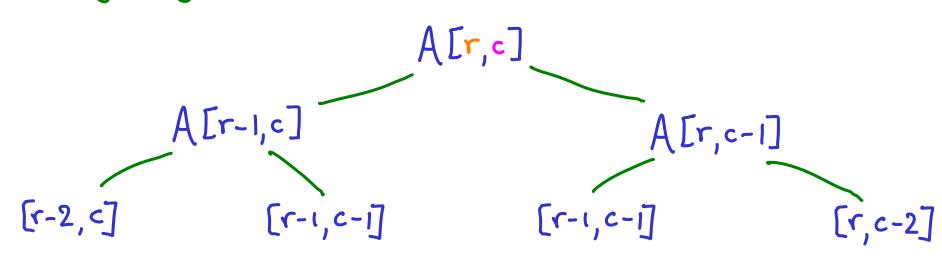
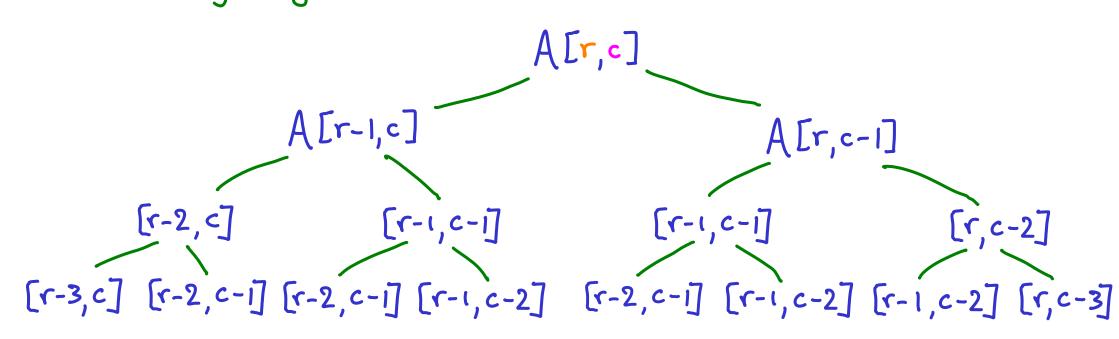
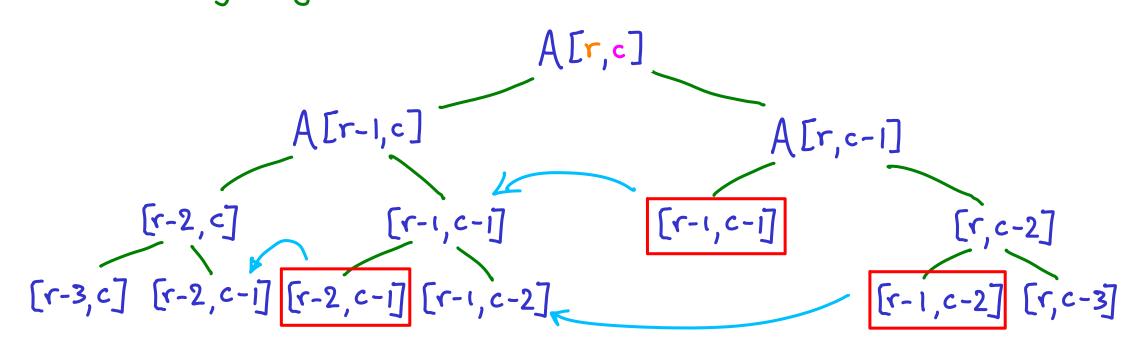
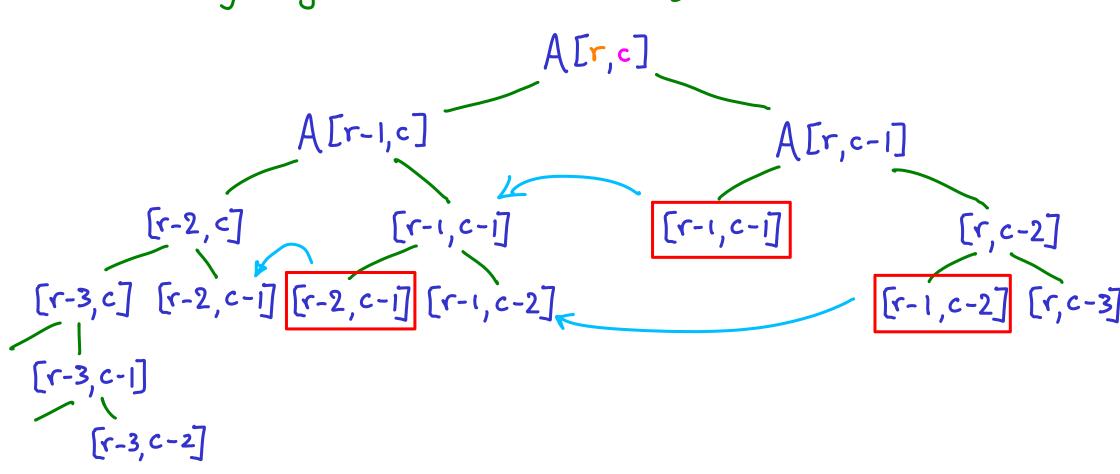

