: Homework. Very similar to the proof for Prop. 2.

Definition. A monic is a left-cancellable map. In other words, a monic is a map $A \longrightarrow f$ with the property that, for any object $T$ and any maps $T \xrightarrow{x_{1}} A, T \xrightarrow{x_{1}} A$, if $f \circ x_{1}=f \circ x_{2}$, then $x_{1}=x_{2}$.

Definition. An epic is a right-cancellable map. In other words, an epic is a map $A \longrightarrow \quad$ f with the property that, for any object $T$ and any maps $B \xrightarrow{t_{1}} T, B \xrightarrow{t_{2}} T$, if $t_{1} \circ f=t_{2} \circ f$, then $t_{1}=t_{2}$.

[^0]Theorem. If a map $A \xrightarrow{f} B$ has both a retraction $r$ and a section $s$, then $r=s$.
$\underline{\text { Proof: }}$ Suppose $f$ has a retraction $r$ and a seciton $s$. So $r \circ f=1_{A}$ and $f \circ s=1_{B}$. Then:

$$
\begin{aligned}
r & =r \circ 1_{B} & & \text { identity law } \\
& =r \circ(f \circ s) & & \text { given } \\
& =(r \circ f) \circ s & & \text { associative law } \\
& =1_{A} \circ s & & \text { given } \\
& =s & & \text { identity law }
\end{aligned}
$$

New Improved Definition. A $\operatorname{map} A \xrightarrow{f} B$ is an isomorphism if there exists another map $f^{-1}$ which is both a retraction and a section of $f$. Such a map $f^{-1}$ is called the inverse of $f$.


Definition. An endomorphism that is also an isomorphism is called an automorphism.


[^0]:    $\underline{\boldsymbol{A S I D E}}:$ By Props $2,2^{*}$, if a map has a retraction, then it's a monic; and if a map has a section, then it's an epic. But the converse isn't always true. If you're a monic, it's not necessarily the case that you have a retraction, and if you're a section, it's not necessarily the case that you're an epic. (See homework assignment.)

