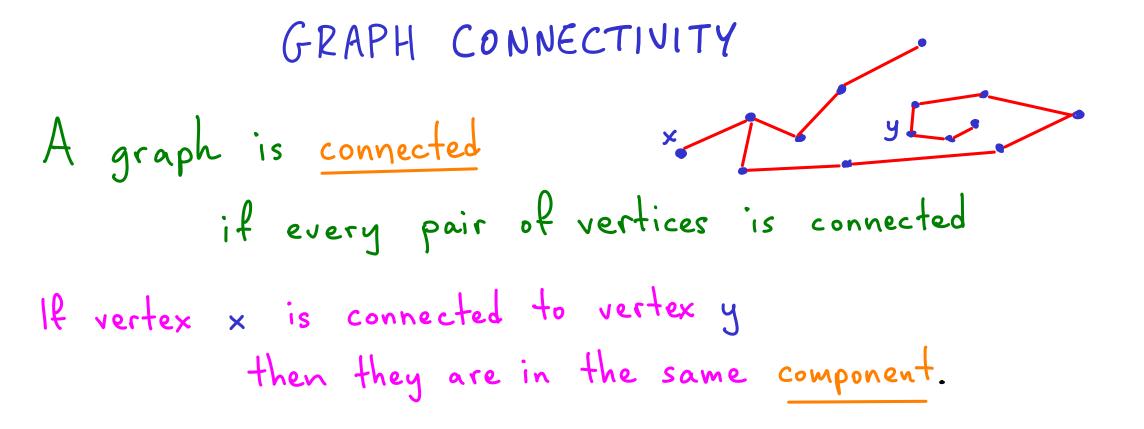
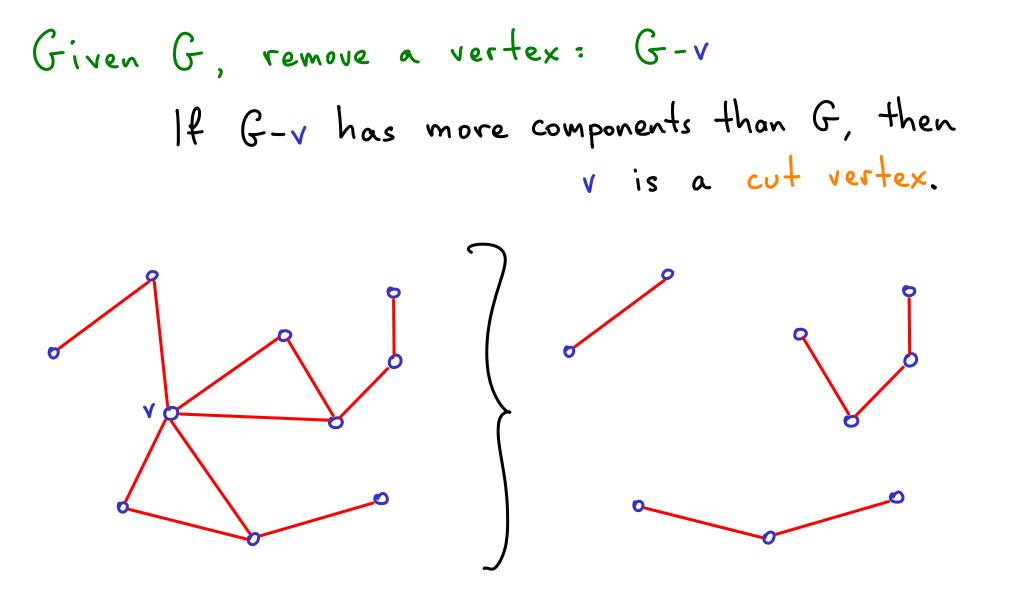


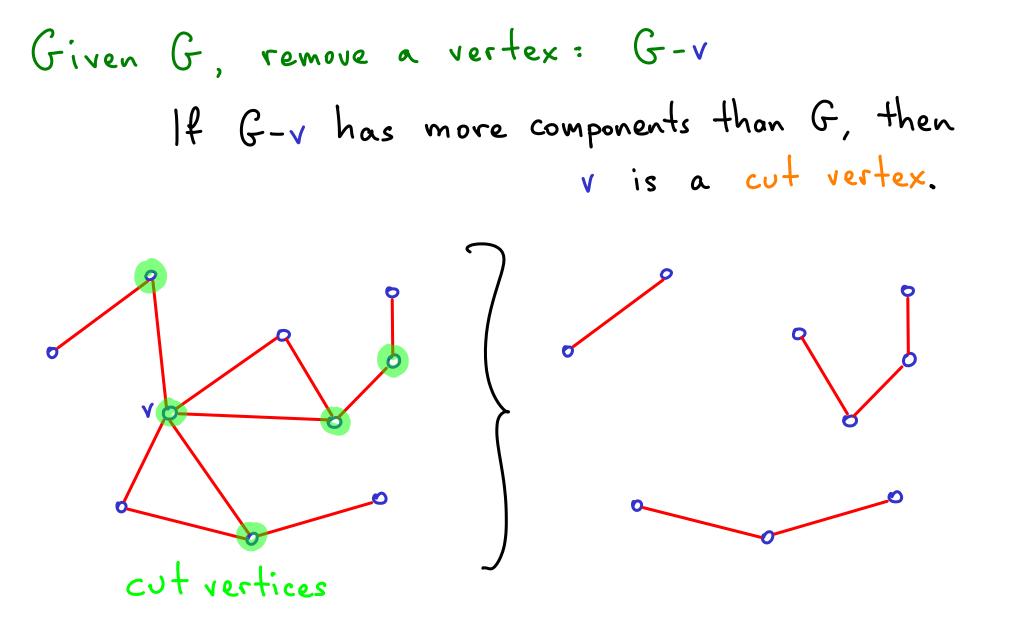
GRAPH CONNECTIVITY A walk is a sequence of vertices Vi, Viti, Vitz, ..., Vk s.t. every Vj, Vj+1 is an edge (isjck) We can walk from a to b, but not from a to c.

