9: Problems with ZF Set Theory: The Skolem Paradox

<u>Recall</u>: ZF Set Theory -- attempt to mathematically codify the concept of infinity

I. Advantages of ZF Set Theory:

- (A) Precise notion of "set": avoids paradoxes of the One and the Many (Russell's paradox, Set of Sets Paradox, etc)
- (B) Precise notions of infinity: ZF Set theory includes Cantor's theory of ordinals and cardinals:

II. The Skolem Paradox

Problem of how to interpret ZF. Do we know what we're talking about? (Do we really know what ZF is about?)

<u>First note</u>:

"Ordinary" languages: Interpretations are (usually) easy to fix. The speaker can always *point* to the objects being referred to in the language (*ostensive definitions*).

ZF Set Theory language: We can't point to pure sets. Is there a way to fix the subject matter of the language of ZF to unambiguously be about sets? The Löwenheim-Skolem Theorem says "No":

<u>UPSHOT</u>: If S is consistent, then we can always interpret it as describing only *countably* many Things.

Consequences for ZF:

- (1) *Problematic*: No matter how many true statements from the language of ZF we are given, we could never tell if the speaker was talking about sets or natural numbers (or *any countable* collection of Things).
- (2) Worse: <u>What about uncountable sets?</u>

The Skolem Paradox

Under its intended interpretation, ZF refers to uncountable sets.

<u>BUT</u>: The L-S Theorem says we can always interpret ZF as only referring to countable sets.

 \underline{SO} : How can we interpret an uncountable set in terms of a countable set?

<u>Example</u>: How can we interpret the sentence "The powerset $\mathcal{O}(\mathbb{N})$ of \mathbb{N} is uncountable" only in terms of countable sets?

<u>General idea</u>: The L-S Theorem allows us to do the following:

Take a small slice M off the bottom of the Set Hierarchy such that:

- (1) M is a countably infinite set, whose members are themselves countable sets.
- (2) *M* serves as an interpretation of *ZF*: The members of *M* can be interpreted as the subject matter of *ZF*. Under this interpretation, an "*M*-set" corresponds to a "*ZF*-set".

Formal Resolution of Skolem Paradox:

<u>*Recall*</u>: To say "Set A is uncountable" means "There is another set B such that the members of A cannot be <u>*paired in 1-1 fashion*</u> with the members of B".

 \Rightarrow ... and this just means "Another set C exists whose members are the pairs of A and B members"

under the "intended" interpretation, B is \mathbb{N}

 \underline{SO} : Statements about uncountable sets are interpreted in M as statements about whether or not certain M-sets exist.

Example: The statement "The powerset $\mathscr{O}(\mathbb{N})$ of \mathbb{N} is uncountable" is interpreted in M as a statement about certain M-sets: "There is an M-set M_1 (corresponding to $\mathscr{O}(\mathbb{N})$) and there is an M-set M_2 (corresponding to \mathbb{N}) and there is not an M-set corresponding to the set of pairs of members of M_1 and M_2 " *i.e.*, "Within M, there is a set M_1 that looks like $\mathscr{O}(\mathbb{N})$ and another M_2 that looks like \mathbb{N} , and these can't be paired." Outside of M, we can see that all M-sets are really only countable. The M-set M_1 that M says is $\mathfrak{O}(\mathbb{N})$ really isn't: outside M, M_1 and \mathbb{N} can be paired, but this requires the existence of a "pairing" set that isn't in M.

Lingering Conceptual Problems:

The L-S Theorem says there is nothing intrinsic to ZF that can determine what its intended interpretation is. In particular: Anything you can do in ZF, you can do in M. But we know that ZF extends to Things outside M (*i.e.*, it extends to sets in the full Set Hierarchy).

- <u>BUT</u>: How do we know that what we take to be the full Hierarchy *really* is the intended interpretation of ZF? What if what we think is the full hierarchy is *really* a small slice, call it M', near the bottom of an even larger hierarchy?
- <u>In particular</u>: What we think are **uncountable** sets in our hierarchy may *really* be **countable** M'-sets in the larger hierarchy.

Suggests a relativism of the following sort (Skolem):

A set can only be said to be countable or uncountable **relative** to an interpretation of ZF.

<u>But recall</u>: The distinction between countable and uncountable sets is the basic distinction between types of infinity:

<u>Countably infinite sets</u>: $\mathbb{N}, \omega, \aleph_0$ -- "first level" of infinity <u>Uncountable sets</u>: $\aleph_1, \aleph_2, \aleph_3, \dots$ -- each labels the next higher level of infinity

Are we thus left with a relative concept of infinity?