Course Intro

Topics
I. The Branches of Mathematics
II. A Beastiary of Number Systems

I. The Branches of Mathematics

According to the Greeks...

According to the Geeks...

Central to all branches:

Numbers

 What are they?Most basic type: $1,2,3,4,5, \ldots$

ASIDE: Philosophers like to be pedantic and make the distinction between numbers, which are concepts of some sort, and numerals, which are symbols we use to represent numbers. Thus the symbols $1,2,3,4, \ldots$ are numerals that represent the numbers one, two, three, four, etc. Just as I, II, III, IV, are (Roman) numerals that represent the same numbers. We won't be so pendantic in our usage of the term "number".

II. A Beastiary of Number Systems

Natural numbers. $\quad \mathbb{N}=\{0,1,2,3, \ldots\} \quad$ zero!

Integers.
$\mathbb{Z}=\{\ldots-3,-2,-1,0,1,2,3, \ldots\} \quad$ negative numbers!

Rational numbers. $\mathbb{Q}=\left\{\begin{array}{l}\text { all numbers that can be written } \\ \text { as the ratio of two integers }\end{array}\right\}$ $=\{$ all p / q, where $p, q \in \mathbb{Z}$, and $q \neq 0\}$
examples:

$$
\begin{aligned}
& 1 / 2=0.5000 \ldots \\
& 1 / 3=0.3333 \ldots \\
& 1 / 7=0.142857142857 \ldots
\end{aligned}
$$

Can't divide by 0 :
If we could, then since $n \times 0=m \times 0$ for any numbers n, m, we would have $n=m$ for any n, m.
decimal expansions have repeating patterns

Irrational numbers $=\left\{\begin{array}{l}\text { all numbers that cannot be written } \\ \text { as the ratio of two integers }\end{array}\right\}$
examples:

$$
\begin{aligned}
& \sqrt{ } 2=1.4142135 \ldots \\
& \pi=3.141592653 \ldots \\
& e=2.7182818284 \ldots
\end{aligned}
$$

$$
\pi=3.141592653 \ldots \quad \quad \begin{array}{ll}
\text { decimal expansions do not }
\end{array}
$$

decimal expansions do not have repeating patterns

Real numbers. $\mathbb{R}=\{$ rational numbers and irrational numbers $\}$

Complex numbers. $\quad \mathbb{C}=\left\{\right.$ all $p+i q$, where $p, q \in \mathbb{R}$, and $\left.i^{2}=-1\right\}$

Complex multiplication

$$
\begin{aligned}
(2+i 3) \times(1+i 6) & =(2 \times 1)+(2 \times i 6)+(i 3 \times 1)+(i 3 \times i 6) \\
& =2+i 12+i 3-18 \\
& =-16+i 15
\end{aligned}
$$

Geometric representations

\mathbb{R} - "1-dimensional" number system. Can be represented by a line:

The real number line: Points on a 1-dim line correspond to real numbers.
\mathbb{C} - "2-dimensional" number system. Can be represented by a plane:

The complex plane: Points on a 2-dim plane correspond to complex numbers.

Higher dimensional number systems

reversing arrows corresponds
to multiplying by -1

Quaternionic multiplication

$$
\begin{aligned}
& (2+i 3+j 5+k 2) \times(1+i 2+j 2+k 5)=2+i 4+j 4+k 10+i 3+i^{2} 6+i j 6+i k 15+j 5+ \\
& \\
& \quad j i 10+j^{2} 10+j k 25+k 2+k i 4+k j 4+k^{2} 10
\end{aligned}
$$

Octonions.

7 different types of imaginary numbers
(8-dim number system: points on an 8-dim hypercube)

Multiplication Rules for the imaginary numbers. Each set of three numbers connected by three arrows represents a cyclical rule (like the rules for the quaternions). (The vertices of the outer triangle are implicitly connected by arrows.) Reversing arrows corresponds to multiplying by -1 .

Sedonions. $\quad \mathbb{S}=16$-dim number system, with 15 different types of imaginary numbers!

Subtleties:

- The number systems from \mathbb{R} on up form algebras. They consist of objects (real numbers and imaginary numbers) with rules for how to add and multiply them. These rules place constraints on the dimension of the system.
- Even more subtle: For all of these number systems, how large are they? How many numbers do they contain?

Natural numbers. $\quad \mathbb{N}=\{0,1,2,3, \ldots\} \quad$ How many natural

Real numbers.

How many real numbers are there? (How many points are on a line?)

Initial Response: An infinite amount!

What's this?

$\infty \quad$ "infinity"

Story to come:

- Historical development of concept of infinity: from early Greeks to the Calculus to 19th century set theory.
- One result: The infinity of real numbers is greater than the infinity of natural numbers!
- Another result: Development of "transfinite" number systems: types of numbers that go beyond the infinities of the natural and real numbers!
- Yet another result: Attempt to base all branches of mathematics on set theory. Sets as fundamental objects of mathematics (more fundamental than numbers!).
- More recently: "Categories" (objects and arrows) as more fundamental than sets and numbers.