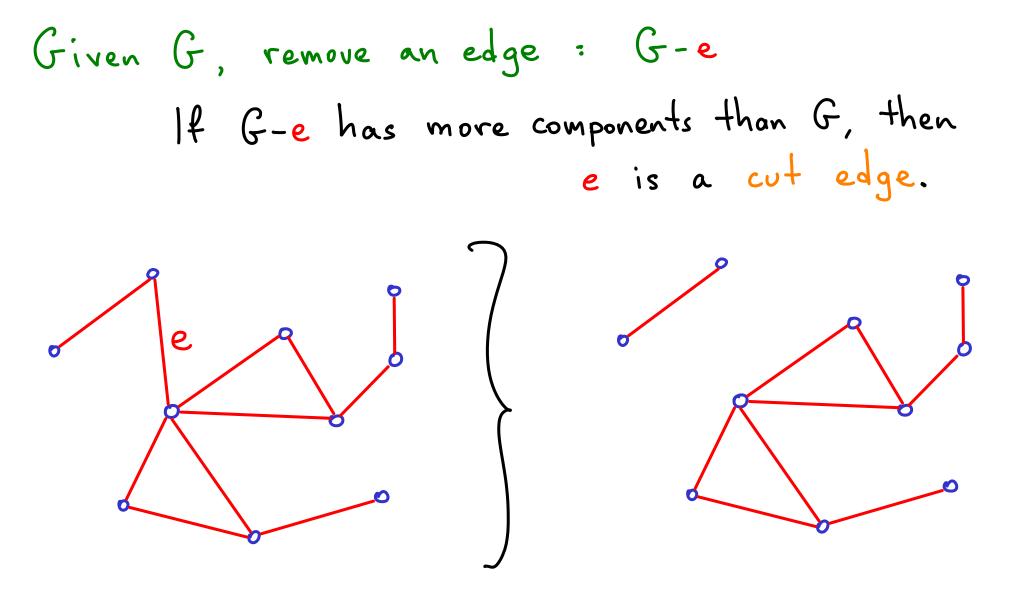
GRAPH CONNECTIVITY A walk is a sequence of vertices Vi, Viti, Vitz, ..., Vk s.t. every Vj, Vj+1 is an edge (isjck) G We can walk from a to b, but not from a to c.

