08. Zermelo-Fraenkel (ZF) Formal Set Theory

Motivation: To translate Naive Set Theory into a formal system (see lecture on Rigorization and Proof)

Primitives of $\boldsymbol{Z F}$: Individuals (infinite): sets ("pure" iterative sets) One Property: set-membership (denoted by " \in ")

How to play the game of set theory
Formal Rules of ZF: First-Order Logic, $Z F$ axioms

$\underline{Z F}$ axioms (8):

(ZF1) Axiom of Extension. Two sets x, y are the same if and only if they have the same members.

$$
x=y \leftrightarrow(\forall z)(z \in x \leftrightarrow z \in y)
$$

(ZF2) Empty Set Axiom. A set x exists that has no members.

$$
(\exists x)(\forall y) \sim(y \in x)
$$

Notation: (ZF1) and (ZF2) entail there is a unique empty set: Call it \varnothing.
(ZF3) Pairing Axiom. Given any sets x and y, there is a "pair" set z whose members are x and y.

$$
(\forall x)(\forall y)(\exists z)(\forall w)(w \in z \leftrightarrow(w=x \vee w=y))
$$

Notation: (ZF1) and (ZF3) entail there is a unique pair set for any given x, y : Call it $\{x, y\}$. Speical Case: The singleton set $\{x\}$ is the special case $\{x, x\}$.

(ZF4) Union Axiom. Given any set x, there is a "union" set y which has as its members all members of members of x.

$$
(\forall x)(\exists y)(\forall z)(z \in y \leftrightarrow(\exists w)(w \in x \& z \in w))
$$

Notation: (ZF1) and (ZF4) entail there is a unique union for any set x : Call it $\cup x$.
Let $x \cup y$ represent the union set $\cup\{x, y\}$ of the pair set of x and y.

$\{x, y\}$

Powerset Axoim. Given any set x, there is a set y which has as its members all sets whose members are also members of x (ie., y contains all the "subsets" of x).

$$
(\forall x)(\exists y)(\forall z)(z \in y \leftrightarrow(\forall w)(w \in z \rightarrow w \in x))
$$

Notation: (ZF1) and (ZF4) entail there is a unique powerset for any set x : Call it $\wp(x)$.
Define $z \subseteq x$ (" z is a subset of x ") as $\forall w(w \in z \rightarrow w \in x)$. Then (ZF5) can be written as:

$$
(\forall x)(\exists y)(\forall z)(z \in y \leftrightarrow z \subseteq x)
$$

Def. 1: For any set x, the successor of x is the set $x^{\prime}=x \cup\{x\}$.
(ZF6) Axiom of Infinity. A set x exists that contains \varnothing, and the successor of each of its elements.

$$
(\exists x)\left(\varnothing \in x \&(\forall y)\left(y \in x \rightarrow y^{\prime} \in x\right)\right)
$$

Terminology: A set that satisfies (ZF6) is called a successor set.
Comment: This axiom guarantees the existence of a set x such that \varnothing is a member of x, and for any set y, if y is a member of x, then so is its successor $y^{\prime}=y \cup\{y\}$.
By construction, \varnothing is in x.
Then: So is $\varnothing \cup\{\varnothing\}$, or $\{\varnothing\}$.
Then: So is $\{\varnothing\} \cup\{\{\varnothing\}\}$ or $\{\varnothing,\{\varnothing\}\}$.
Then: So is $\{\varnothing,\{\varnothing\}\} \cup\{\{\varnothing,\{\varnothing\}\}\}$ or $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$.
Etc...
So: \quad The "minimal" successor set is given by $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\},\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}, \ldots\}$

