

08. Zermelo-Fraenkel (ZF) Formal Set Theory

Motivation: To translate Naive Set Theory into a *formal system* (see lecture on *Rigorization and Proof*)

Primitives of ZF: Individuals (infinite): sets (“pure” iterative sets)
One Property: set-membership (denoted by “ \in ”)

How to play the game of set theory

Formal Rules of ZF: First-Order Logic, ZF axioms

ZF axioms (8):

(ZF1) Axiom of Extension. Two sets x, y are the same if and only if they have the same members.

$$x = y \leftrightarrow (\forall z)(z \in x \leftrightarrow z \in y)$$

(ZF2) Empty Set Axiom. A set x exists that has no members.

$$(\exists x)(\forall y)\sim(y \in x)$$

This tells us that at least one set exists

Notation: (ZF1) and (ZF2) entail there is a unique empty set: Call it \emptyset .

(ZF3) Pairing Axiom. Given any sets x and y , there is a “pair” set z whose members are x and y .

$$(\forall x)(\forall y)(\exists z)(\forall w)(w \in z \leftrightarrow (w = x \vee w = y))$$

Notation: (ZF1) and (ZF3) entail there is a unique pair set for any given x, y : Call it $\{x, y\}$.

Special Case: The *singleton set* $\{x\}$ is the special case $\{x, x\}$.

(ZF4) Union Axiom. Given any set x , there is a “union” set y which has as its members all members of members of x .

$$(\forall x)(\exists y)(\forall z)(z \in y \leftrightarrow (\exists w)(w \in x \ \& \ z \in w))$$

Notation: (ZF1) and (ZF4) entail there is a unique union for any set x : Call it $\bigcup x$.

Let $x \cup y$ represent the union set $\bigcup\{x, y\}$ of the pair set of x and y .

(ZF5) Powerset Axiom. Given any set x , there is a set y which has as its members all sets whose members are also members of x (i.e., y contains all the “subsets” of x).

$$(\forall x)(\exists y)(\forall z)(z \in y \leftrightarrow (\forall w)(w \in z \rightarrow w \in x))$$

Notation: (ZF1) and (ZF4) entail there is a unique powerset for any set x : Call it $\wp(x)$.

Define $z \subseteq x$ (“ z is a subset of x ”) as $\forall w(w \in z \rightarrow w \in x)$. Then (ZF5) can be written as:

$$(\forall x)(\exists y)(\forall z)(z \in y \leftrightarrow z \subseteq x)$$

Def. 1: For any set x , the *successor* of x is the set $x' = x \cup \{x\}$.

(ZF6) Axiom of Infinity. A set x exists that contains \emptyset , and the successor of each of its elements.

$$(\exists x)(\emptyset \in x \ \& \ (\forall y)(y \in x \rightarrow y' \in x))$$

Terminology: A set that satisfies (ZF6) is called a *successor set*.

Comment: This axiom guarantees the existence of a set x such that \emptyset is a member of x , and for any set y , if y is a member of x , then so is its successor $y' = y \cup \{y\}$.

By construction, \emptyset is in x .

Then: So is $\emptyset \cup \{\emptyset\}$, or $\{\emptyset\}$.

Then: So is $\{\emptyset\} \cup \{\{\emptyset\}\}$ or $\{\emptyset, \{\emptyset\}\}$.

Then: So is $\{\emptyset, \{\emptyset\}\} \cup \{\{\emptyset, \{\emptyset\}\}\}$ or $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$.

Etc...

So: The "minimal" successor set is given by $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \dots\}$

Let's call this set ω , and call each of its members by the following:

$$\begin{aligned} \emptyset &= 0 \\ \{\emptyset\} &= 1 = \{0\} \\ \{\emptyset, \{\emptyset\}\} &= 2 = \{0, 1\} \\ \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} &= 3 = \{0, 1, 2\} \\ \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\} &= 4 = \{0, 1, 2, 3\} \\ &\vdots \\ &\text{etc., ...} \end{aligned} \quad \left. \right\} \text{The natural numbers!}$$

Note: $1 = 0'$, $2 = 1' = 0''$, $3 = 2' = 0'''$, etc.

SO: $\omega = \{0, 1, 2, 3, \dots\}$

Can now form:

ω' , call it $\omega + 1 = \omega \cup \{\omega\} = \{0, 1, 2, 3, \dots, \omega\}$

ω'' , call it $\omega + 2 = \omega \cup \{\omega'\} = \{0, 1, 2, 3, \dots, \omega, \omega + 1\}$

etc....

What about "higher order" ordinals? Need the following axiom:

(ZF7) Replacement Axiom Scheme. Given a relation $\mathcal{A}(x, y)$ that relates every set x to a unique set y , then for any set z , we can form a new set v which has as its members all the sets that are related to members of z under \mathcal{A} .

$$(\forall x)(\exists!y)\mathcal{A}(x, y) \rightarrow (\forall z)(\exists v)(\forall u)(u \in v \leftrightarrow (\exists t)(t \in z \ \& \ \mathcal{A}(t, u)))$$

ASIDE: The symbol " $\exists!$ " here means "there exists a unique..."

Comment: The members of v are formed by collecting together all the sets to which the members of z are mapped by \mathcal{A} . You start with the set z and get the set v by replacing all the members of z with their counterparts under the relation \mathcal{A} . This is called an "Axiom Scheme" since it holds for all possible relations \mathcal{A} (so there's really one axiom per relation \mathcal{A} : you can build a new set from an original by using any appropriate available function).

example: Let $\mathcal{A}(x, y)$ be the relation that holds just when $x \in \omega$ and $y = \omega + x$ (i.e., $\mathcal{A}(x, y)$ holds just when y is the x th successor of ω).

