BINARY SEARCH TREES - BUILT RANDOMLY

Given array of elements: 3182675

3

Given array of elements: 3182675 $(3) \rightarrow (3)$

Given array of elements: 3182675 \rightarrow (3) \rightarrow <u>(3)</u> 3 8

- What is the worst-case time complexity, and why?
- · How unbalanced could the tree be ?

- What is the worst-case time complexity, and why?
- · How unbalanced could the tree be ?

- What is the worst-case time complexity, and why?
- · How unbalanced could the tree be ?

- What is the worst-case time complexity, and why?
- · How unbalanced could the tree be ?

• What would be ideal ?

- What is the worst-case time complexity, and why?
- · How unbalanced could the tree be ?

• What would be ideal ? \rightarrow balanced partition every time • Worst-case time complexity = $\Omega(?)$

- What is the worst-case time complexity, and why?
- · How unbalanced could the tree be ?

What would be ideal ? → balanced partition every time
 Worst-case time complexity = Ω(?)
 Hint: after constructing the BST,
 what does an in-order traversal give?

Constructing a BST essentially sorts data so the sorting lower bound applies

R

But we can make an even stronger claim

In a balanced tree,
$$\sim \frac{n}{2}$$
 nodes have depth ~logn
so they take $\Omega(n\log n)$ time to insert.

In a balanced tree,
$$\sim \frac{n}{2}$$
 nodes have depth ~logn
so they take $\Omega(n\log n)$ time to insert.
In any other tree we can find $\gg \frac{n}{2}$ nodes with depth $\gg \log n$

In a balanced tree, ~
$$\frac{n}{2}$$
 nodes have depth ~ logn
so they take $\Omega(nlogn)$ time to insert.
In any other tree we can find > $\frac{n}{2}$ nodes with depth > logn
of for the tree we can find > $\frac{n}{2}$ nodes with depth > logn
to construct any BST

Conclusion so far:

If locky,
$$\Theta(nlogn)$$
 time
If unlucky, $\Theta(n^2)$ time

Conclusion so far:

If locky,
$$\Theta(nlogn)$$
 time
If unlucky, $\Theta(n^2)$ time

Conclusion so far:

If locky,
$$\Theta(nlogn)$$
 time
If unlucky, $\Theta(n^2)$ time

Stable quicksort
3 1 8 2 6 7 5
avicksort round 1: compare all etts to (3)
BST (3) = root; eventually all etts
pass through.
quicksort : partitions into 2 groups

$$<3$$
 & >3
BST same
BST same
BST same
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3
 < 3 & >3 & >3
 < 3 & >3 & >3
 < 3 & >3 & >3
 < 3 & >3 &

Stable quicksort
3 1 8 2 6 7 5

$$(3) 1 8 2 6 7 5$$

 $(3) 1 8 2 6 7 5$
 $(3) 1 8 2 6 7 5$
 $(3) 1 8 2 6 7 5$
 $(3) 1 8 2 6 7 5$
 $(3) 1 8 2 6 7 5$
 $(3) 1 8 2 6 7 5$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 2 6 7 5 (3)$
 $(3) 3 8 6 7 5$
 $(3) 3 8 6 7 5$
 $(3) 3 8 6 7 5$
 $(3) 3 8 6 7 5$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 5 (7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$
 $(3) 6 7)$

Conclusion:

The expected time complexity of building a BST on random data is the same as for Quicksort: O(nlogn)

Conclusion:

The expected time complexity of building a BST on random data is the same as for Quicksort: O(nlogn)

Unfortunately this doesn't imply anything useful about the expected depth of a random BST.

In particular it doesn't imply expected O(logn) depth. There exist trees that have much greater depth, but that can be constructed in O(nlogn) time.