08. Zermelo-Fraenkel (ZF) Formal Set Theory

Motivation: To translate Naive Set Theory into a formal system (see lecture on Rigorization and Proof)

Primitives of ZF: Individuals (infinite):  sets (“pure” iterative sets)

One Property: set-membership (denoted by “€”) How to play the
game of set theory

Formal Rules of ZF: First-Order Logic, ZF axioms

ZF axioms (8):

(ZF1) Axiom of Extension. Two sets z, y are the same if and only if they have the same members.

z=y— (V2)(z €z 2€y)

(ZF2) Empty Set Axiom. A set x exists that has no members. <_;_ This tells us tha,t at
least one set exists
(32)(Vy)~(y € z)

Notation: (ZF1) and (ZF2) entail there is a unique empty set: Call it &.

(ZF3) Pairing Axziom. Given any sets z and y, there is a “pair” set z whose members are z and .

(V) (V) @) (V)(w € 2 = (w= 2V w=1y))

Notation: (ZF1) and (ZF3) entail there is a unique pair set for any given z, y: Call it {z, y}.
Speical Case: The singleton set {z} is the special case {z, z}.
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(ZF4) Union Aziom. Given any set z, there is a “union” set y which has as its members all members of members
of z.
(Vo) (Fy) (V2)(z € y « Qu)(w e z& z € w))

Notation: (ZF1) and (ZF4) entail there is a unique union for any set z: Call it Uz.
Let z U y represent the union set U{z, y} of the pair set of z and y.
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(ZF5) Powerset Axzoim. Given any set z, there is a set y which has as its members all sets whose members are

also members of z (i.e., y contains all the “subsets” of z).
(Vz)(Fy)(V2)(z € y « (Yw)(w € z — w € 1))

Notation: (ZF1) and (ZF4) entail there is a unique powerset for any set z: Call it g (z).

Define z C z (“zis a subset of 2”) as Vw(w € z — w € z). Then (ZF5) can be written as:

(Vo) Fy)(V2)(z €y = 2 C 1)

Def. 1: For any set z, the successor of z is the set 2’ = 2 U {z}.

(ZF6) Axziom of Infinity. A set x exists that contains &, and the successor of each of its elements.

F) (D e xz& Vy)(y € z— y' € 1))

Terminology: A set that satisfies (ZF6) is called a successor set.
Comment: This axiom guarantees the existence of a set z such that & is a member of z, and for any set y, if y
is a member of z, then so is its successor y' = y U {y}.
By construction, & is in z.
Then: Sois @ U {J}, or {T}.
Then: Sois {2} U ({2} or {2, {2}).
Then: Sois (. (B} U {2, (B})} o {2, (2}, (@, (2})).
Etc...
So: The "minimal" successor set is given by {Q, {J}, {Q, {D}}, {D, {D}, {D, {D}}}, ... }

Let's call this set w, and call each of it members by the following:
D=0
{2} =1={0}
{@. {2}t =2={0, 1}
{2, {2}, {9, {G}}} =3 =10, 1,2}
{2, {2}, {9, {G}}, {2, {2}, {2, {D}}}} =4 = {0, 1,2, 3}

etc., .

The natural numbers!

Note: 1=0,2=1'=0",3=2"=0", elc.



SO: w=1{0,1,2,3,..}

Can now form:

whicallit w+1=wU{w} ={0,1,2,3, ..., w}
whellitw+2=wU{w}={0,1,2,3, ... w,w+ 1}

etc....

What about "higher order” ordinals? Need the following axiom:

Replacement Axiom Scheme. Given a relation A(z, y) that relates every set x to a unique set y, then for

any set z, we can form a new set v which has as its members all the sets that are related to members of z

(ZF7)

under A.
(Vz)3ly) Az, y) — (V2)(Fv)(Vu)(u € v — (FE)(t € 2 & A(t, u))) ASIDE: The symbol "3!" here
means "there exists a unique..."

Comment: The members of v are formed by collecting together all the sets to which the members of z are
mapped by A. You start with the set z and get the set v by replacing all the members of z with their
counterparts under the relation A. This is called an “Axiom Scheme” since it holds for all possible relations

A (so there’s really one axiom per relation A: you can build a new set from an original by using any

appropriate available function).

g v
_— A(t;, u;) holds,
A Alty, up) holds,
etc...

example: Let A(z, y) be the relation that holds just when = € w and y = w + z (i.e., A(z, y) holds just

when y is the zth successor of w).