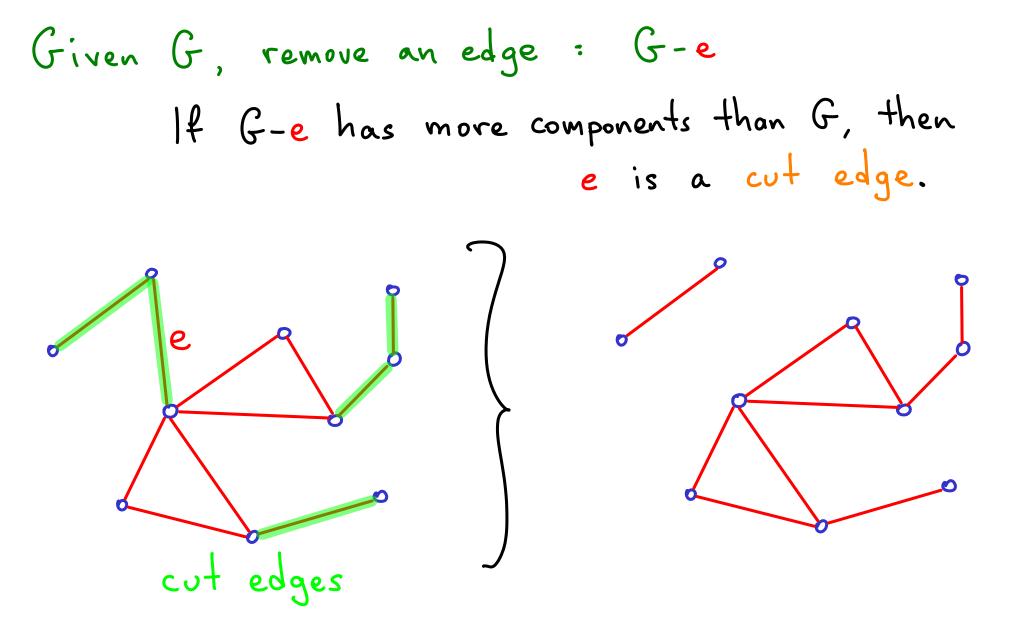
A path is a walk with distinct vertices



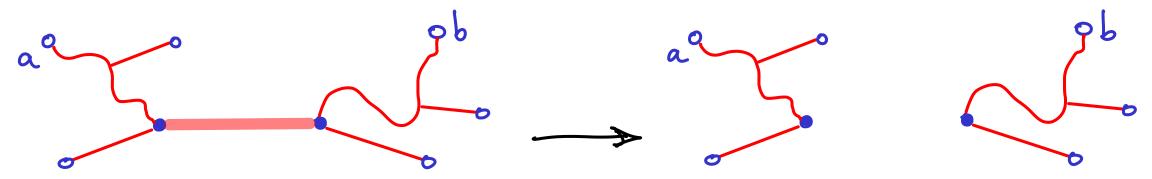




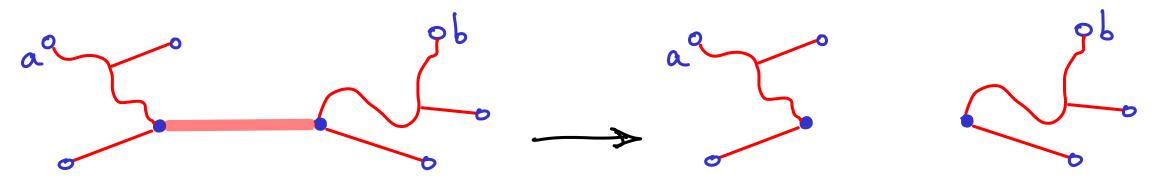


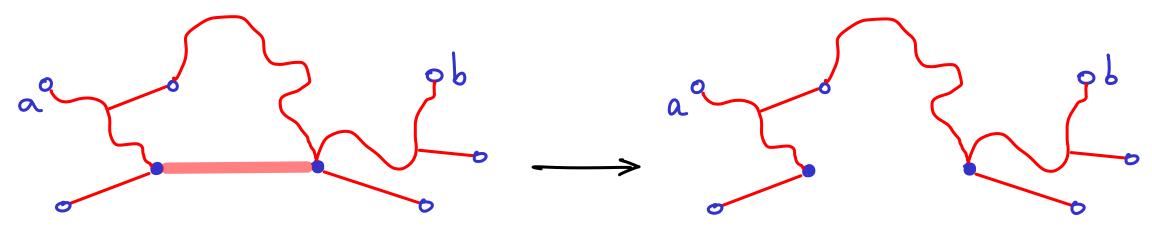


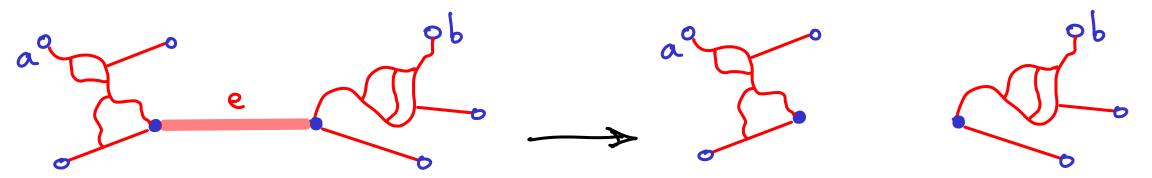
Claim: a cut edge can't be on a cycle. (a cycle is a path w/ start = end)

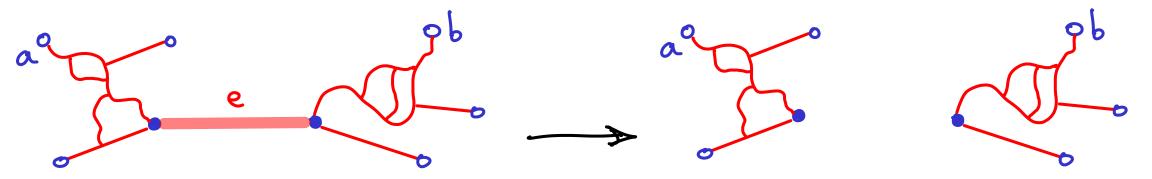


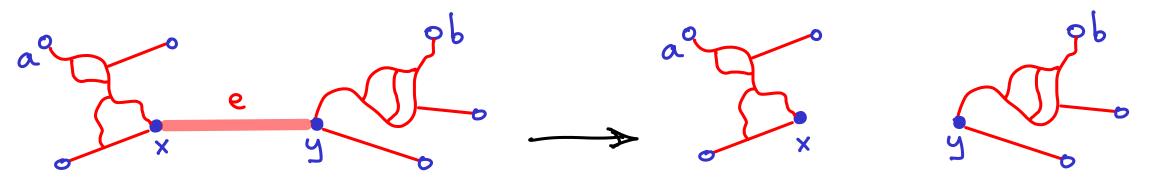
Claim: a cut edge can't be on a cycle. (a cycle is a path w/ start = end)











Claim: Removing a cut edge
$$e = (x,y)$$

increases the number of components by 1.
Types of vertex pairs (a,b) in G:
i) no path exists between a & b
ii) some path exists...

?

