$$T(n) = aT(\frac{n}{b}) + f(n)$$

Ga tool for solving recurrences of this form:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

a>1 must recurse at least once.

$$T(n) = aT(\frac{n}{b}) + f(n)$$

required
$$b>1$$
 \rightarrow otherwise $T(n)=\infty$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

required
$$\Rightarrow$$
 must recurse at least once.
 $b>1 \longrightarrow \text{otherwise } T(n) = \infty$

a & b are $O(1) \longrightarrow \text{see next page}$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

required
$$\Rightarrow$$
 must recurse at least once.
 $b>1 \longrightarrow \text{otherwise } T(n) = \infty$

a & b are $O(1) \longrightarrow \text{see next page}$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

branches = a ///////
$$T(\frac{n}{b}) \dots T(\frac{n}{b})$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

branches = a
$$f(n)$$

$$f(\frac{n}{b}) \dots f(\frac{n}{b})$$

$$T(\frac{n}{b^2}) \dots T(\frac{n}{b^2}) \dots T(\frac{n}{b^2}) \dots$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

branches = a
$$f(n)$$

$$f(\frac{n}{b}) \cdots f(\frac{n}{b})$$

$$f(\frac{n}{b^2}) \cdots f(\frac{n}{b^2}) \cdots f(\frac{n}{b^2}) \cdots$$

$$\vdots \vdots$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$f\left(\frac{n}{b}\right)$$
 a. $f\left(\frac{n}{b}\right)$

$$a^2 f\left(\frac{n}{b^2}\right)$$

branches = a
$$f(n)$$

$$f(\frac{n}{b}) \cdots f(\frac{n}{b})$$

$$f(\frac{n}{b^2}) \cdots f(\frac{n}{b^2}) \cdots f(\frac{n}{b^2}) \cdots$$

$$\vdots \vdots$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$



T(n) = aT(
$$\frac{n}{b}$$
) + f(n)

$$f(n)$$

T(n) =
$$aT(\frac{n}{b}) + f(n)$$

$$f(n)$$

$$f(n)$$

$$f(\frac{n}{b}) \cdots \cdots f(\frac{n}{b})$$

$$f(\frac{n}{b}) \cdots f(\frac{n}{b})$$

$$f(\frac{n}{b}) \cdots f(\frac{n}{b})$$

$$f(\frac{n}{b}) \cdots f(\frac{n}{b})$$

$$a \cdot f(\frac{n}{b})$$

$$a \cdot f(\frac{n}{b})$$

$$\vdots \qquad \vdots$$

$$\vdots \qquad \vdots$$

$$\vdots \qquad \vdots$$

$$\vdots \qquad \vdots$$

T(n) =
$$aT(\frac{n}{b}) + f(n)$$

$$f(n)$$

$$f(n)$$

$$f(\frac{n}{b}) \cdots \cdots f(\frac{n}{b})$$

$$f(\frac{n}{b}) \cdots f(\frac{n}{b})$$

$$T(n) = aT(\frac{n}{b}) + f(n)$$

$$f(n)$$

$$f(n)$$

$$f(\frac{n}{b}) \cdots \cdots f(\frac{n}{b})$$

$$height$$

$$h = log_b n$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$h = log_b n$$

$$\# leaves = a^h = a^{log_b n} = n^{log_b a}$$

$$(n)$$

$$2 \cdot f(\frac{n}{b})$$

$$\vdots \qquad \vdots$$

$$a \cdot f(\frac{n}{b})$$

$$\vdots \qquad \vdots$$

$$a \cdot f(\frac{n}{b})$$

$$\vdots \qquad \vdots$$

$$a \cdot f(\frac{n}{b})$$

height
$$f(n) = \frac{f(n)}{b} \cdot \dots \cdot f(n)$$

$$f(\frac{n}{b}) \cdot \dots \cdot f(\frac{n}{b})$$

$$f(\frac{n}{b}) \cdot \dots \cdot f(\frac{n}{b}$$

cost per level

f(n)

 $T(n) = aT(\frac{n}{b}) + f(n)$

MASTER METHOD $T(n) = aT(\frac{n}{b}) + f(n)$ compare f(n) to n^{log_ba} root #leaves

MASTER METHOD
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 compare $f(n)$ to n^{log_ba} root #leaves

#leaves dominate polynomially

all levels ~ same

MASTER METHOD
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 compare $f(n)$ to n^{log_ba}

solution:
$$T(n) = \Theta(n \log_b a)$$

all levels
$$\sim$$
 same
$$Solution: T(n) = \Theta(f(n) \cdot logn)$$

root dominates polynomially solution:
$$T(n) = \Theta(f(n))$$

MASTER METHOD
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 compare $f(n)$ to n^{log_ba}
root #leaves

