
06.  Naive Set Theory

Recall:  Paradox of the Even Numbers

Claim: There are just as many even natural numbers as natural numbers
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{ 0 , 1 , 2 , 3 , 4 , ............ , n , ..........}

{ 0 , 2 , 4 , 6 , 8 , ............ , 2n , ..........}

Proof:

natural numbers = non-negative
whole numbers (0, 1, 2, ..)

In general:  2 criteria for comparing sizes of sets:

(1) Correlation criterion: Can members of one set be paired with members of the other?

(2) Subset criterion: Do members of one set belong to the other?

Can now say:

(a) There are as many even naturals as naturals in the correlation sense.

(b) There are less even naturals than naturals in the subset sense.

Moral:
To talk about the infinitely

big, just need to be clear

about what’s meant by size

notion of sets
makes this clear

Bolzano (1781-1848)

Promoted idea that notion of infinity was fundamentally set-theoretic:

To say something is infinite is

just to say there is some set

with infinite members

“God is infinite in knowledge”

means

“The set of truths known by God

has infinitely many members”

SO:  Are there infinite sets? “a many thought of as a one”  -Cantor

Bolzano: Claim: The set of truths is infinite.

Proof: Let p1 be a truth (ex: “Plato was Greek”)

Let p2 be the truth “p1 is a truth”.

Let p3 be the truth “p3 is a truth”.

In general, let pn be the truth “pn-1 is a truth”, for any natural number n.

Dedekind:
(1831-1916)

Claim: The set of thoughts is infinite.

Proof: Let s1 be a thought.

Let s2 be the thought that s1 is a thought.

Let s3 be the thought that s3 is a thought.

In general, let sn be the thought that sn-1 is a thought, for any natural number n.

I.  Sets and Paradoxes of the Infinitely Big
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BUT:  Can these sets really be treated as complete wholes?

Russell’s Paradox

Let R be the set of all sets that do not belong to themselves.

Claim:  R belongs to itself if and only if R does not belong to itself.

Without any constraints on what counts as a set...
There should be sets that do not belong to themselves:
  - The set of all cats
  - The set {0, 1, 2, 3}
  - The set {0, 1, 2, 3, {0, 1}}
  - The set x = {a, b, c}
... and there should be sets that do belong to themselves:
  - The set of sets
  - The set of all non-cats
  - The set y = {a, b, c, y}

Proof: (i) Suppose R belongs to R.

Then R is a set that does not belong to itself.

So R does not belong to R.

(ii) Suppose R does not belong to R.

Then R is a set that belongs to itself.

So R does belong to R.

Russell’s Paradox is a paradox of the One and the Many:  It looks like R can’t be thought of as a “one”.

SO:  Sets were introduced initially (in part) to address paradoxes of the Infinitely Big.  But now it seems

we’ve just replaced them with paradoxes of the One and the Many!

II.  Naive Set Theory:  Basics
First:  We want our theory to codify the essential properties of sets, and no more.
So:  Restrict attention only to sets, and nothing more.  (i.e., "pure" sets, whose members themselves are sets)

Notation:  "x ∈ y" means "x is a member of y".

example: A = {a, b, c},   a = {r, s, t, u}

a ∈ A,   r ∈ a

Or:     x = y if and only if (iff) for all sets z, (z ∈ x) ⇔ (z ∈ y)

example: A = {a, b, c},   B = {b, c, a}

A = B

Proof: Suppose x and y are distinct sets with no members.
Then: x and y have the same members (i.e., none).
So: x = y, by the Principle of Extension.

1.  Membership relation:  "is a member of", denoted by ∈.

2.  Principle of Extension:  Two sets are equal if they have the same members.

3.  Empty Set:  There is only one set that has no members.  Call it the empty set ∅ = {}.

A
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b
c•
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r s
tu

• •
• •

Note:  One result of this is that the
two sets a and {a} are not the same.
The first set a may have any number
of members.  The second set {a} has
only one member (namely, a).

Note:  Again the two sets ∅ and
{∅} are distinct.  ∅ has no
members, whereas {∅} has one
member, namely ∅!
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examples: C = {a},   ℘(C) = {∅, {a}}

B = {a, b},   ℘(B) = {∅, {a}, {b}, {a, b}}

A = {a, b, c},   ℘(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

example: A = {a, b, c},   a = {r, s, t, u}, b = {r, s, v, w}, c = {r, s, p}

A = {r, s, t, u, v, w, p}

Or:     x = {all sets z such that z ∈ y for some y ∈ x}

= {all sets z such that there is a set y such that, y ∈ x and z ∈ y}

Special Case: Union of a pair set {x1, x2}.

notation:  {x1, x2} is sometimes written x1  x2.

{x1, x2} = x1  x2 = {all z such that z ∈ x1 or z ∈ x2}

Or:     x = {all sets z such that z ∈ y for all y ∈ x}

= {all sets z such that for every set y, if y ∈ x, then z ∈ y}

example: A = {a, b, c},   a = {r, s, t, u}, b = {r, s, v, w}, c = {r, s, p}

A = {r, s}

Special Case: Intersection of a pair set {x1, x2}.

notation:  {x1, x2} is sometimes written x1  x2.

