GRAPH CONNECTIVITY A walk is a sequence of vertices s.t. every vj, viti is an edge $(i \le j \le k)$ I We can walk from a to b, but
not from a to c.

A path is a walk with distinct vertices

GRAPH CONNECTIVITY

Claim: a cut edge can't be on a cycle. (a cycle is a path w/ start = end)

cond d : if e is a cut edge then
$$
\exists a,b
$$
 s.t.
a is not connected to b in G-e.
So all paths from a to b in G use e,
i.e. transuse a...xy::b where $e=\overline{xy}$.

Claim: Removing a cut edge
$$
e = (x, y)
$$

\nincreases the number of components by 1.

\nTypes of vertex pairs (a, b) in G:

\no) no path exists between a 8 b

\nl) not all paths between a 8 b use e

\nl) a all paths use e

\ncheck exists

Claim:	Removing a cut edge e = (x,y)
increases the number of components by 1.	
Types of vertex pairs (a,b) in G:	
0) no path exists between a 8 b use e	
1) no paths between a 8 b use e	
2) all paths use e	
3) If path P uses e	
4) A doesn't have a graph Q doesn't have a cycle	
5) A path Q doesn't have a cycle	
6) A path Q doesn't have a cycle	
7) A point Q has a cycle	
8) A path Q doesn't have a cycle	
9) A point Q has a cycle	
10) A point Q has a cycle	
11) A point Q has a cycle	
12) A point Q has a cycle	
13) A point Q has a cycle	
14) A point Q has a cycle	
15) A point Q has a cycle	
16) A point Q has a cycle	
17) A point Q has a cycle	
18) A point Q has a cycle	
19) A point Q has a cycle	
10) A point Q has a cycle	
11) A point Q has a cycle	
12) A point Q has a cycle	
13) A point Q has a cycle	
14) A point Q has a cycle	
15) A point Q has a cycle	
16) A point Q has a cycle	
17) A point Q has a cycle	
18) A point Q has a cycle	
19) A point Q has a cycle	
10) A	

Claim:	Removing a cut edge $e = (x, y)$
1000	1.12
1000	1.12
1000	1.12
1000	1.12
1000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12
10000	1.12

Claim: Removing a cut edge
$$
e = (x, y)
$$

\nincreases the number of components by 1.

\n**4** e can only affect the component its in.

\nSo focus on connected graphs.

\nProof by contradiction.

\nSuppose G-e has $\times 3$ components. $\exists a, b, c$ in different components.

\nIn G, call paths $a \rightarrow b$ use e $\int_0^1 x \, dy \, dy \, dx$ with $a \rightarrow c$ use e $\int_0^1 f \, dy \, dy \, dy \, dx$ with $a \rightarrow c$ with a and a is the a and a is the <

FORESTS : ACYCLIC GRAPHS (collections of trees)

tree	There is a unique path between every pair of vertices
• for any vertices a, b : a path exists (trees are connected)	
• suppose $\times 2$ paths.	a
• cycle : contradiction of tree: acyclic	a
• if for every 2 vertices a path exists, then graph is connected	
• if any 2 vertices are on a cycle, then they are on $\times 2$ paths	
• but we assume unique paths, so no 2 vertices are on a cycle.	
• acyclic	

 $\bm{\Pi}$

For any connected graph,
\n
$$
free \Leftrightarrow every edge is a cut edge
$$
\n
$$
\Rightarrow \frac{1}{\sqrt{x}} \int \frac{1}{x} \cdot \frac{1}{y} \cdot \frac{1}{x} \cdot \frac{1}{x} \cdot \frac{1}{y} \cdot \frac{1}{x} \cdot \frac{1}{y} \cdot \frac{1}{x} \cdot \frac{1}{y} \cdot \frac{1}{y
$$

LEAVES: vertices of degree 1
If $V \gg 2$, then T has $\gg 2$ leaves
Consider <u>longest path</u> in T. $V_1 ... V_k$
If $V_i \neq$ leaf, then $\{ \begin{matrix} x \\ y_1 & y_2 \end{matrix}$
$\begin{matrix} x \neq v_i \text{ (not on path)} \\ (x = v_i \text{ would create cycle)} \end{matrix}$
Then $xV_1 ... V_k :$ longer path: <u>contraction</u>
So $v_1 \& v_k :$ leaves

If v is a leaf in tree T, then T-v is a free		
This allows us to use induction		
ex: if $ V(T) = n \gg 2$ then $ E(T) = n-1$		
of:	Base case: $n=2$	trivial
Hypothesis:	for $2 \le k \le n$, statement holds.	
Suppose T has n vertices. Find a leaf v & delete.		
• v had degree 1, so we delete 1 edge.		
• T-v is a tree, w/v n-1 vertices $\Rightarrow n-2$ edges.		
• Replace v : Total edges = n-2+1 = n-1		

$$
P_{roved}:
$$
 if $|V(T)| = n > 2$ then $|E(T)| = n-1$

Also true: for connected G with n>1 vertices, $|P| = |E(G)| = n-1$ then G is a tree

> See p. 354 Also defines spanning trees

Find minimum distance: covered in Algorithms course