
04.  The Calculus

2 Sets of Problems
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Topics
I. The Calculus and Infinitesimals
II. The Status of Infinitesimals
III. The Concept of a Limit
IV. Limits and Derivatives
V. Limits and Infinite Sums.
VI. Infinite Sums and Integrals.

I.  The Calculus and Infinitesimals

Properties of Curves

• slope of tangent to curve

• area under a curve

(geometrical)

Continuously-varying Quantities

- example:  How do distance and speed

vary under constant acceleration?

(physical)

Example 1:  Slope of tangent to curve (Differential Calculus)

Curve f(x) = x2 represents relation between
time and distance for object moving at
constant acceleration of x2 feet in x seconds.
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f(x) = x2

i.e., object’s speed is constantly changing
between 0 seconds and 2 seconds

Accelerated motion = motion for which the rate at which distance changes per time

(speed) is itself changing; i.e., non-constant speed.
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Curve f(x) = x (i.e., straight line) represents
relation between time and distance for object
moving at constant speed of x feet in x seconds.

slope = rise/run = distance/time = speed

First:  Constant speed motion:

constant slope = constant speed

Now:  Accelerated (non-constant speed) motion:

Constant speed motion = motion for which the rate at which distance changes per time  is constant.

Can represent geometrically by a curve on a graph with vertical axis labeled in
units of distance and horizontal axis labeled in units of time.  One example:

For such a graph:

non-constant speed = non-constant slopeFrom above:

slope is non-constant:  rise/run is not constant

One example:
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Question:  For accelerated motion, what is the object’s speed at a given instant?  (Say, at x = 1.5 seconds?)

Geometrically:
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4

x

f(x)

f(x) = x2

•

1.5

What is the slope (speed) of the tangent line

to the curve f(x) = x2 at x = 1.5 sec?

P

In general, how do you determine the slope

of the tangent line to a curve at a point P?

Claim: Tangent at P is the line joining P to a

point Q that is infinitely close to P.

•

•

•

•

P

Q

Q'

Q''

Idea:  As Q approaches P, the line joining
Q to P approaches the tangent line at P

Can now calculate the slope of the tangent to P, just from knowldege of slopes:

Assume Q is infinitely close to P and both are on curve f(x) = x2:

•

•

P   (x, x2)

Q  (x + δx, (x + δx)2)

small part of
curve f(x) = x2

Let δx be an infinitely small

(“infinitesimal”) quantity

distance

time

Slope of PQ =

infinitely small quantity:  Ignore it!

SO:  Slope of PQ = 2x

SO:  “instantaneous” speed of object at 1.5 sec is 2 × 1.5 = 3 ft/sec

Terminology: The slope of the tangent line to the graph of f(x) at the point (x0, f(x0)) is called the

derivative f'(x0) of f(x) at x0.

    

rise

run
=

f (x + δx)− f (x)

(x + δx)− x
=

(x + δx)2 − x 2

δx

=
x 2 + 2xδx + δx 2 − x 2

δx

= 2x + δx

tangent line to P
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Coherent Reasoning?

What exactly is δx?

   (a) Enough like 0 to be discarded?

   (b) But can’t be exactly 0!
Recall:  Can’t divide by 0:
If we could, then since n × 0 = m × 0
for any numbers n, m, we would have
n = m for any n, m.

Example 2:  Area under a curve (Integral Calculus)

Find area A(x) under curve f(x) = x2.

So:      dA = x2dx

Divide increase in A(x) by
increase in x.  Get x2.

Terminology:  A(x) is also called the anti-derivative of f(x) = x2.

leads to
An infinitesimal
increase in x (call
it δx, or just dx)

An infinitesimal increase
in area A(x) (call it dA)
by an infinitely thin strip
of height x2 and width dx

Reasoning:

Coherent Reasoning?  What is an infinite sum of infinitely small rectangles?

