
05.  Rigorization and Proof

One way to view mathematics:  mathematics as a formal game
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Topics
I. Formal System and Proof
II. Analytical Proofs
III. Picture ProofsI.  The Notion of a Proof in a Formal System

The subject matter of mathematics = meaningless symbols
Mathematics itself = symbol manipulation

Chess analogy:  What do chess pieces
stand for?  (What do they denote?)

“2” is just a name

- a symbol

- it doesn’t refer to a real object

“Achilles”

label (name) referant

<nothing>“2”

Example of a very simple formal system - call it “S”

1.  Symbols of S:

Individuals: ♣, ♥ think of them as "Mr. ♣” and Mr. ♥"

Properties: ♦, ♠
Variables: x, y, z, ... range over the individuals

Connectives: →, &, ∨, ∼, ↔ "if then", "and", "or", "not", "if and only if"

Quantifiers: ∀, ∃ universal and existential quantifiers

Punctuation: (, ) right and left parentheses

ASIDE:  In philosophy of mathematics, this
view of mathematics is known as "formalism".
There are other ways of viewing mathematics.
A "Platonist", for instance, believes the
referants of mathematical symbols are real
objects (numbers, sets, etc), and
mathematicians "discover" things about them,
as opposed to inventing new games to play.

How best to characterize such formal games?  Answer:  The Notion of a Formal System:

Formal System:
A formal system consists of a language (symbols and grammar) and a set of axioms and inference rules.
The axioms are basic statements in the language that are taken to be true.  The inference rules tell you how
to derive more complex statements, theorems, from the axioms.

The alphabet of
the language of S.

2.  Grammar of S:
   Terms (subjects of statements)
   All individuals and variables are terms.

   Statements (make claims about subjects)
   (i) If t is a term, then Pt is a statement, where P is a property.
   (ii) If A and B are statements, then so are (A → B), (A & B), (A ∨ B), ∼A,

(A ↔ B), (∀x)A, (∃x)A.
   (iii) Nothing else is a statement.

How to construct
terms and statements
out of the alphabet.

(Reference:  Brown, J. (1999) Philosophy of Mathematics, Chap. 3.)
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Axioms of S:

(1) (∀x)(♦x → ♠x) (“For all individuals x, if x is a ♦, then x is a ♠.”)

(2) (∃x)♠x → ♦♣ (“If there exists an individual x that is a ♠, then Mr. ♣ is a ♦”)

(3) ♠♥ (“Mr. ♥ is a ♠”)

Inference Rules for S

Let A, B be statements, and let P be a property:

A → B
A

∴ B

(∀x)Px

∴ Pa

∴ (∃x)Px

Pa

(1) Modus Ponens (MP)
Given an if-then statement, and the
"if"-part, you may infer the "then"-part.

(2) Universal Instantiation (UI)
From "All individuals have property P", you
may infer "Individual a has property P".

(3) Existential Generalization (EG)
From "Individual a has property P", you may infer
"There exists an individual that has property P".

3.  Rules for Manipulating the Symbols:

Think of axioms as basic
claims about the individuals
and properties of S.

Think of inference rules as
rules that let you deduce more
complex claims ("theorems")
about individuals and properties
from the basic claims (axioms).

Examples of statements:
♦♣ "Mr. ♣ has property ♦"

(♦♣ → ♠♥) "If Mr. ♣ has property ♦, then Mr. ♥ has property ♠"

(∀x)♠x "All individuals have property ♠"

(∃x)♦x "There exists an individual that has property ♦"

Theorem:   ♣♠ (“Mr. ♣ is a ♠.”)

Proof: (1) ♠♥ Axiom 3

(2) (∃x)♠x EG 1

(3) (∃x)♠x → ♦♣ Axiom 2

(4) ♦♣ MP 3, 2

(5) (∀x)(♦x → ♠x) Axiom 1

(6) ♦♣ → ♠♣ UI 5

(7) ♠♣ MP 4, 6

Features of the proof:

(i) Consists of a sequence of statements.

(ii) The last statement is the theorem we're

trying to prove.

(iii) All prior statements are either basic claims

(axioms), or follow from previous

statements by means of the inference rules.

