

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right?

A[r,c] = A[r-1,c] + A[r,c-1]

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? repetitive subproblems want to avoid repetition [r-2,c] [r-1,c-1] [r-1,c-1] [r-1,c-1] [r-1,c-2] [r-1,c-2] [r-1,c-2][1-1,0-1] $\min\{r,c\}$ full levels $\Omega(2^n)$ for nxn[r,1][1,]]

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right?

MEMOIZATION (making memos)

A[r,c] = A[r-1,c] + A[r,c-1]For this problem, mxn table

Recursion:

first find A[r-1,c] 1 then find A[r,c-1] <

MEMOIZATION (making memos)

For this problem, mxn table

$$A[r,c] = A[r-1,c] + A[r,c-1]$$

	2	3	4	5	6	7	8	9
	1	1	14	1	-14	-14	≮	14
1€		- (-		<u> </u>		1	-	-
								1
								/
								1
								r,c

Recursion:

first find A[r-1,c] T then find A[r,c-1] <

MEMOIZATION (making memos)

$$A[r,c] = A[r-1,c] + A[r,c-1]$$

	1	2	3	4	5	6	7	8	9
1		-1 (1	۲(1	4	-1(1	1
2	1 4	121	134	41	150			18	191
3					etce	/	1	1	1
4									1
5									1
6									r,c

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? DYNAMIC PROGRAMMING (bottom-up: base cases first) A[r,c] =A[r-1,c] + A[r,c-1] fill any cell as long as what it depends on is full

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? DYNAMIC PROGRAMMING (bottom-up: base cases first) A[r,c] =A[r-1,c] + A[r,c-1] fill any cell as long as what it depends on is full

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? DYNAMIC PROGRAMMING (bottom-up: base cases first) A[r,c] =A[r-1,c] + A[r,c-1] fill any cell as long as what it depends on is full

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? DYNAMIC PROGRAMMING (bottom-up: base cases first) A[r,c] =A[r-1,c] + A[r,c-1] 3 4 5 6 7 8 6 10 15 21 28 20 35 56 84 120 165 70 | 126 | 210 | 330 | 495 fill any cell as long as 56 | 126 | 252 | 462 | 792 | 1287 what it depends on is full

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? ... with obstacles

	1	2	3	4	5	6	7	8	9
1						0			
2			0						
3			0		0				
4			0				0		
5			0			0			
6									

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? ... with obstacles

	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	0	0	0	0
2	1		0						
3	1		0		0				
4	1		0				0		
5	1		0			0			
6	1								

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? ... with obstacles

	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	0	0	0	0
2	1	2	0	1	2	2	2	2	2
3	1	3	0	1	0	2	4	6	8
4	1	4	0	1	1	3	0	6	14
5	1	5	0	1	2	0	0	6	20
6	1	6	6	7	9	9	9	15	35