   
A(x) = dA∫ = x 2dx∫

f(x)
f(x) = x2

•P

dx
x

A(x)

Now: Consider A(x) as the infinite sum of infinitely thin strips, each

with infintely small area dA.  Symbolically, we write:

Terminology: A(x) is called the indefinite integral
of the function f(x) = x2.

How to calculate an indefinite integral:

From dA = x2dx, we can write:

   

dA

dx
= x 2

Can now use method of Example 1 "backwards":  There we knew the ratio on the left and wanted the value on

the right.  Here, we have the value on the right and want the numerator on the left.

The anti-derivative is the "inverse" of the derivative!
Integration "undoes" differentiation.

A(x) is the function with the property that,
when you take its derivative, you get x2.
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II.  The Status of Infinitesimals

Newton (1642-1727): “These ultimate ratios with which the quantities vanish are indeed not ratios
of ultimate [sc. infinitesimal] quantities, but limits to which the ratios of
quantities vanishing without limit always approach, to which they may come
up more closely than by any given difference but beyond which they can
never go.”     - Moore pg. 65

i.e., infinitesimals are not actual, but potential.

Berkeley (1685-1753):
   The Calculus is incoherent:

The Analyst; or, A Discourse addressed to an Infidel mathematician.  Wherein it is
examined whether the Object, Principles, and Inferences of the modern Analysis are
more distinctly conceived, or more evidently deduced, than Religious Mysteries and
Points of Faith.

L’ Hôpital (1661-1704:
   Calculus textbook:

“A quantity which is increased or decreased by a quantity which is infinitely smaller
than itself may be considered to have remained the same.”

“A curve may be regarded as the totality of an infinity of straight segments, each
infinitely small:  or... as a polygon with an infinite number of sides.      - Moore pg. 65

Cauchy (1789-1857)
Weierstrauss (1815-1897)

provided rigorous foundations for the
Calculus based on the concept of a limit

think of as representing potential infinity,
not actual; a (rigorous) way of talking that
does not explicitly refer to infinitesimals.

Leibniz (1646-1716):  “useful fictions”
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III.  The Concept of a Limit

Example:  Slope of tangent to curve f(x) = x2

•

•

P

Q
slope of PQ =

Define: Tangent to curve at P is the limit of all lines PQ as Q approaches P

This means:

   (1) The smaller δx is, the closer                   is to the slope of the tangent; and,

   (2) You can get as arbitrarily close to the slope of the tangent as you care to

specify:

Two points:

   (1) δx is never zero -- it’s always a finite number.

   (2) δx is never “fully” infinitesimally small -- it’s always a finite number.

x0 − δ x0 + δx0
x

L + ε

L − ε

L

y
y = f(x)

... then f(x) is
in this range

If x is in this range...

No matter how small ε is chosen, δ can be chosen
small enough so that f(x) is within ε of L.  In other
words, you can get as arbitrarily close to L as you like.

“Epsilon-Delta” Definition of a Limit (Cauchy)

 Let f(x) be defined in a neighborhood of x0.  Then,

lim f(x) = L
x→x0

if, for every ε > 0, there is a δ > 0 such that,

if 0 < ⏐x − x0⏐ < δ,   then ⏐f(x) − L⏐ < ε.

"whenever x gets
within δ of x0"

"f(x) gets
within ε of L"

1.  Rigorous definition of the limit of a function:

    

2xδx + δx 2

δx

    

2xδx + δx 2

δx

For any number ε no matter how small, you can always find a (finite!) number δx

such that                   lies within ε of the slope of the tangent.

    
2xδx + δx 2

δx

Terminology:   
    
" lim
δx→0

2xδx + δx 2

δx
= 2x "

    

2xδx + δx 2

δx
means “The limit as δx goes to zero of                    is 2x”.

"The limit as x goes to x0 of
f(x) is given by the value L"
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IV.  Limits and Derivatives

Recall: The "derivative" f'(x0) of f(x) at the point x0 is the slope of the tangent line to the graph of f(x) at the point
(x0, f(x0)).

