the MASTER METHOD

$$
G_{a}
$$
 = $\frac{1}{\pi}$ for solving recurrences of this form:
\n
$$
\frac{1}{\pi}
$$
\n
$$
\pi
$$
\n

MASTER METHOD

 $T(n) = aT(\frac{n}{b}) + f(n)$

 $T(n) = aT(\frac{n}{b}) + f(n)$ MASTER METHOD $\begin{picture}(180,190)(-10,10) \put(0,0){\vector(0,1){100}} \put(10,0){\vector(0,1){100}} \put(10,0){\vector(0,1){100}} \put(10,0){\vector(0,1){100}} \put(10,0){\vector(0,1){100}} \put(10,0){\vector(0,1){100}} \put(10,0){\vector(0,1){100}} \put(10,0){\vector(0,1){100}} \put(10,0){\vector(0,1){100}} \put(10,0){\vector(0,1){100}} \put(10,0){\vector($ $a^i \cdot f(\frac{n}{l^i})$ leaf level:
#leaves=a^{h =} a^{log}sⁿ = n^{logsa}) = O(n^{logsa}) = CASE 1: leaf level

MASTER METHOD T(n) = a T(
$$
\frac{n}{b}
$$
) + f(n) compare f(n) + $n^{log_{b}a}$

\n(1) f(n) = O(n^(log_{b}a)-\epsilon) #leaves = $\Omega(f(n) \cdot n^{\epsilon})$ leaf level dominates polynomials polynomially

\n(2) f(n) = O(#leaves) all levels \sim same

MASTER METHOD

\n
$$
T(n) = aT(\frac{n}{b}) + f(n) \text{ compare } f(n) + n^{log_{b}a}
$$
\n(i) $f(n) = O(n^{log_{b}a) - \epsilon}$

\n
$$
f(n) = D(\#\{2 \text{ cases } n^{\epsilon}\})
$$
\n(i) $f(n) = O(\#\{2 \text{ cases } n^{\epsilon}\})$

\n
$$
= \Theta(\#\{2 \text{ cases } \cdot log^{k}n) \text{ all } \{\text{cycles } n \text{ same}\})
$$
\n(ii) $f(n) = O(\#\{2 \text{ cases } n^{\epsilon}\})$

\n
$$
= \Theta(\#\{2 \text{ cases } n^{\epsilon}\})
$$
\n(ii) $f(n) = O(\#\{2 \text{ cases } n^{\epsilon}\})$

\n
$$
= \Theta(\#\{2 \text{ cases } n^{\epsilon}\})
$$
\n(iii) $f(n) = O(n^{log_{b}a}) - \epsilon$

$$
\varepsilon \rangle \circ \, , \, k \, \rangle \circ
$$

MASTER METHOD T(n) = a T(
$$
\frac{n}{b}
$$
) + f(n) compare f(n) + b n^{log}

\n(1) f(n) = O(n^{(log}ba)-\epsilon) # leaves = $\Omega(f(n) \cdot n^{\epsilon})$ level dominates polynomially

\n(2) f(n) = O(n^{log}ba-log^kn) = O(# leaves / n^{\epsilon})

\n(3) f(n) = $\Omega(nlog_b a) + \epsilon$ = $\Omega(f(n) \cdot log_n)$ all levels \sim same

\n(4) = $\Omega(nlog_b a) + \epsilon$ = $\Omega(f(n) + log_n)$ all levels \sim same

\n(5) f(n) = $\Omega(nlog_b a) + \epsilon$ = $\Omega(f(n) + log_n)$ root dominates polynomials

\n(6) Anb $af(\frac{a}{b}) \leq \delta \cdot f(n)$ work reduced by constant fraction in each level