Claim: Removing a cut edge
$$e = (x,y)$$

increases the number of components by 1.
Types of vertex pairs (a,b) in G:
o) no path exists between a & b
i) no paths between a & b use e
2) all paths use e
If path P uses e
 $x = y$

b

Claim: Removing a cut edge
$$e = (x, y)$$

increases the number of components by 1.
Types of vertex pairs (a,b) in G:
o) no path exists between a & b
i) no paths between a & b
2) all paths use e
If path P uses e
& path Q doesn't
x e y

b

Claim: Removing a cut edge
$$e = (x, y)$$

increases the number of components by 1.
Types of vertex pairs (a,b) in G:
o) no path exists between a & b
1) no paths between a & b use e
2) all paths use e
If path P uses e
8 path Q doesn't
then e is on a cycle of $x \in y$

Claim: Removing a cut edge
$$e = (x,y)$$

increases the number of components by 1.
Types of vertex pairs (a,b) in G:
o) no path exists between a & b
c) no paths between a & b
2) all paths use e
contradiction
If path P uses e
& path Q doesn't
then e is on a cycles
but cut edges don't exist on cycles

Claim: Removing a cut edge
$$e = (x,y)$$

increases the number of components by 1.
Types of vertex pairs (a,b) in G:
o) no path exists between a & b
i) no paths between a & b
i) no paths between a & b use e
2) all paths use e
Type O or 1: not affected by removal of e

Claim: Removing a cut edge
$$e = (x, y)$$

increases the number of components by 1.
Types of vertex pairs (a,b) in G:
o) no path exists between a & b
i) no paths between a & b
i) no paths between a & b use e
iii) all paths use e
Type 0 or 1: not affected by removal of e
Type 2: implies a connects to x but not to y fin G-e
& b connects to y but not to x fin G-e

Claim: Removing a cut edge
$$e = (x,y)$$

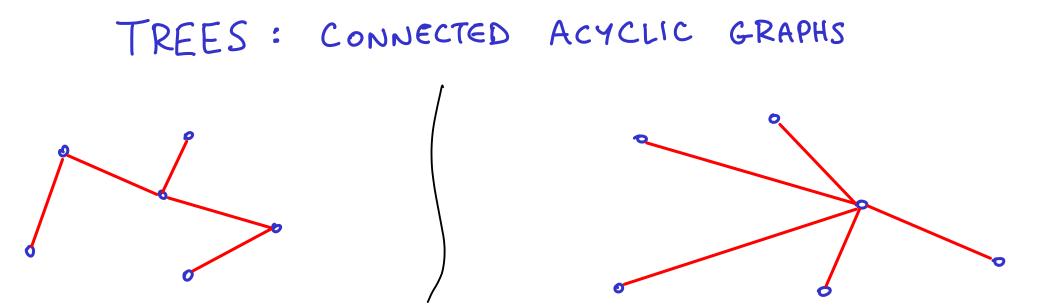
increases the number of components by 1.
Types of vertex pairs (a,b) in G:
o) no path exists between a & b
i) no paths between a & b
i) no paths between a & b use e
ii) all paths use e
Type 0 or 1: not affected by removal of e
Type 2: implies a connects to x but not to y fin G-e
& b connects to y but not to x fin G-e
(Type 2 partitions one component into two.

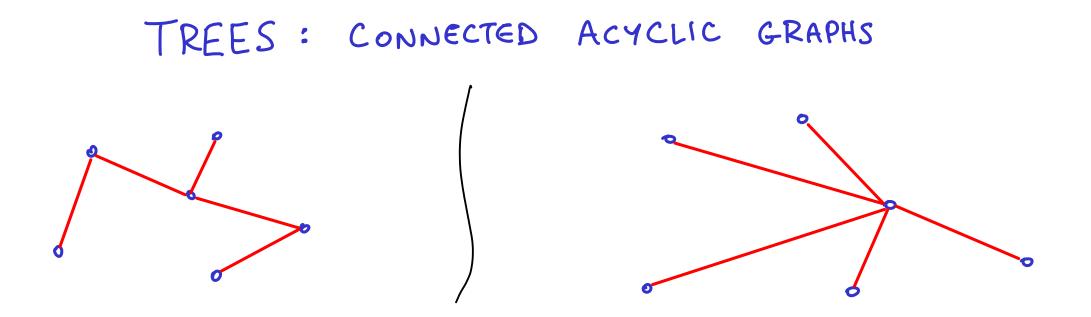
Claim: Removing a cut edge
$$e = (x, y)$$

increases the number of components by 1.
* e can only affect the component it's in.
So focus on connected graphs.
Proof by contradiction.
Suppose G-e has ≥ 3 components. $\exists a, b, c$ in different components.
In G, all paths $a \Rightarrow b$ use $e \neq w \log a \Rightarrow x \Rightarrow y \Rightarrow b$
all paths $a \Rightarrow c$ use $e \neq if a \Rightarrow x \Rightarrow y \Rightarrow c$
all paths $a \Rightarrow c$ use $e \neq if a \Rightarrow x \Rightarrow y \Rightarrow c$
all paths $a \Rightarrow c$ use $e \neq if a \Rightarrow x \Rightarrow y \Rightarrow c$
abbc in some component

Claim: Removing a cut edge
$$e = (x, y)$$

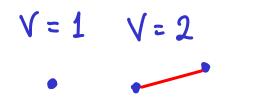
increases the number of components by 1.
* e can only affect the component its in.
So focus on connected graphs.
Proof by contradiction.
Suppose G-e has $\geqslant 3$ components. $\exists a, b, c$ in different components.
In G all paths $a \Rightarrow b$ use $e \notin w \log a \Rightarrow x \Rightarrow y \Rightarrow b$
all paths $a \Rightarrow c$ use $e \notin if a \Rightarrow x \Rightarrow y \Rightarrow c$
 $abbc in same component$
 $if a \Rightarrow y \Rightarrow x \Rightarrow c$
 $a \in not a cut edge$



