GRAPH CONNECTIVITY A walk is a sequence of vertices Vi, Viti, Vitz, ..., Vk s.t. every Vj, Vj+1 is an edge (isjck) G We can walk from a to b, but not from a to c.

A path is a walk with distinct vertices

GRAPH CONNECTIVITY

Claim: a cut edge can't be on a cycle. (a cycle is a path w/ start = end)

Claim: Removing a cut edge
$$e = (x,y)$$

increases the number of components by 1.
Types of vertex pairs (a,b) in G:
o) no path exists between a & b
c) no paths between a & b
2) all paths use e
contradiction
If path P uses e
& path Q doesn't
then e is on a cycles
but cut edges don't exist on cycles

Claim: Removing a cut edge
$$e = (x,y)$$

increases the number of components by 1.
Types of vertex pairs (a,b) in G:
o) no path exists between a & b
i) no paths between a & b
i) no paths between a & b use e
ii) all paths use e
Type 0 or 1: not affected by removal of e
Type 2: implies a connects to x but not to y fin G-e
& b connects to y but not to x fin G-e
(Type 2 partitions one component into two.

Claim: Removing a cut edge
$$e = (x, y)$$

increases the number of components by 1.
* e can only affect the component its in.
So focus on connected graphs.
Proof by contradiction.
Suppose G-e has $\geqslant 3$ components. $\exists a, b, c$ in different components.
In G all paths $a \Rightarrow b$ use $e \notin w \log a \Rightarrow x \Rightarrow y \Rightarrow b$
all paths $a \Rightarrow c$ use $e \notin if a \Rightarrow x \Rightarrow y \Rightarrow c$
 $abbc in same component$
 $if a \Rightarrow y \Rightarrow x \Rightarrow c$
 $a \in not a cut edge$

FORESTS : ACYCLIC GRAPHS (collections of trees)

If v is a leaf in tree T, then T-v is a tree
This allows us to use induction
ex: if
$$|V(T)| = n > 2$$
 then $|E(T)| = n-1$
pf: Base case: n=2 • trivial
Hypothesis: for $2 \le k \le n$, statement holds.
Suppose T has n vertices. Find a leaf v & delete.
• v had degree 1, so we delete 1 edge.
• T-v is a tree, w/ n-1 vertices $\rightarrow n-2$ edges.
• Replace v: total edges = n-2+1 = n-1

Proved: if
$$|V(T)| = n > 2$$
 then $|E(T)| = n-1$

Also true : for connected G with n>1 vertices, if |E(G)| = n-1 then G is a tree

> See p. 354 Also defines spanning trees

Find minimum distance: covered in Algorithms course