	1	2	3	4	5	6	7	8	9
1		1							
2	→	^							
3	\	→ _							
4		>							
5									
6									*

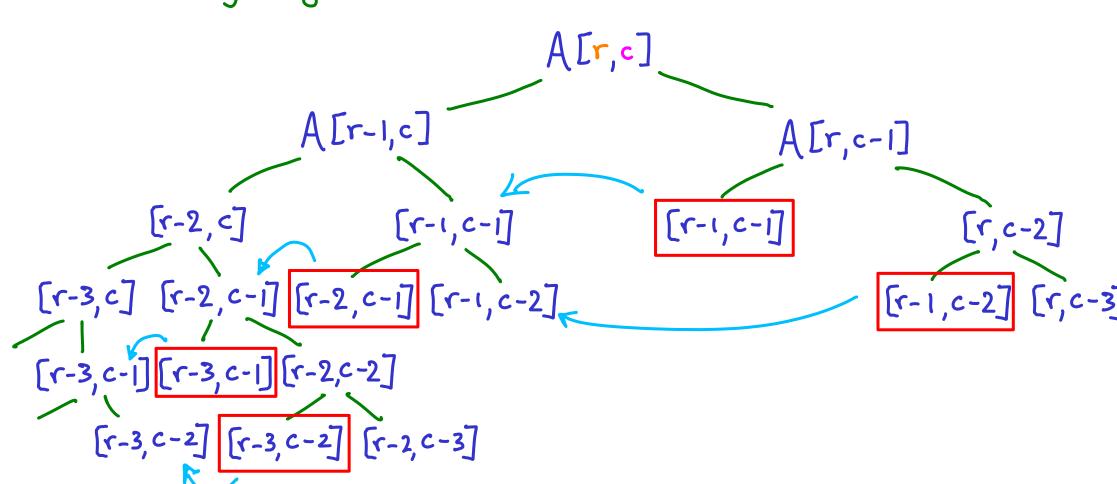