{x1, x2} = x1  x2 = {all z such that z ∈ x1 and z ∈ x2}

5.  Power Set:  The power set ℘(x) of x is the set of all subsets of x.

6.  Union Set:  The union set x of x is the set consisting of sets that are members of the members of x.

7.  Intersection Set: The intersection set x of x is the set consisting of all sets that are members of every
member of x.
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Notation:  "x ⊆ y" means "x is a subset of y"

So:     x ⊆ y iff for all sets z, (z ∈ x) ⇒ (z ∈ y)

Notes:
1.  ∅ is a subset of every set
2.  For any set x, x ⊆ x
3.  x = y iff x ⊆ y and y ⊆ x

4.  Subset relation:  x is a subset of y just when every member of x is a member of y.
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A ⊆ A,   a ⊆ A

Note:  If a is the empty set, then
it's a subset of C.  But if a is not
the empty set (if it contains at
least one member), then it is not
a subset of C!  Because then it's
not true that every member of a
is a member of C.  C only
contains one member; whereas a
may contain many.
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III.  Cantor and the Size of Sets
- adopted correlation criterion for set-size:

        (1) Set A has the same size as set B just when members of A can be paired with members of B.

        (2) Set A is bigger than set B just when all members of B can be paired with some members of A,

but not with all of them.

Some results:

1.  There are as many even natural numbers as natural numbers.

2.  There are as many real numbers between 0 and 1 as there are real numbers.

Proof:

×

0 1 2 3-3 -2 -1

center of circle
with (0, 1) as arc0 1

Every point on the arc (i.e., real number
between 0 and 1) is paired with a real
number on the real number line by
means of the dashed projection lines that
originate at the circle’s center.

3.  All line segments have the same number of points.

Proof:

X Y

A B

All points in XY are paired with all points in AB
by means of dashed projection lines.

Now Consider:

   ∅ = ∅

   ∅ = ?
every set!

WHY? Let z be some arbitrary set.
Then: It's (vacuously) true that z belongs to every member of ∅ (since there are no members of ∅).
So: Every set should be in ∅!

BUT: We don't want to allow for a set that contains all sets (Russell's Paradox!).
So: Need a restriction:

Thus:  We want to always have union sets, but not necessarily intersection sets (see axioms later on).

Restriction
x is defined only if x ≠ ∅.

∅ = {all sets z such that for every set y, if y ∈ ∅, then z ∈ y} = {all sets}

This "if...then" sentence is vacuously true!
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4.  There are more real numbers between 0 and 1 than there are natural numbers.

Proof:  (“Diagonal” Argument)
(i) Pair natural numbers with decimal expansions of reals between 0 and 1.  There are many ways to do this.

One particular way is the following:

0

1

2

3

0 . 3 3 3 3 ... = 1/3

0 . 1 4 1 5 ... = π - 3

0 . 4 1 4 2 ... = √2 − 1

0 . 5 0 0 0 ... = 1/2

... ...

all reals between 0 and 1
can be given an infinite
decimal expansion

(ii) Construct a real between 0 and 1 that is not listed in the table:

(a) Go down the “diagonal” of the table starting at the first digit in the decimal expansion of the first real.

(b) Write “3” if the digit in the diagonal is a 4; write “4” if the digit in the diagonal is anything else.

our example:   0.4334...

(iii) This real is not listed in the table!

By construction, it differs from the first real in its first decimal place; it differs from the second real in its

second decimal place, etc.  In general, it differs from all listed reals (no matter how they are listed).

BUT:  The table contains all the natural numbers (in its first column).

SO:  There are more real numbers between 0 and 1 than there are natural numbers.

Recall:  There are just as many reals between 0 and 1 as there are reals.

SO:  There are more real numbers than there are natural numbers (even though both are infinite).

R = set of real numbers

N = set of natural numbers

5.  There are more sets of natural numbers than there are natural numbers.

Proof:  (“Diagonal” Argument)
(i) Pair natural numbers with sets of natural numbers.

Represent a set of natural numbers as
a sequence of “yes's” and “no's”
depending on whether successive
naturals belong to it or not.

Examples:

Represent {0, 2, 4, 6, 8, ... } as <yes, no, yes, no, yes, ... >
Represent {1, 2} as <no, yes, yes, no, no, no, no, ... >

SO:  One way to do Step (i) is the following:

0

1

2

3

 0  1   2 3 ...

yes no yes ...

no no yes ...

no no no ...

... ... ... ...
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(ii) Construct a set of natural numbers that is not listed in the table in the following way:

Go down the diagonal.  Write “no” for each “yes”, and “yes” for each “no”.

our example:  <no, yes, yes, ... >

(iii) By construction, this set of naturals is not listed in the table:  It differs from the first listed set in its first

member; it differs from the second listed set in its second member, etc.  It differs from all listed sets of

naturals, no matter how they are listed.

BUT:  The table lists all natural numbers (in its first column).

SO:  There are more sets of natural numbers than there are naturals.

Recall:  The powerset ℘(A) of a set A is the set of all subsets of A.

SO:  Result #5 can be stated as:  ℘(N) is larger than N.

One Big Question (“Cantor’s Unanswered Question”):

How much larger than N is R?

(a)  Is it the “next infinite size up” from N?

(b)  Are there intermediate sizes between N and R?

The “Continuum Hypothesis” is the claim that the answer is (a).

Consequence: No limit to how large an infinite set can be!

- N is infinite.

- ℘(N) is larger.

- ℘(℘(N)) is larger still, etc...

Further Claim:  For any set A, ℘(A) is larger than A.