#leaves dominate polynomially solution:
$$T(n) = \Theta(n \log_b a)$$

all levels
$$\sim$$
 same solution: $T(n) = \Theta(f(n) \cdot logn)$

e.g.: #leaves = n^4 , $f(n) = n^5$

solution:
$$T(n) = \Theta(f(n) \cdot logn)$$

root dominates polynomially

e.g.: $\#leaves = n^{4} \cdot f(n) = n^{5}$

solution: $T(n) = \Theta(f(n))$

MASTER METHOD
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 compare $f(n)$ to n^{log_ba} root #leaves

1)

#leaves dominate polynomially

#leaves dominate polynomially solution:
$$T(n) = \Theta(n \log_b a)$$

all levels ~ same

solution:
$$T(n) = \Theta(f(n) \cdot logn)$$

$$f(x) = O(logia (E))$$
solution: $f(n) = O(f(n) \cdot logn)$

root dominates polynomially 3) $f(n) = \Omega(n^{\log ba} \cdot n^{\epsilon})$ ($\epsilon > 0$) solution: $T(n) = \Theta(f(n))$ e.g.: $\#leaves = n^4, f(n) = n^5$

MASTER METHOD
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 compare $f(n)$ to n^{log_ba} root #leaves

1)

#leaves dominate polynomially

solution: $T(n) = \Theta(n \log_b a)$

2)
$$f(n) = \Theta(n^{\log_b a})$$
 all levels ~ same
e.g.: #leaves = n^3 , $f(n) = 2n^3$ solution: $T(n) = \Theta(f(n) \cdot \log n)$

root dominates polynomially 3) $f(n) = \Omega(n^{\log ba} \cdot n^{\epsilon})$ ($\epsilon > 0$)

solution: $T(n) = \Theta(f(n))$ e.g.: $\#leaves = n^4, f(n) = n^5$

MASTER METHOD
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 compare $f(n)$ to n^{log_ba}
root #leaves

1)
$$n^{\log_b a} = \Omega(f(n) \cdot n^{\epsilon})$$
 ($\epsilon > 0$) #leaves dominate polynomially solution: $T(n) = \Theta(n^{\log_b a})$

2)
$$f(n) = \Theta(n^{\log ba})$$
 all levels ~ same
e.g.: #leaves = n^3 , $f(n) = 2n^3$ solution: $T(n) = \Theta(f(n) \cdot \log n)$

3)
$$f(n) = \Omega(n \log n \cdot n^{\epsilon})$$
 ($\epsilon > 0$) root dominates polynomially e.g.: #leaves = n^4 , $f(n) = n^5$ solution: $T(n) = \Theta(f(n))$

MASTER METHOD $T(n) = aT(\frac{n}{b}) + f(n)$ compare f(n) to n^{logba} root #leaves

1)
$$n^{\log ba} = \Omega(f(n) \cdot n^{\epsilon})$$
 ($\epsilon > 0$) #leaves dominate polynomially e.g.: #leaves = n^2 , $f(n) = 30n^{1.5} \cdot \log^2 n$ solution: $T(n) = \Theta(n^{\log ba})$

2)
$$f(n) = \Theta(n \log ba)$$
 all levels ~ same
e.g.: #leaves = n^3 , $f(n) = 2n^3$ solution: $T(n) = \Theta(f(n) \cdot \log n)$

3) $f(n) = \Omega(n^{\log ba} \cdot n^{\epsilon})$ (\$\epsilon\$) root dominates polynomially e.g.: #leaves = n^4 , $f(n) = n^5$ solution: $T(n) = \Theta(f(n))$

MASTER METHOD
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 compare $f(n)$ to n^{logba} root #leaves

1)
$$n^{\log_b a} = \Omega(f(n) \cdot n^{\epsilon})$$
 ($\epsilon > 0$) #leaves dominate polynomially e.g.: #leaves = n^2 , $f(n) = 30n^{1.5} \cdot \log^2 n$ solution: $T(n) = \Theta(n^{\log_b a})$

2)
$$f(n) = \Theta(n \log ba)$$
 all levels ~ same
e.g.: #leaves = n^3 , $f(n) = 2n^3$ solution: $T(n) = \Theta(f(n) \cdot \log n)$

3)
$$f(n) = \Omega(n \log ba \cdot n^{\epsilon})$$
 ($\epsilon > 0$) root dominates polynomially e.g.: #leaves = n^{4} , $f(n) = n^{5}$ solution: $T(n) = \Theta(f(n))$

Technicality for case 3

Also required:
$$af(\frac{n}{b}) \leq \delta \cdot f(n)$$
 $0 < \delta < 1$

Good news: For commonly encountered functions this will hold.