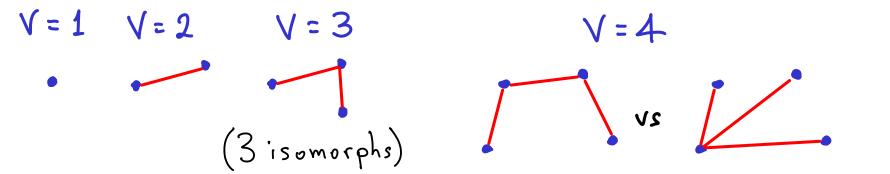


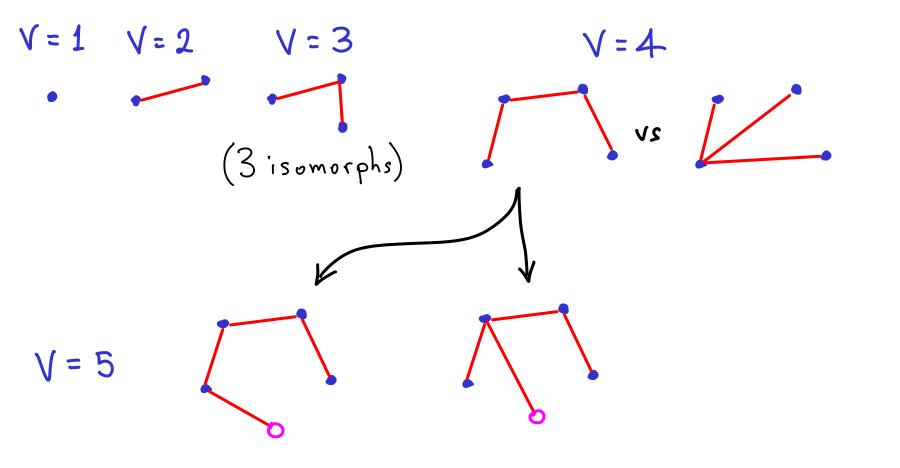
FORESTS : ACYCLIC GRAPHS (collections of trees)

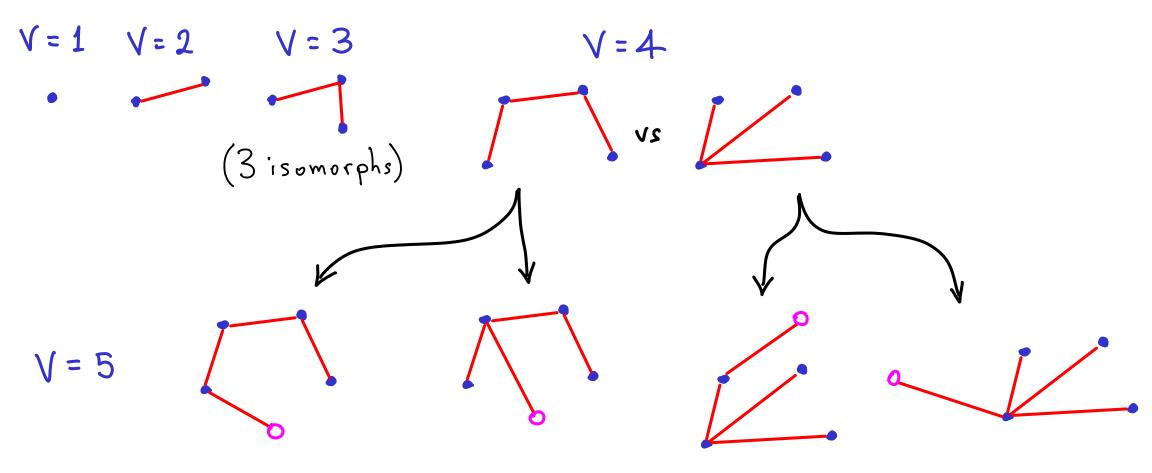
V = 1

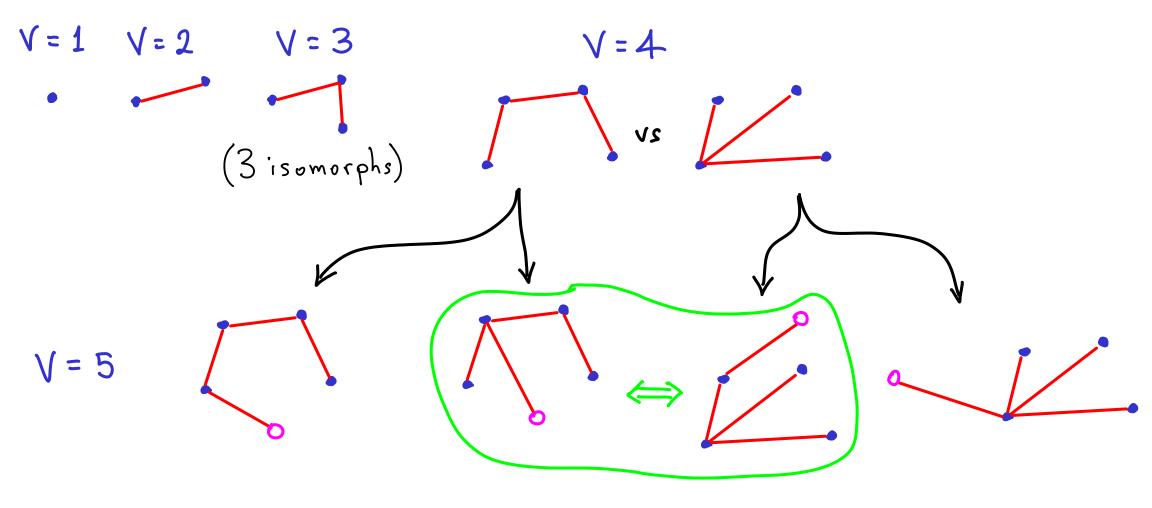


V=1 V=2 V=3 • • (3 isomorphs)