Note:  This defines a function f'(x) on all points x that the original function f(x) is defined on and for
which the limit exists.  This function f'(x) is called the derivative of f(x) and is also written as

Rigorous definition of the derivative of a function at a point:

Let f(x) be defined in a neighborhood of x0.  Then the derivative f'(x0) of f(x) at x0 is given by

   
′f (x 0 ) = lim

Δx→0

f (x 0 + Δx)− f (x 0 )

Δx

change in rise
change in run

as Δx goes to zero

   
′f (x) =

d

dx
f (x) or just simply

   
′f (x) =

df

dx

Properties of the derivative function f'(x): (What you learn in Calc I)

   

d

dx
cxn = ncxn−1.1. If c is a constant, then

examples:

   

d

dx
6x 2 = 12x

   

d

dx
(f + g) =

df

dx
+

dg

dx
.2. (Sum Rule.)  If  f(x) and g(x) are functions of x, then

   

d

dx
(fg) =

df

dx
g + f

dg

dx
.

   

df

dx
=

d

dx
f (g(x)) =

df

dg

dg

dx
.

3. (Product Rule.)  If  f(x) and g(x) are functions of x, then

4. (Chain Rule.)  If  f(g) is a function of g, and g(x) is a function of x, then

example: Let f(g) = g2, and g(x) = 3x + 2.  Then
   

df

dx
=

df

dg

dg

dx
= (2g)(3) = 6g = 18x + 12

   

d

dx
3 = 0

Can now give rigorous definition of derivative.

ASIDE:  It still looks like we're dividing
infinitely small quantities, now called
"differentials" dx instead of "infinitesimals" δx.
Namely, df/dx might be thought of as an
infinitely small change in f, namely df, divided
by an infinitely small change in x, namely dx.
But these symbols can now simply be thought of
as short-hand for the rigorous definition above.

Here Δx is a small
finite quantity
(never zero!)
representing the
change in run.
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Note:  The rigorous definition of the derivative function lets us rigorously define the anti-derivative or indefinite

integral:  For a given function f(x), if there exists a function A(x) such that dA/dx = f(x), then A(x) is called the

anti-derivative of f(x), or the indefinite integral of f(x), and is also written symbolically as

   
A(x) = f (x)dx∫

This definition means that integration is the "inverse" of differentiation in so far as

   

d

dx
A(x) =

d

dx
f (x)dx∫⎡⎣⎢

⎤
⎦⎥ = f (x)

examples:
   

x 2dx∫ = (the  function  whose  derivative  is  x 2 ) =
1

3
x 3

   
(3x 3 + 5x)dx∫ =

3

4
x 4 +

5

2
x 2

To explain the squiggly "S" notation (the idea that the integral represents

a sum), we need to now consider the concept of an infinite sum.

V.  Limits and Infinite Sums

The concept of a limit allows a precise definition of an infinite sum.

     Note first:  Addition is only defined for “finite” input.
In arithmetic, addition is simply a
2-place function; it takes two
pieces of input and outputs a sum.

SO:  The following “infinite” sum makes no sense without further ado:

   
S∞ =

1

2
+

1

4
+

1

8
+ ... ≡

1

2k
k =1

∞

∑

BUT:  We can calculate “partial sums”:
   
Sn ≡

1

2k
k =1

n

∑

S1 = 1/2

S2 = 1/2 + 1/4 = 3/4

S3 = (1/2 + 1/4) + 1/8 = 7/8

S4 = ((1/2 + 1/4) + 1/8) + 1/16 = 15/16

all of these partial sums are
finite sums:  they only
involve two pieces of input

Now form a sequence of all these partial sums:

{1/2, 3/4, 7/8, 15/16, ....,} ≡ {Sn}

where each member is given by the function f(n) =
2n − 1

2n

"The sum from k = 1 to ∞ of 1/2k"

We say the sequence {Sn} is

generated by the function f(n).
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Now define the infinite sum S∞ as the limit as n goes to infinity of the sequence {Sn} of its partial sums.

