Extra credit\#1. Due: Thurs 11/30

pg. 54, Exercise \#8
$\underline{\text { Big Hint: }}$ You are given two maps that can be composed, and sections of these maps. Call the two maps f and g. That they can be composed means that it's possible to first do one, say f, and then the other, say g. This means that the codomain of f must be the domain of g. So if we let $f: A \rightarrow B$, then $g: B \rightarrow C$, for instance. Then the composite map $g \circ f: A \rightarrow C$ is well-defined. To say that both f and g have sections is to say that there are two other maps, call them s_{1}, s_{2}, such that $f \circ s_{1}=1_{B}$ and $g \circ s_{2}=1_{C}$. All of this means that we are given the following diagram:

Now we are asked to show that the composite map $g \circ f$ has a section, call it s. So you first need to come up with an appropriate expression for s (read it off of the diagram: s is supposed to go from C to A; what let's you do this?); and then you have to show that this expression for s satisfies the definition of being a section for $g \circ f$. Namely, that $(g \circ f) \circ s=1_{C}$.
pg. 54, Exercise \#9
 $=f \circ r$ is an idempotent. So you have to show that $e \circ e=e$. The outline of your proof should look like:

$$
\begin{array}{rlrl}
e \circ e & =(f \circ r) \circ(f \circ r) & \text { given } \\
& = & \cdot & \cdot \\
& \cdot & \cdot & \cdot
\end{array}
$$

For Part II, you have to show that, if f is an isomorphism, then e is the identity. We know that e goes from B to B (why?). So you need to show that $e=1_{B}$. If f is an isomorphism, then it has an inverse, call it f^{-1}, that satisfies $f^{-1} \circ f=1_{A}$ and $f \circ f^{-1}=1_{B}$. The outline of your proof should look like:

$$
\begin{array}{rlr}
e & =e \circ 1_{B} & \text { identity } \\
& = & \cdot \\
& \cdot & \cdot \\
& =1_{B} & \cdot
\end{array}
$$

pg. 55, Exercise \#10
$\underline{\text { Small Hint: }}$ Since f and g are isomorphisms, they have inverses, call them f^{-1}, g^{-1}. They satisfy $f^{\circ} \circ f^{-1}=$ $1_{B}, f^{-1} \circ f=1_{A}, g \circ g^{-1}=1_{C}, g^{-1} \circ g=1_{B}$. Now you need to show that $g \circ f$ has an inverse, call it $(g \circ f)^{-1}$, and that it is given by $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$. So you need to construct two proofs, one demonstrating that this expression for $(g \circ f)^{-1}$ satisfies $(g \circ f) \circ(g \circ f)^{-1}=1_{C}$, and the other demonstrating that this expression for $(g \circ f)^{-1}$ satisfies $(g \circ f)^{-1} \circ(g \circ f)=1_{A}$ (you should check that the identities here are appropriate). See if you can construct a diagram that represents all the data that you're given in this problem (it'll look a little like the diagram for Exercise \#8 above).