\n(6) a 100° (6) a 210° (10) a 32° (11) a 44° (12) a 50° (13) a 50° (14) a 64° (15) a 50° (16) a 64° (16) a 64° (17) a 65° (19) a 66° (19) a 67° (19) a 68° (19) a 69° (10) a 69° (11) a 69° (11) a 69° (11) a 69° (11) a 60° (

$$
T(n) = 4T(\frac{n}{2}) + n
$$
\n
$$
\frac{1}{2}(\frac{n}{2}) + \frac{1}{2}(\frac{n}{2})
$$
\n
$$
f(n) = n = O(n) = O(n^{2-1})
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + n^{2}
$$
\n
$$
f(n) = n^{2} = \Theta(n^{log_{2}a} - log_{2}a)^{2}
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + n^{3}
$$
\n
$$
f(n) = n^{3} = \Omega(n^{2+1}) + log_{2}a^{2}
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + n^{3}
$$
\n
$$
f(n) = n^{3} = \Omega(n^{2+1}) + log_{2}a^{2}
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + n^{3}
$$
\n
$$
f(n) = n^{3} = \Omega(n^{2+1}) + log_{2}a^{2}
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + \frac{n^{2}}{log_{2}a} = \frac{1}{2}ln_{2}a^{2}
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + \frac{n^{2}}{log_{2}a} = \frac{1}{2}ln_{2}a^{2}
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + \frac{n^{2}}{log_{2}a} = \frac{1}{2}ln_{2}a^{2}
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + \frac{n^{2}}{log_{2}a} = \frac{1}{2}ln_{2}a^{2}
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + \frac{n^{2}}{log_{2}a} = \frac{1}{2}ln_{2}a^{2}
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + \frac{n^{2}}{log_{2}a} = \frac{1}{2}ln_{2}a^{2}
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + \frac{n^{2}}{log_{2}a} = \frac{1}{2}ln_{2}a^{2}
$$
\n
$$
f(n) = 4T(\frac{n}{2}) + \frac{n^{2}}{log_{2}a} = \frac{1}{2}ln_{2}a^{2}
$$
\n
$$
f(n) =
$$

D'ivide & Conquer $T(n) = 2T(\frac{n}{2}) + f(n)$ n^{logia} = n

if
$$
f(n)=n \Rightarrow \text{case2} \Rightarrow \Theta(n.\text{log}n)
$$

\n
$$
\vdots \qquad \qquad (k=0)
$$
\n
$$
\vdots \qquad \qquad (n) = n \log n \Rightarrow \text{case2} \Rightarrow \Theta(n \log^{k+1} n)
$$

$$
if f(n) = log^c n \Rightarrow cone 1 \Rightarrow \Theta(n)
$$

$$
f(n) = O(n^{1-\epsilon})
$$

$$
if f(n)=n^{c} \n
$$
f(n)=\Omega(n^{1+\epsilon})
$$
\n
$$
f(n)=2f(\frac{n}{2})=\frac{2}{2^{c}}n^{c}=\frac{1}{2^{c-1}}\cdot f(n)
$$
\n
$$
...Case 3 \Rightarrow \Theta(f(n))
$$
$$

$$
T(n) = 4T(\frac{n}{4}) + f(n)
$$

SAME

FYI - EXTRA-EXTENDED Case 2
$$
f(n) = \Theta(n^{\log_{10}a} \cdot \log^{k}n)
$$

\n(Desn't come up in any algorithms that we will see)
\nStandard extended case 2
\n $k \gg 0$ T(n) = $\Theta(n^{\log_{10}a} \cdot \log^{k+1}n)$ T(n) = $\Theta(f(n) \cdot \log_{10}n)$
\n $k = -1$ T(n) = $\Theta(n^{\log_{10}a} \cdot \log_{10}n)$ T(n) = $\Theta(f(n) \cdot \log_{10}n)$
\ne.g., T(n) = $8T(\frac{n}{2}) + \frac{n^3}{\log_{10}n} = n^3 \log_{10}n$
\n $k \le -2$ T(n) = $\Theta(n^{\log_{10}a})$ almost like an extended case 1:
\n $\log_{10} \log_{10} \log$