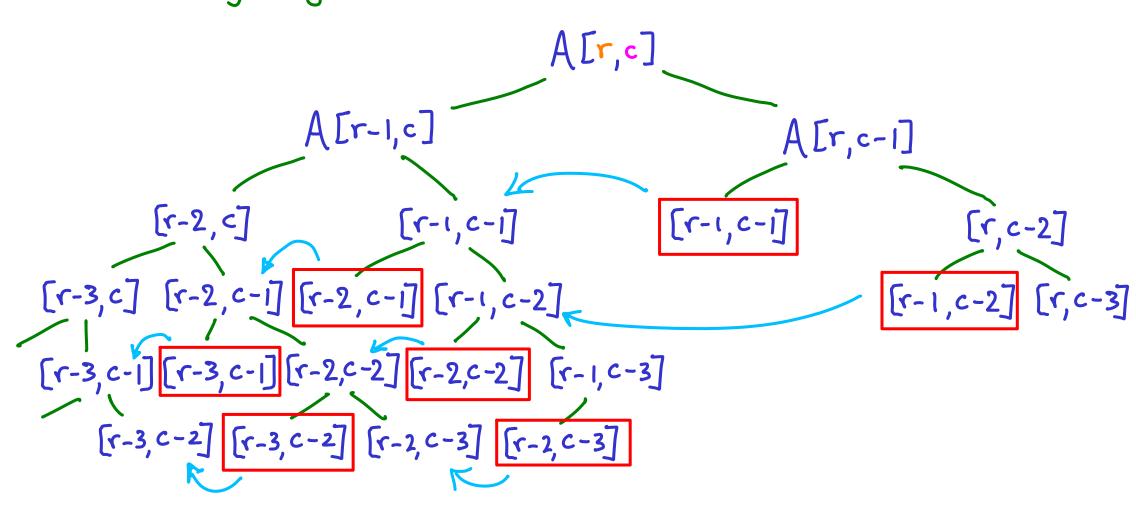

Recursive form?

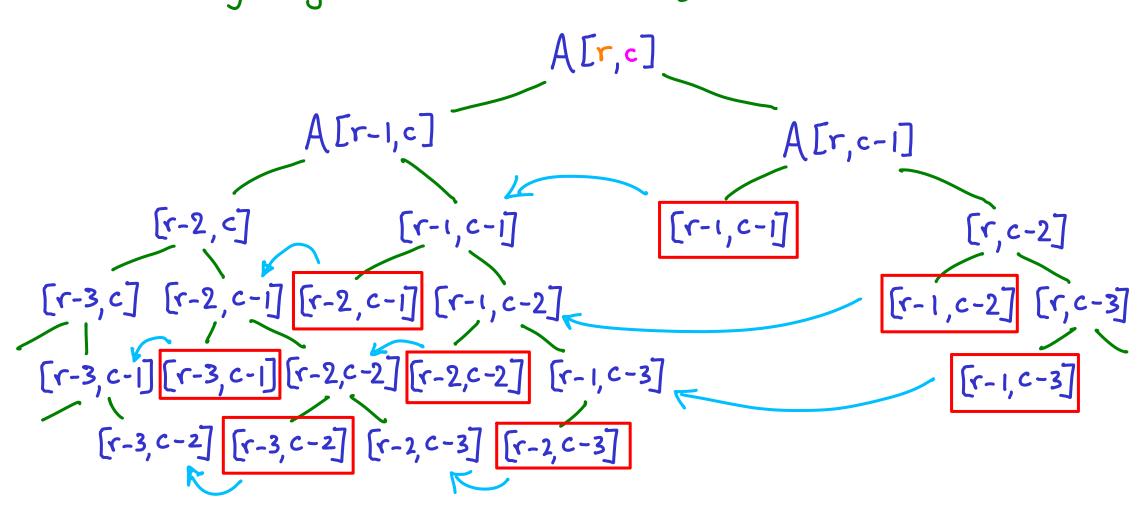
A[r,c] = A[r-1,c] + A[r,c-1]