Then: By (ZF7), there is a set v such that for every t € w, w + ¢ € .

z=w
! A(0, w) holds,
> A(1, wt1) holds,
A etc...

Now: Letwx2=wUv={0,1,2,3,...,w,w+1,w+ 2, ..}
Construct w x 3 using (ZF7) with the relation A'(z, y) that holds just when z € wand y=wx 2 + z

(y is the xth successor of w x 2). Similarly for w x 4, w x 5, ete...
Let A"(z, y) be the relation that holds just when z € w and y = w x z (y is the xth multiple of w).

This generates sets of the form w?, w?, w?, etc., ...

0, 1, 2,
Can continue in similar manner

w, w+1, w + 2,
exr. to construct ever increasing
wx2, (wx2)+1 (wx2)+2, - hierarchy of ordinals!



(ZF8) Aziom of Foundation. Every non-empty set x contains a member that has no members in common with z.

(Vo) (~rz=0 — Ay)(y e 2 & ~(F2)(z € y & z € 1))

Comment: This axiom says that for any set x other than the empty set, there is a “minimal” member y of x
that has no members in common with members of . This rules out circular chains of sets (e.g., z € y and y
€ zand z € z) and infinitely descending chains of sets. In particular, it rules out the possibility of a set being

a member of itself:

Lemma: For any set z, © & x.

er: z={z}, z={z, u, v, ..}
Proof:  Suppose there's a set x such that z € .

Then:  There's a "pair" set z = {z}. (ZF3, degenerate pair {z, x}.)
Now: z must have a "minimal" member y such that z Ny = @. (ZF8)

But: The only member of zis x, and 2z Nz = &. (Since z € z, € 2.)

ﬁecall: Russell's Paradozx \

The Russell "set" R is defined by: € R < ¢ z. Is R a member of itself? If R € R, then R ¢ R, and if
R & R, then R € R.

BUT: The above lemma entails that R cannot be a set!

WHY? If Ris a set, then it must be the set of all sets (since the lemma states that all sets are sets that

are not members of themselves). But if R is the set of all sets, it must contain itself. So R cannot be a

@t. (So what is R? It's a "collection" of sets that is not itself a set.) /

II. Natural Number Arithmetic

General Claim: Natural number arithemtic can be reduced to ZF set theory.

Def. 2: A set Fis hereditary with respect to successor if for any set z, if zis a member of F, then so is its

successor z'.

-
]
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A set zis a natural number if, for every set F, if @ € F and F is hereditary with respect to successor,
then z € F.

Def. 4 (Addition): For any m € N,

ex. 34+2=3+(0)

i) m+0=m =(3+0")’ (Def. 4ii)

(ii) forany ne N,m+ n'= (m+ n)’ =((3+0)) (Def. 4ii)
=) (Def. 4i)
=4'=5

Def. 5 (Multiplication): For any m € N,
(i) mx0=0

(ii) forany ne Ny,m x n'=(m x n) +m

er. 3 x2=3x (0"

=(3x0)+3 (Def. 5ii)
=((3x0)+3)+3 (Def. 5ii)
=0+3)+3 (Def. 5i)
=6



Can now show that the "Peano" azioms for first order arithmetic hold in ZF:

Peano Axioms for "First Order" Arithmetic

(PA1) 0 is a natural number.

(PA2) For each natural number z, z'is a natural number.

(PA3) For all natural numbers z, 0 = 2.

(PA4) For all natural numbers z and vy, if 2’ = ¢/, then z = y.

(PA5) For any set F' of natural numbers containing 0, if F'is hereditary Withe_S Principle of Weak
Mathematical Induction

respect to successor, then F' contains all natural numbers.

Claim: From N one can generate Z, Q, R, C (integers, rationals, reals, complex numbers).

Additional Axiom for ZF:

(AC) Aziom of Choice. For any non-empty set z, there is a set y which has precisely one element in common

with each member of z.

Comment: AC doesn’t tell you how to construct y; i.e., it doesn’t say what the “choice” function is that you
use to pick out the members of y from members of z. All the other axioms do give you recipes for the
construction of new sets. For this reason, the status of AC as an axiom is sometimes debated. It is needed in
order to prove that all sets can be well-ordered, so it’s important for the theory of ordinal and cardinal

numbers.