{Sn} has a limit L if there’s a point
N in the sequence afterwhich f(n)
stays within ε of L, for any ε.

Can now address Zeno’s Paradoxes:

   Runner Paradox:

Claim:  Achilles will never cross the finish-line.

Assumptions: (a) The track is infinitely divisible.

   SO:  It’s length = an infinite sum of finite pieces

(b) An infinite sum of finite pieces is infinite.

1/2 3/4 7/8 10

Aristotle: Rejected (b).  As an infinite sum of finite pieces, the racetrack is potentially infinite, and not

actually infinite.

Calculus: Rejects (b).  Some infinite sums are finite (depends on whether or not the sequence of their partial

sums has a finite limit).

Racetrack:  Starting line at
0 and finish-line at 1.

The sequence of partial sums {Sn} = {1/2, 3/4, 7/8, 15/16, ....,}is generated by the function

Runner case:
   
S∞ =

1

2
+

1

4
+

1

8
+ ... ≡

1

2k
k =1

∞

∑

   
g(k)

k =1

∞

∑ ≡ S∞

Rigourous definition of an infinite sum

The infinite sum                 is the limit of the sequence of its partial sums,

if such a limit exists:

   
S∞ = lim

n→∞

{Sn }

Now define the limit of a sequence of partial sums:

The sequence {Sn} generated by the function f(n) has a limit L if,

for every ε > 0, there is an N > 0 such that

if n ≥ N,   then ⏐f(n) − L⏐ < ε.

Definition of the limit of a sequence

Write:
   
lim
n→∞

{Sn } = L. "The limit as n goes to ∞
of the sequence {Sn} is L."

   
f (n) =

2n − 1

2n
= 1−

1

2n

So

   
S∞ = lim

n→∞

1−
1

2n

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= 1 (i.e., as we expect, the racetrack’s length is 1)
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ith rectangle:

Δx = 1/n

f(xi) = (i/n)2

f(x)

•

f(x) = x2

P

Ai

xi 10 x

• Divide interval [0, 1] into n segments of equal length Δx = 1/n. 

• Construct n rectangles with these segments as bases.

• Identify the location of the ith rectangle as xi = i/n (the endpoint of the ith segment).

THEN:  The height of the ith rectangle is f(i/n) = (i/n)2.

AND:  The area Ai of the ith rectangle is Ai = (i/n)2(1/n).

AND:  The total area A = sum of all Ai as n gets very large (i.e., as Δx goes to 0):

   
A = lim

n→∞

(i/n)2(1/n)
i =1

n

∑ = lim
n→∞

1

n 3
i 2

i =1

n

∑ = lim
n→∞

1

n 3

n(n + 1)(2n + 1)

6
= lim

n→∞

2 + (3/n) + (1/n 2 )

6
=

1

3

VI.  Infinite Sums and Integrals (Optional)
Particular Example:
How to calculate the definite integral

   
dA

0

1

∫ = x 2dx
0

1

∫ the area under the curve f(x) = x2

between the points x = 0 and x = 1.

Area = f(xi)Δx
= (i/n)2(1/n)

How the Definite Integral relates to the Indefinite Integral and Differentiation:

The Fundamental Theorem of Calculus
Let f(x) be a continuous function defined over the interval [a, b].  Let A(x) be an anti-
derivative of f(x) on [a, b].  Then

   
f (x)dx

a

b

∫ = A(b)−A(a)

Rigorous Definition of the Definite Integral (Riemann)

where xi = i(b − a)/n and Δx = (b − a)/n.
   

f (x)dx
a

b

∫ = lim
n→∞

f (xi )Δx
i =1

n

∑

Let f(x) be a continuous function defined over the interval [a, b].  Then

In general:

Precisely how the squiggly "S"
symbol of integration
represents an infinite sum,
rigorously defined as the limit
of a sequence of partial sums!

this step requires knowing that

   
i

2

i =1

n

∑ =
n(n + 1)(2n + 1)
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