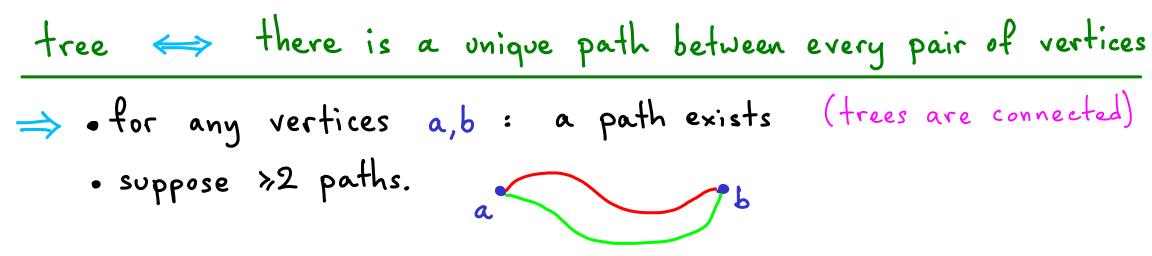


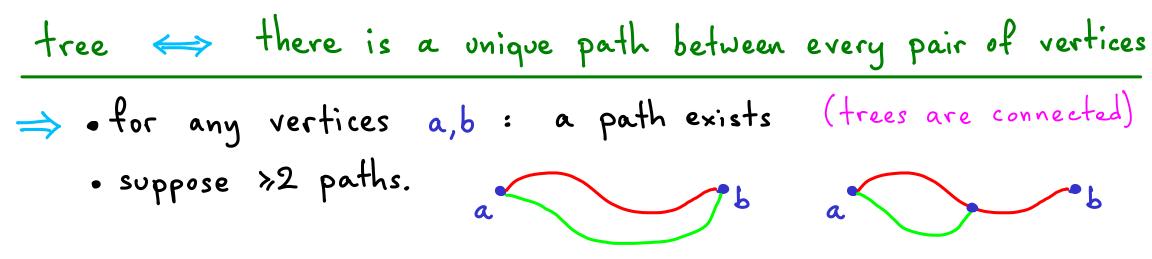
tree \iff there is a unique path between every pair of vertices

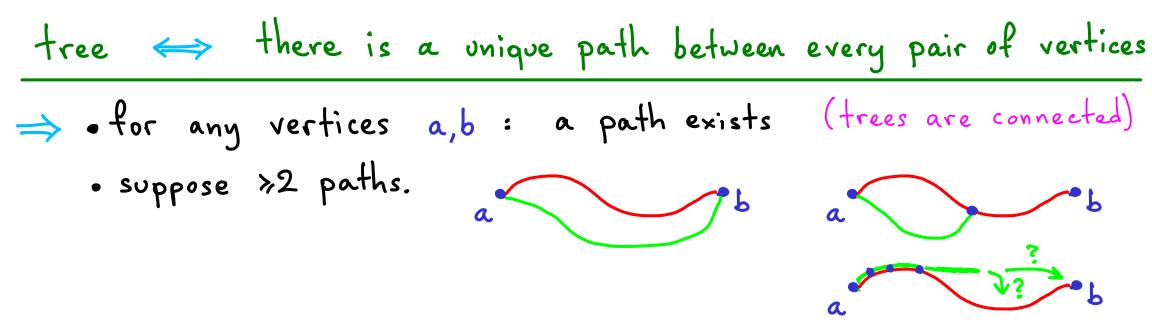
•

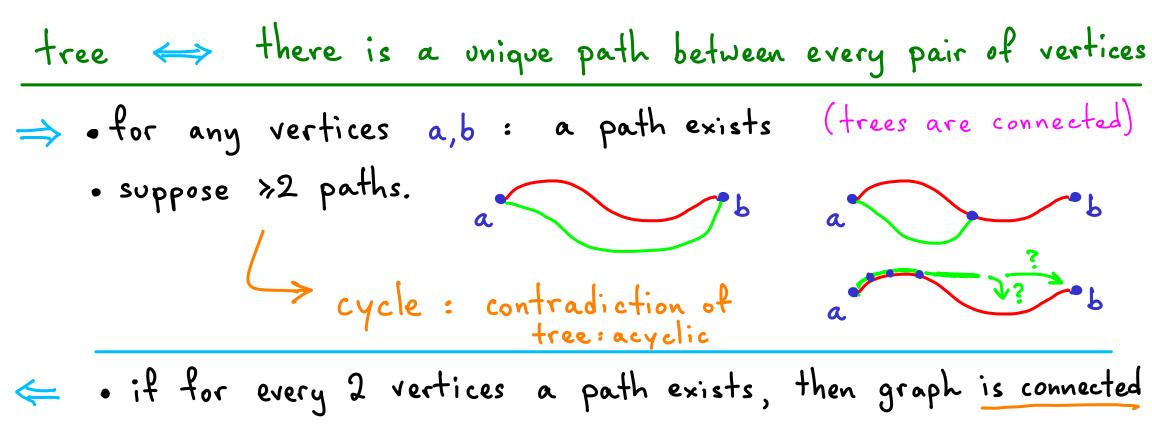
tree
$$\iff$$
 there is a unique path between every pair of vertices
 \Rightarrow • for any vertices a,b : a path exists (trees are connected)
next?