You don't need to check this condition.

Examples

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

if
$$f(n) = \Theta(n)$$

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

if
$$f(n) = \Theta(n)$$

$$\rightarrow$$
 case 2

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

if
$$f(n) = \Theta(n)$$

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

if
$$f(n) = \Theta(n)$$

if
$$f(n) = O(n^d)$$
 (d<1)?

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

if
$$f(n) = \Theta(n)$$
 $\rightarrow case 2$ $\Theta(n log n)$

if
$$f(n) = O(n^d)$$
 $(d<1) \rightarrow case 1$?

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

if
$$f(n) = \Theta(n)$$
 $\rightarrow case 2$ $\Theta(n log n)$

if
$$f(n) = O(nd)$$
 (d<1) \rightarrow case 1 $\Theta(nd)$
e.g., $O(1)$, $O(logn)$, $O(\sqrt{n})$

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

if
$$f(n) = \Theta(n)$$
 $\rightarrow case 2$ $\Theta(nlogn)$

if
$$f(n) = O(nd)$$
 (d<1) \rightarrow case 1 $\Theta(n)$
e.g., $O(1)$, $O(logn)$, $O(\sqrt{n})$

if
$$f(n) = \Omega(nd)$$
 (d>1) ?

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

if
$$f(n) = \Theta(n)$$
 $\rightarrow case 2$ $\Theta(n log n)$

if
$$f(n) = O(nd)$$
 (d<1) \rightarrow case 1 $O(n)$
e.g., $O(1)$, $O(logn)$, $O(\sqrt{n})$

if
$$f(n) = \Omega(n^d)$$
 $(d>1) \rightarrow case 3 \Theta(f(n))$

if
$$f(n) = \Theta(n)$$

→ case 2 O(nlogn)

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

$$n^{\log_b a} = n$$

if
$$f(n) = O(nd)$$
 (d<1) \rightarrow case 1 $\Theta(nd)$
e.g., $O(1)$, $O(logn)$, $O(\sqrt{n})$

$$T(n) = 4T(\frac{n}{4}) + f(n)$$

if
$$f(n) = \Omega(n^d)$$
 $(d>1) \rightarrow case 3$ $\Theta(f(n))$

$$T(n) = 2T(\frac{n}{2}) + f(n)$$

if
$$f(n) = \Theta(n)$$

if
$$f(n) = O(nd)$$
 (d<1) \rightarrow case 1 $\Theta(nd)$
e.g., $O(1)$, $O(logn)$, $O(\sqrt{n})$

$$T(n) = 4T(\frac{n}{4}) + f(n)$$

if
$$f(n) = \Omega(n^d)$$
 $(d>1) \rightarrow case 3$ $\Theta(f(n))$

$$T(n) = 4T(\frac{n}{2}) + n$$

$$n^{\log_b a} = n^{\log_2 4} = n^2$$

$$T(n) = 4T(\frac{n}{2}) + n = ?$$

$$n^{\log_{b}a} = n^{\log_{2}4} = n^{2}$$

$$T(n) = 4T(\frac{n}{2}) + n = \Theta(n^2)$$

leaves dominate polynomially

$$n^{\log_b a} = n^{\log_2 4} = n^2$$

$$T(n) = 4T(\frac{n}{2}) + n$$
 = $\Theta(n^2)$
leaves dominate polynomially

$$T(n) = 4T(\frac{n}{2}) + n^2 = ?$$

$$n^{\log_b a} = n^{\log_2 4} = n^2$$

$$T(n) = 4T(\frac{n}{2}) + n$$
 = $\Theta(n^2)$
leaves dominate polynomially

$$T(n) = 4T(\frac{n}{2}) + n^2 = \Theta(n^2 \log n)$$

case 2

$$n^{\log_b a} = n^{\log_2 4} = n^2$$

$$T(n) = 4T(\frac{n}{2}) + n$$
 = $\Theta(n^2)$
leaves dominate polynomially

$$T(n) = 4T(\frac{n}{2}) + n^2 = \Theta(n^2 \log n)$$
case 2

$$T(n) = 4T(\frac{n}{2}) + n^3 = ?$$

$$n^{\log_b a} = n^{\log_2 4} = n^2$$

$$T(n) = 4T(\frac{n}{2}) + n$$
 = $\Theta(n^2)$
leaves dominate polynomially

$$T(n) = 4T(\frac{n}{2}) + n^2 = \Theta(n^2 \log n)$$
case 2

$$T(n) = 4T(\frac{n}{2}) + n^3 = \Theta(n^3)$$
root dominates polynomially

Next:

An extension of Case 2 that can sometimes come in handy

$$f(n) = \Theta(n^{\log ba} \cdot \log^k n)$$
 $k > 0$ (k=0 is regular case 2)

$$f(n) = \Theta(n^{\log ba} \cdot \log^k n)$$

$$k > 0$$
 (k=0 is regular case 2)

$$\leftarrow T(n) = \Theta(f(n) \cdot logn)$$

same result as regular case 2

$$f(n) = \Theta(n^{\log ba} \cdot \log^k n)$$
 $k > 0$ (k=0 is regular case 2)

$$T(n) = \Theta(f(n) \cdot logn)$$
 same result as regular case 2

Examples:
$$T(n) = 2T(\frac{n}{2}) + n \log^5 n = ?$$

$$f(n) = \Theta(n^{\log ba} \cdot \log^k n)$$
 $k > 0$ (k=0 is regular case 2)

Examples:
$$T(n) = 2T(\frac{n}{2}) + n\log^5 n = \Theta(n\log^6 n)$$

$$T(n) = 4T(\frac{n}{2}) + n^2 \log n = ?$$

$$f(n) = \Theta(n^{\log ba} \cdot \log^k n)$$
 $k > 0$ (k=0 is regular case 2)

$$f(n) = \Theta(f(n) \cdot logn)$$
 same result as regular case 2

Examples:
$$T(n) = 2T(\frac{n}{2}) + n \log^5 n = \Theta(n \log^6 n)$$

 $T(n) = 4T(\frac{n}{2}) + n^2 \log n = \Theta(n^2 \log^2 n)$
 $T(n) = T(\frac{n}{4}) + \log^2 n = ?$

$$f(n) = \Theta(n^{\log ba} \cdot \log^k n)$$
 $k > 0$ (k=0 is regular case 2)

$$f(n) = \Theta(f(n) \cdot logn)$$
 same result as regular case 2

Examples:
$$T(n) = 2T(\frac{n}{2}) + n\log^5 n = \Theta(n\log^6 n)$$

 $T(n) = 4T(\frac{n}{2}) + n^2\log n = \Theta(n^2\log^2 n)$

$$T(n) = T(\frac{n}{6}) + \log^2 n = \Theta(\log^3 n)$$

$$T(n) = 2T(\frac{n}{2}) + \frac{n}{\log n} = ?$$

$$f(n) = \Theta(n^{\log ba} \cdot \log^k n)$$
 $k > 0$ (k=0 is regular case 2)

$$T(n) = \Theta(f(n) \cdot logn)$$
 same result as regular case 2

Examples:
$$T(n) = 2T(\frac{n}{2}) + n \log^5 n = \Theta(n \log^6 n)$$

$$T(n) = 4T(\frac{n}{2}) + n^2 \log n = \Theta(n^2 \log^2 n)$$

$$T(n) = T(\frac{n}{6}) + \log^2 n = \Theta(\log^3 n)$$

$$T(n) = 2T(\frac{n}{2}) + \frac{n}{\log n}$$

*based on what we've seen

Next: Recap of cases

and one last extension (FYI)

MASTER METHOD
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 compare $f(n)$ to $n^{\log_b a}$

1)
$$f(n) = O(n^{(\log ba)-\epsilon})$$
 #leaves = $O(f(n) \cdot n^{\epsilon})$ leaf level dominates polynomially

$$T(n) = O(n^{tot})^{bot}$$

$$f(n) = O(\# leaves/n^{\epsilon})$$

$$T(n) = O(n^{log}la)$$

2)
$$f(n) = \Theta(n^{\log ba} \cdot \log^{k} n) = \Theta(\#\text{leaves} \cdot \log^{k} n)$$
 all levels ~ same $T(n) = \Theta(f(n) \cdot \log n)$

3)
$$f(n) = \Omega(n(\log_b a) + E) = \Omega(\# \text{leaves. } n^E)$$

Foot dominates polynomially polynomially work reduced by constant fraction in each level $T(n) = \Theta(f(n))$

Standard extended case 2 k>0 $T(n) = \Theta(n^{\log_{1}a} \cdot \log^{k+1}n)$ $T(n) = \Theta(f(n) \cdot logn)$ $\Rightarrow k=-1$ $T(n) = \Theta(n^{\log_{\theta} a} \cdot \log_{\theta} \log_{\theta})$ $T(n) = \Theta(f(n) \cdot \log_{\theta} \log_{\theta})$ e.g., $T(n) = 8T(\frac{n}{2}) + \frac{n^3}{\log n} = n^3 \log \log n$ $T(n) = \Theta(n^{\log_1 a})$ almost like an extended case 1: > K ≤ -2 Leaf level dominates by a "large" poly-log factor.

(Doesn't come up in any algorithms that we will see)

FYI - EXTRA-EXTENDED CASE 2

f(n) = \text{O}(n\logba. logkn)