Let's call this set ω, and call each of it members by the following:

$$
\begin{aligned}
& \varnothing=0 \\
& \{\varnothing\}=1=\{0\} \\
& \{\varnothing,\{\varnothing\}\}=2=\{0,1\} \\
& \{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}=3=\{0,1,2\} \\
& \{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\},\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}\}=4=\{0,1,2,3\} \\
& \text { etc., } \ldots
\end{aligned}
$$

$$
\text { Note: } 1=0^{\prime}, 2=1^{\prime}=0^{\prime \prime}, 3=2^{\prime}=0^{\prime \prime \prime} \text {, etc. }
$$

SO: $\quad \omega=\{0,1,2,3, \ldots\}$
Can now form:
ω^{\prime}, call it $\omega+1=\omega \cup\{\omega\}=\{0,1,2,3, \ldots, \omega\}$
$\omega^{\prime \prime}$, call it $\omega+2=\omega \cup\left\{\omega^{\prime}\right\}=\{0,1,2,3, \ldots \omega, \omega+1\}$
etc....

What about "higher order" ordinals? Need the following axiom:
(ZF7) Replacement Axiom Scheme. Given a relation $\mathcal{A}(x, y)$ that relates every set x to a unique set y, then for any set z, we can form a new set v which has as its members all the sets that are related to members of z under \mathcal{A}.

$$
(\forall x)(\exists!y) \mathcal{A}(x, y) \rightarrow(\forall z)(\exists v)(\forall u)(u \in v \leftrightarrow(\exists t)(t \in z \& \mathcal{A}(t, u)))
$$

ASIDE: The symbol " \exists !" here means "there exists a unique..."

Comment: The members of v are formed by collecting together all the sets to which the members of z are mapped by \mathcal{A}. You start with the set z and get the set v by replacing all the members of z with their counterparts under the relation \mathcal{A}. This is called an "Axiom Scheme" since it holds for all possible relations \mathcal{A} (so there's really one axiom per relation \mathcal{A} : you can build a new set from an original by using any appropriate available function).

example: Let $\mathcal{A}(x, y)$ be the relation that holds just when $x \in \omega$ and $y=\omega+x$ (i.e., $\mathcal{A}(x, y)$ holds just when y is the xth successor of ω).
Then: \quad By (ZF7), there is a set v such that for every $t \in \omega, \omega+t \in v$.

Now: Let $\omega \times 2=\omega \cup v=\{0,1,2,3, \ldots, \omega, \omega+1, \omega+2, \ldots\}$
And: Construct $\omega \times 3$ using (ZF7) with the relation $\mathcal{A}^{\prime}(x, y)$ that holds just when $x \in \omega$ and $y=\omega \times 2+x$ (y is the x th successor of $\omega \times 2$). Similarly for $\omega \times 4, \omega \times 5$, etc...

Now: Let $\mathcal{A}^{\prime \prime}(x, y)$ be the relation that holds just when $x \in \omega$ and $y=\omega \times x(y$ is the xth multiple of $\omega)$. This generates sets of the form $\omega^{2}, \omega^{3}, \omega^{4}$, etc., ...
ex. $\quad \omega^{2}=\left\{\begin{array}{cccc}0, & 1, & 2, & \cdots \\ \omega, & \omega+1, & \omega+2, & \cdots \\ \omega \times 2, & (\omega \times 2)+1, & (\omega \times 2)+2, & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right\}$

Can continue in similar manner to construct ever increasing hierarchy of ordinals!

Axiom of Foundation. Every non-empty set x contains a member that has no members in common with x.

$$
(\forall x)(\sim x=\varnothing \rightarrow(\exists y)(y \in x \& \sim(\exists z)(z \in y \& z \in x)))
$$

Comment: This axiom says that for any set x other than the empty set, there is a "minimal" member y of x that has no members in common with members of x. This rules out circular chains of sets (e.g., $x \in y$ and y $\in z$ and $z \in x)$ and infinitely descending chains of sets. In particular, it rules out the possibility of a set being a member of itself:

Lemma: For any set $x, x \notin x$.
Proof: Suppose there's a set x such that $x \in x$.

$$
\underline{e x}: \quad x=\{x\}, x=\{x, u, v, \ldots\}
$$

Then: There's a "pair" set $z=\{x\}$. (ZF3, degenerate pair $\{x, x\}$.)
Now: $\quad z$ must have a "minimal" member y such that $z \cap y=\varnothing$. (ZF8)
But: \quad The only member of z is x, and $z \cap x \neq \varnothing$. (Since $x \in x, x \in z$.)