tree
$$\iff$$
 there is a unique path between every pair of vertices
 \Rightarrow of or any vertices a,b : a path exists (trees are connected)
of suppose >2 paths.





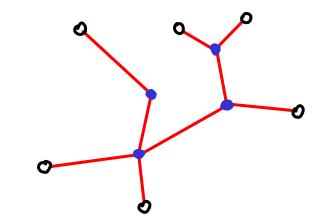




For any connected graph, tree \iff every edge is a cut edge

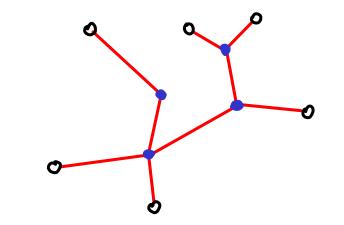
For any connected graph,
tree
$$\iff$$
 every edge is a cut edge
 $\Rightarrow \underbrace{\swarrow}_{x,y} for any if tree \Rightarrow unique path from x to y
x, y if x, y is the set of the se$

LEAVES : vertices of degree 1

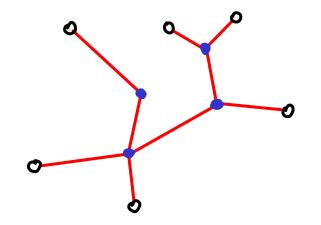


LEAVES : vertices of degree 1

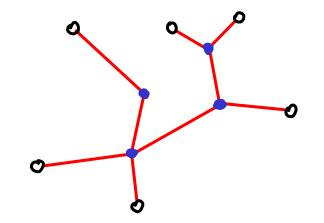
If $V \gg 2$, then T has $\gg 2$ leaves

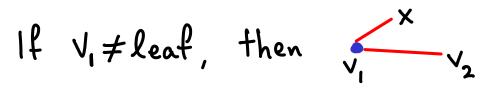


If
$$V \ge 2$$
, then T has ≥ 2 leaves
Consider longest path in T. $V_1 \dots V_k$
 $(k \ge 2)$

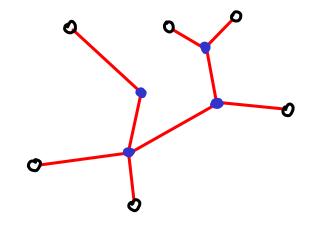


If
$$V \gg 2$$
, then T has $\gg 2$ leaves
Consider longest path in T. $V_1 \dots V_k$
 $(k \gg 2)$





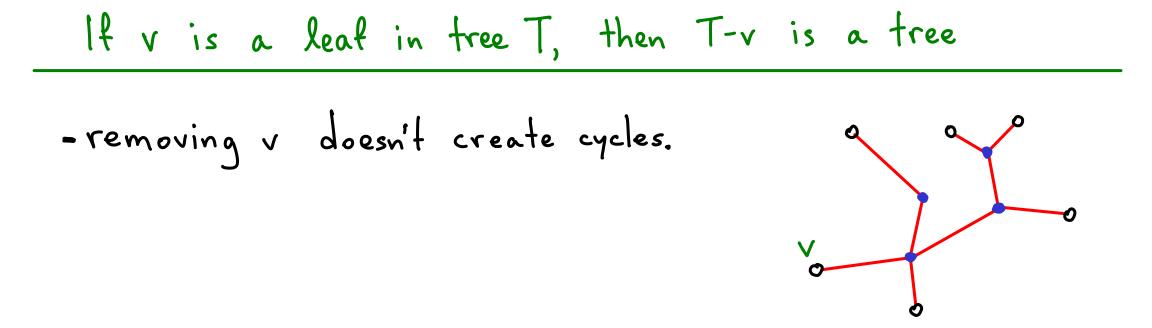
If
$$V \ge 2$$
, then T has ≥ 2 leaves
Consider longest path in T. $V_1 \dots V_k$
(k > 2)
If $V_1 \neq \text{leaf}$, then $\begin{cases} x \\ v_1 & v_2 \\ x \neq v_i \end{cases}$ (not on path)
why?



If
$$V \ge 2$$
, then T has ≥ 2 leaves
Consider longest path in T. $V_1 \dots V_k$
(k > 2)
If $V_1 \neq \text{leaf}$, then $\begin{cases} x \\ v_1 & v_2 \\ x \neq v_i \text{ (not on path)} \\ (x = v_i \text{ would create cycle}) \end{cases}$

If
$$V \ge 2$$
, then T has ≥ 2 leaves
Consider longest path in T. $V_1 \dots V_k$
(k \ge 2)
If $V_1 \neq \text{leaf}$, then $\begin{cases} x \\ v_1 & v_2 \\ x \neq v_i \text{ (not on path)} \\ (x = v_i \text{ would create cycle}) \end{cases}$
Then $x V_1 \dots V_k$: longer path

If v is a leaf in tree T, then T-v is a tree



If v is a leaf in tree T, then T-v is a tree
-removing v doesn't create cycles.
-removing v doesn't disconnect.
(v ≠ cut vertex 3 T-v is connected)
Ly if v were a cut vertex, then
$$\exists a, b (a \neq v, b \neq v)$$
 s.t.
any path $a \rightarrow b$ must use v.