This establishes the truth of the theorem:

If the axioms are true, and we accept the rules of

inference as legitimate rules of deduction, then the

theorem must also be true.

Example of a theorem and its proof:
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Note:  Of course our formal game S is very primitive, even when compared to very simple branches of

mathematics (like arithmetic, as we'll see).  But the general notion of a proof remains the same.  In most

proofs in mathematics, not all the steps will be made as explicit as they are above.

Definition of a Proof in S:

A proof in S is a sequence of S-statements such that any member is either an axiom

of S or follows from previous members by the rules of inference of S.

II.  Analytical Proofs

The above is a formal definition of an "analytical" proof.  Here's a more concrete example from Calculus:

f(b)

f(a)

a

bc
0

Intermediate Zero Theorem (Bolzano 1817)

Claim: If f is a continuous function on the interval [a, b] and f changes sign from negative to positive (or vice

versa), then there is a c between a and b such that f(c) = 0.

ASIDE:  This idea of a proof in a formal system was only made explicit in the early 20th century in the field of logic.  But the

general idea is much older.  Intuitively, what Cauchy and Riemann, among others, did for the calculus was to take the somewhat
vague notion of an infinitesimal and make it rigorous by (implicitly) embedding it in a formal system with axioms and inference rules.

Proof: Let f(a) < 0 < f(b).

Consider the set S = {all x such that a ≤ x ≤ b and f(x) < 0}.

S is non-empty (at least a is a member), and it is bounded above by b.

So: S has a least upper bound, call it c.

Then: Either f(c) < 0, or f(c) > 0, or f(c) = 0.

Suppose: f(c) < 0.

Then: There's an open interval (c − δ, c + δ) around c in which f(x) < 0.  But this allows there to

be x such that f(x) < 0 (hence x ∈ S), but x > c.  But we assumed c was an upper bound of S.

Suppose: f(c) > 0.

Then: There is an open interval (c − δ, c + δ) around c in which f(x) > 0.  But this allows there to

be a d such that d < c and f(d) > 0.  This entails that for any x in S, x < d.  So for any x in

S, x < d < c.  But we assumed c was a least upper bound of S.

This means:  For all x ∈ S,
x < c, and there's no d such
that x < d < c.

So: It must be the case that f(c) = 0.

Kinda obvious!
But how to show this explicitly and
formally?
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Similar proofs can be given for the following:

f(b)

f(a)

a

bc
0

C

Intermediate Value Theorem

Claim: If f is a continuous function on the interval [a, b] and there is a C between f(a) and f(b),

then there is a c between a and b such that f(c) = C.

Claim: If f and g are continuous functions on the interval [a, b] such that f(a) < g(a) and f(b) > g(b),

then there is a c between a and b such that f(c) = g(c).

f(b)

f(a)

a bc
0

g(a)

g(b)

f(c) = g(c)

g

f

III.  Picture Proofs

If you take mathematics to be about formal systems, then analytical proofs will probably appeal to you.

BUT:  If you take mathematics to be about other things, then other concepts of proof may appeal.

Alternative View of Mathematics:

Mathematics is about real abstract objects and their properties (numbers, sets, functions, etc).

Mathematicians discover truths about these objects.

Many ways to do this, including rigorous proof construction, intuition, etc.
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A picture proof is a diagram that allows you to "grasp" the truth of a theorem without deriving it from first

principles.

Examples:

1.  Claim: 1 + 3 + 5 + ... + (2n − 1) = n2

Picture Proof:

2.  Claim:

Picture Proof:

   
1 + 2 + 3 + ... + n =

n 2

2
+

n

2

n = 7

n = 7

ASIDE:  Here's the analytical proof (by mathematical induction).
Base Step:  Show the property holds for n = 1.
((2 × 1) − 1) = 1 = 12.
Induction Step:  Show that, if the property holds for any n > 1,
then it holds for n + 1.
Suppose 1 + 3 + ... + (2n − 1) = n2 holds for some n > 1.
Now check for n + 1:
{1 + 3 + ... + (2n − 1)} + (2(n + 1) − 1)

= {1 + 3 + ... + (2n − 1)} +(2n + 1)
= n2 + (2n + 1)
= (n + 1)2