Then: By (ZF7), there is a set v such that for every $t \in \omega$, $\omega + t \in v$.

Now: Let $\omega \times 2 = \omega \cup v = \{0, 1, 2, 3, \dots, \omega, \omega + 1, \omega + 2, \dots\}$

And: Construct $\omega \times 3$ using (ZF7) with the relation $\mathcal{A}'(x, y)$ that holds just when $x \in \omega$ and $y = \omega \times 2 + x$ (y is the x th successor of $\omega \times 2$). Similarly for $\omega \times 4$, $\omega \times 5$, etc...

Now: Let $\mathcal{A}''(x, y)$ be the relation that holds just when $x \in \omega$ and $y = \omega \times x$ (y is the x th multiple of ω). This generates sets of the form $\omega^2, \omega^3, \omega^4$, etc., ...

$$\underline{ex.} \quad \omega^2 = \begin{Bmatrix} 0, & 1, & 2, & \dots \\ \omega, & \omega + 1, & \omega + 2, & \dots \\ \omega \times 2, & (\omega \times 2) + 1, & (\omega \times 2) + 2, & \dots \\ \vdots & \vdots & \vdots & \ddots \end{Bmatrix}$$

Can continue in similar manner to construct ever increasing hierarchy of ordinals!

(ZF8) **Axiom of Foundation.** Every non-empty set x contains a member that has no members in common with x .

$$(\forall x)(\sim x = \emptyset \rightarrow (\exists y)(y \in x \ \& \ \sim(\exists z)(z \in y \ \& \ z \in x)))$$

Comment: This axiom says that for any set x other than the empty set, there is a “minimal” member y of x that has no members in common with members of x . This rules out circular chains of sets (e.g., $x \in y$ and $y \in z$ and $z \in x$) and infinitely descending chains of sets. In particular, it rules out the possibility of a set being a member of itself:

Lemma: For any set x , $x \notin x$.

Proof: Suppose there's a set x such that $x \in x$.

$$\underline{ex:} \ x = \{x\}, x = \{x, u, v, \dots\}$$

Then: There's a “pair” set $z = \{x\}$. (ZF3, degenerate pair $\{x, x\}$.)

Now: z must have a “minimal” member y such that $z \cap y = \emptyset$. (ZF8)

But: The *only* member of z is x , and $z \cap x \neq \emptyset$. (Since $x \in x$, $x \in z$.)

Recall: Russell's Paradox

The Russell “set” R is defined by: $x \in R \leftrightarrow x \notin x$. Is R a member of itself? If $R \in R$, then $R \notin R$, and if $R \notin R$, then $R \in R$.

BUT: The above *lemma* entails that R *cannot be a set*!

WHY? If R is a set, then it must be the set of all sets (since the *lemma* states that *all* sets are sets that are not members of themselves). But if R is the set of all sets, it must contain itself. So R cannot be a set. (So what is R ? It's a “collection” of sets that is not itself a set.)

II. Natural Number Arithmetic

General Claim: Natural number arithmetic can be reduced to ZF set theory.

Def. 2: A set F is ***hereditary with respect to successor*** if for any set x , if x is a member of F , then so is its successor x' .

Def. 3: A set x is a ***natural number*** if, for every set F , if $\emptyset \in F$ and F is hereditary with respect to successor, then $x \in F$.

Def. 4 (Addition): For any $m \in \mathbb{N}$,

- (i) $m + 0 = m$
- (ii) for any $n \in \mathbb{N}$, $m + n' = (m + n)'$

$$\begin{aligned} \underline{ex.} \quad 3 + 2 &= 3 + (0')' \\ &= (3 + 0')' && (\text{Def. 4ii}) \\ &= ((3 + 0)')' && (\text{Def. 4ii}) \\ &= (3')' && (\text{Def. 4i}) \\ &= 4' = 5 \end{aligned}$$

Def. 5 (Multiplication): For any $m \in \mathbb{N}$,

- (i) $m \times 0 = 0$
- (ii) for any $n \in \mathbb{N}$, $m \times n' = (m \times n) + m$

$$\begin{aligned} \underline{ex.} \quad 3 \times 2 &= 3 \times (0')' \\ &= (3 \times 0') + 3 && (\text{Def. 5ii}) \\ &= ((3 \times 0) + 3) + 3 && (\text{Def. 5ii}) \\ &= (0 + 3) + 3 && (\text{Def. 5i}) \\ &= 6 \end{aligned}$$

Can now show that the "Peano" axioms for first order arithmetic hold in ZF:

Peano Axioms for "First Order" Arithmetic

- (PA1) 0 is a natural number.
- (PA2) For each natural number x , x' is a natural number.
- (PA3) For all natural numbers x , $0 \neq x'$.
- (PA4) For all natural numbers x and y , if $x' = y'$, then $x = y$.
- (PA5) For any set F of natural numbers containing 0, if F is hereditary with respect to successor, then F contains all natural numbers.

 Principle of Weak Mathematical Induction

Claim: From \mathbb{N} one can generate \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} (integers, rationals, reals, complex numbers).

Additional Axiom for ZF:

- (AC) ***Axiom of Choice.*** For any non-empty set x , there is a set y which has precisely one element in common with each member of x .

Comment: AC doesn't tell you *how* to construct y ; *i.e.*, it doesn't say what the "choice" function is that you use to pick out the members of y from members of x . All the other axioms *do* give you recipes for the construction of new sets. For this reason, the status of AC as an axiom is sometimes debated. It is needed in order to prove that all sets can be well-ordered, so it's important for the theory of ordinal and cardinal numbers.