If v is a leaf in tree T, then T-v is a tree
-removing v doesn't create cycles.
-removing v doesn't disconnect.
(v ≠ cut vertex 5 T-v is connected)
Ly if v were a cut vertex, then
$$\exists a, b (a \neq v, b \neq v)$$
 s.t.
any path a → b must use v.
in fact,
"the only path"
(T: unique paths)

If v is a leaf in tree T, then T-v is a tree

This allows us to use induction

If v is a leaf in tree T, then T-v is a tree
This allows us to use induction
ex: if
$$|V(T)| = n > 2$$
 then $|E(T)| = n-1$

If v is a leaf in tree T, then T-v is a tree
This allows us to use induction
ex: if
$$|V(T)| = n > 2$$
 then $|E(T)| = n-1$
pf: Base case: n=2 • trivial

If v is a leaf in tree T, then T-v is a tree
This allows us to use induction
ex: if
$$|V(T)| = n > 2$$
 then $|E(T)| = n-1$
pf: Base case: n=2 • trivial
Hypothesis: for $2 \le k \le n$, statement holds.

If v is a leaf in tree T, then T-v is a tree
This allows us to use induction
ex: if
$$|V(T)| = n > 2$$
 then $|E(T)| = n-1$
pf: Base case: n=2 • trivial
Hypothesis: for $2 \le k \le n$, statement holds.
Suppose T has n vertices. Find a leaf v & delete.

If v is a leaf in tree T, then T-v is a tree
This allows us to use induction
ex: if
$$|V(T)| = n \gg 2$$
 then $|E(T)| = n-1$
pf: Base case: n=2 • trivial
Hypothesis: for $2 \le k \le n$, statement holds.
Suppose T has n vertices. Find a leaf v & delete.
• v had degree 1, so we delete 1 edge.

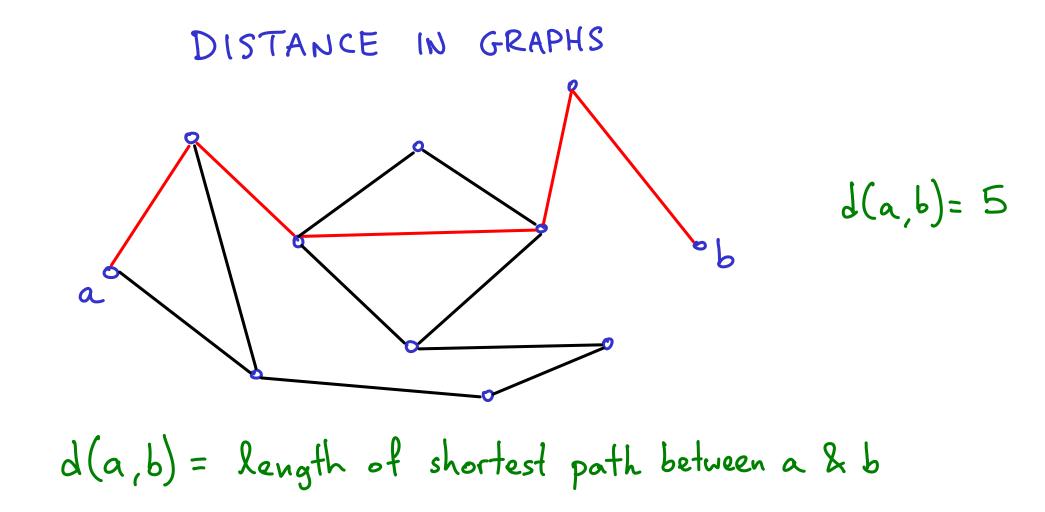
If v is a leaf in tree T, then T-v is a tree
This allows us to use induction
ex: if
$$|V(T)| = n > 2$$
 then $|E(T)| = n-1$
pf: Base case: n=2 • trivial
Hypothesis: for 2 < k < n, statement holds.
Suppose T has n vertices. Find a leaf v & delete.
• v had degree 1, so we delete 1 edge.
• T-v is a tree, w/ n-1 vertices \rightarrow n-2 edges.

If v is a leaf in tree T, then T-v is a tree
This allows us to use induction
ex: if
$$|V(T)| = n > 2$$
 then $|E(T)| = n-1$
pf: Base case: n=2 • trivial
Hypothesis: for $2 \le k \le n$, statement holds.
Suppose T has n vertices. Find a leaf v & delete.
• v had degree 1, so we delete 1 edge.
• T-v is a tree, w/ n-1 vertices $\rightarrow n-2$ edges.
• Replace v: total edges = n-2+1 = n-1

Proved: if
$$|V(T)| = n > 2$$
 then $|E(T)| = n-1$

Also true : for connected G with n>1 vertices, if |E(G)| = n-1 then G is a tree

> See p. 354 Also defines spanning trees



Find minimum distance: covered in Algorithms course