Recall: Russell's Paradox

The Russell "set" R is defined by: $x \in R \leftrightarrow x \notin x$. Is R a member of itself? If $R \in R$, then $R \notin R$, and if $R \notin R$, then $R \in R$.
$\underline{\boldsymbol{B U T}}$: The above lemma entails that R cannot be a set!
$\boldsymbol{W H Y}$? If R is a set, then it must be the set of all sets (since the lemma states that all sets are sets that are not members of themselves). But if R is the set of all sets, it must contain itself. So R cannot be a set. (So what is R ? It's a "collection" of sets that is not itself a set.)

II. Natural Number Arithmetic

General Claim: Natural number arithemtic can be reduced to ZF set theory.
Def. 2: A set F is hereditary with respect to successor if for any set x, if x is a member of F, then so is its successor x^{\prime}.

Def. 3: A set x is a natural number if, for every set F, if $\varnothing \in F$ and F is hereditary with respect to successor, then $x \in F$.

Def. 4 (Addition): For any $m \in \mathbb{N}$,
(i) $m+0=m$
(ii) for any $n \in \mathbb{N}, m+n^{\prime}=(m+n)^{\prime}$

$$
\text { ex. } \begin{align*}
3+2 & =3+\left(0^{\prime}\right)^{\prime} \\
& =\left(3+0^{\prime}\right)^{\prime} \tag{Def.4i}\\
& =\left((3+0)^{\prime}\right. \\
& =\left(3^{\prime}\right)^{\prime} \\
& =4^{\prime}=5
\end{align*}
$$

$$
=\left(3+0^{\prime}\right)^{\prime} \quad(\text { Def. } 4 \mathrm{ii})
$$

$$
=\left((3+0)^{\prime}\right)^{\prime} \quad \text { (Def. 4ii) }
$$

Def. 5 (Multiplication): For any $m \in \mathbb{N}$,
(i) $m \times 0=0$
(ii) for any $n \in \mathbb{N}, m \times n^{\prime}=(m \times n)+m$

$$
\text { ex. } \begin{aligned}
3 \times 2 & =3 \times\left(0^{\prime}\right)^{\prime} & & \\
& =\left(3 \times 0^{\prime}\right)+3 & & \text { (Def. 5ii) } \\
& =((3 \times 0)+3)+3 & & \text { (Def. 5ii) } \\
& =(0+3)+3 & & \text { (Def. 5i) } \\
& =6 & &
\end{aligned}
$$

Peano Axioms for "First Order" Arithmetic

(PA1) 0 is a natural number.
(PA2) For each natural number x, x^{\prime} is a natural number.
(PA3) For all natural numbers $x, 0 \neq x^{\prime}$.
(PA4) For all natural numbers x and y, if $x^{\prime}=y^{\prime}$, then $x=y$.
(PA5) For any set F of natural numbers containing 0 , if F is hereditary with \longleftarrow Principle of Weak respect to successor, then F contains all natural numbers.
$\underline{\text { Claim: }}$ From \mathbb{N} one can generate $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ (integers, rationals, reals, complex numbers).

Additional Axiom for ZF:

(AC) Axiom of Choice. For any non-empty set x, there is a set y which has precisely one element in common with each member of x.

Comment: $A C$ doesn't tell you how to construct y; i.e., it doesn't say what the "choice" function is that you use to pick out the members of y from members of x. All the other axioms do give you recipes for the construction of new sets. For this reason, the status of $A C$ as an axiom is sometimes debated. It is needed in order to prove that all sets can be well-ordered, so it's important for the theory of ordinal and cardinal numbers.