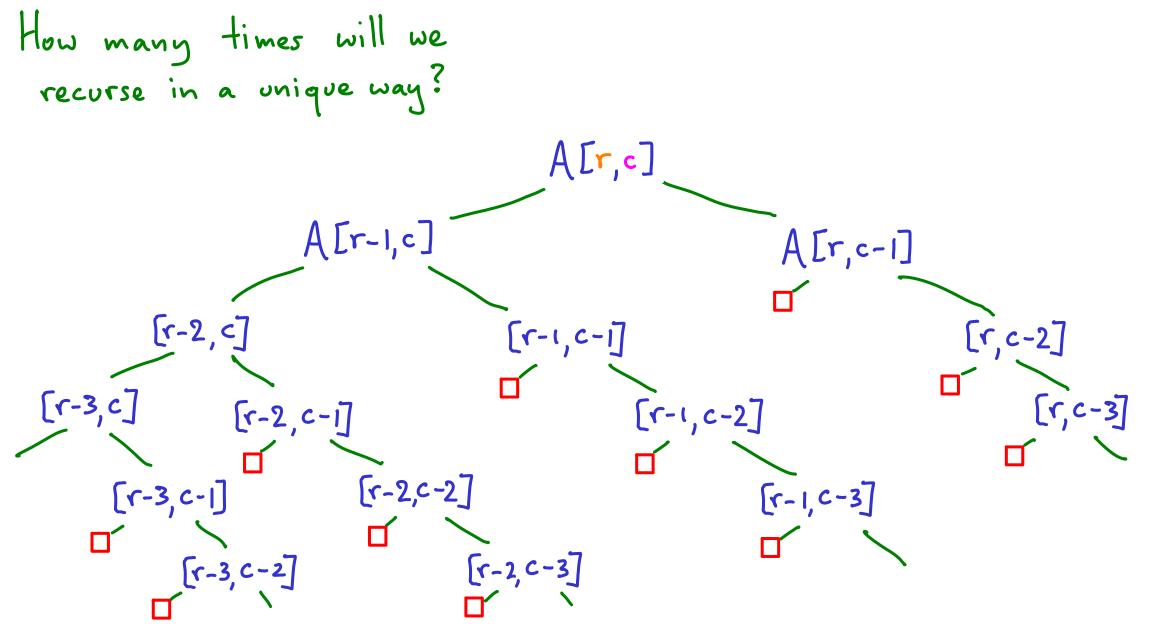

A[r,c] A[r-1,c] A[r,c-1]

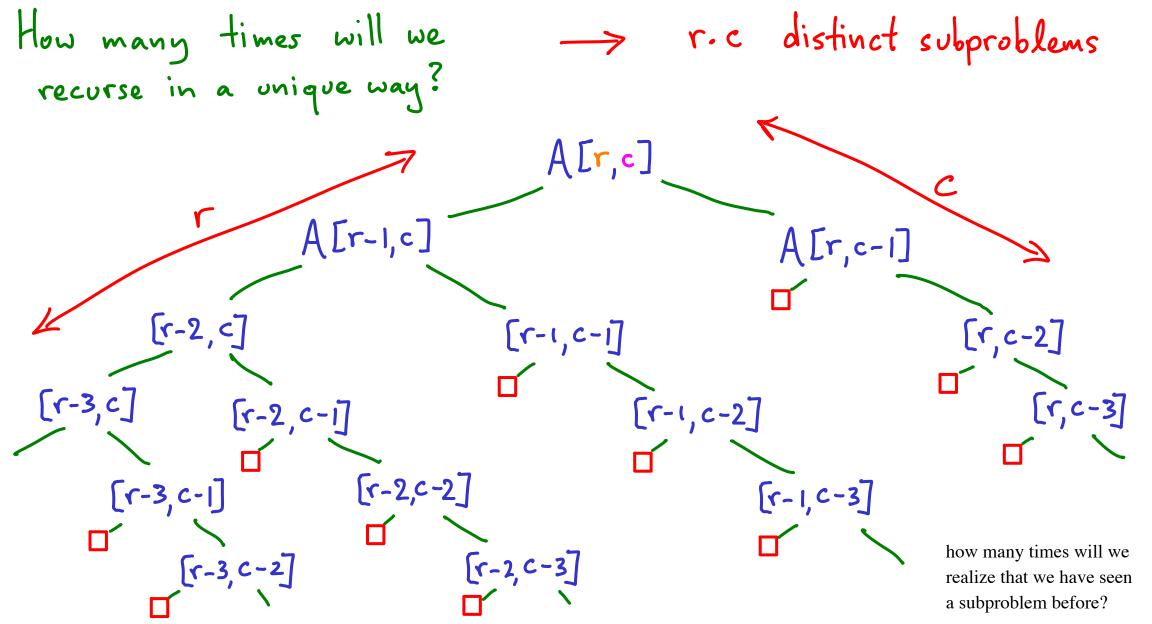





```
A[r,c]
                                             A[r,c-1]
                                     [r-1,c-1]
                      [1-1,0-1]
 [r-3,c] [r-2,c-1] [r-1,c-2] [r-2,c-1] [r-1,c-2] [r-1,c-2] [r,c-3]
             min{r,c} full levels \Omega(2^n) for nxn
                                                                [r, 1]
[1, ]
```


Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? repetitive subproblems want to avoid repetition [r-2,c] [r-1,c-1] [r-1,c-1] [r-1,c-1] [r-1,c-2] [r-1,c-2] [r-1,c-2][1-1,0-1] $\min\{r,c\}$ full levels $\Omega(2^n)$ for nxn[r,1][1,]]





For this problem, man table A[r,c] = A[r-1,c] + A[r,c-1]

Recursion:

A[r,c] = A[r-1,c] + A[r,c-1]For this problem, mxn table

Recursion:

A[r,c] = A[r-1,c] + A[r,c-1]For this problem, mxn table

Recursion:

A[r,c] = A[r-1,c] + A[r,c-1]For this problem, mxn table

Recursion:

A[r,c] = A[r-1,c] + A[r,c-1]For this problem, mxn table

Recursion:

$$A[r,c] = A[r-1,c] + A[r,c-1]$$

	2	3	4	5	6	4	8	9
1							~- ≮	14
2							4	一 个
3								1
7								1
5								1
6								r,c

$$A[r,c] = A[r-1,c] + A[r,c-1]$$

	 2	3	4	5	6	4	8	9
1						-14	-1≮	1
2						A	-<	一 ↑
3								1
}								/
5								1
6								r,c

For this problem, mxn table

$$A[r,c] = A[r-1,c] + A[r,c-1]$$

	2	3	4	5	6	7	8	9
	14	14	-16	17	-14	-14	-1≮	-14
1€	-<	- «		1		1	-<	- /
								1
								/
								1
								r,c

Recursion:

$$A[r,c] = A[r-1,c] + A[r,c-1]$$

1	2	3	4	5	6	7	8	9
	1	14	-16	1	114	-14	≮-	14
1€	-2<	- c	- &	- <		- 4		
								1
								/
								1
								r,c

Recursion:

For this problem, mxn table

$$A[r,c] = A[r-1,c] + A[r,c-1]$$

1	2	3	4	5	6	7	8	9
	1	1	1	1	1 +	-14	-1<	→
1	2←	-3←	- &	- <		- 4	_ <	一个
								1
								1
								1
								r,c

Recursion:

A[r,c] = A[r-1,c] + A[r,c-1]For this problem, mxn table

Recursion:

For this problem, mxn table

A[r,c] = A[r-1,c] + A[r,c-1]

Recursion:

For this problem, mxn table

$$A[r,c] = A[r-1,c] + A[r,c-1]$$

_	1	2	3	4	5	6	7	8	9
		-1(<	4	1	1	((1
	1 4	121	13t	41	15t	4		18	191
					etce	*	4	K.V	7
									1
									1
									r,c

Recursion:

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? DYNAMIC PROGRAMMING (bottom-up: base cases first)

Starting at top-left of nxm grid, moving only down or right, how many ways to reach bottom-right? DYNAMIC PROGRAMMING (bottom-up: base cases first) A[r,c] =A[r-1,c] + A[r,c-1] 3 4 5 6 7 8 6 10 15 21 28 20 35 56 84 120 165 70 | 126 | 210 | 330 | 495 fill any cell as long as 56 | 126 | 252 | 462 | 792 | 1287 what it depends on is full

	1	2	3	4	5	6	7	8	9
1						0			
2			0						
3			0		0				
4			0				0		
5			0			0			
6									

	1	2	3	4	5	6	7	8	9
1						0	0	0	0
2			0						
3			0		0				
4			0				0		
5			0			0			
6									

	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	0	0	0	0
2	1		0						
3	1		0		0				
4	1		0				0		
5	1		0			0			
6	1								

	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	0	0	0	0
2	1	2	0	1	2	2	2	2	2
3	1	3	0		0				
4	1	4	0				0		
5	1	5	0			0			
6	1	6							

	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	0	0	0	0
2	1	2	0	1	2	2	2	2	2
3	1	3	0	1	0				
4	1	4	0	1			0		
5	1	5	0	1		0			
6	1	6	6	7					

	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	0 -	0	0	0
2	1	2	0	1	2	2	2	2	2
3	1	3	0	1	0	2	4	6	8
4	1	4	0	1	1	3	0		
5	1	5	0	1	2	0	0		
6	1	6	6	7	9				

	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	0	0	0	0
2	1	2	0	1	2	2	2	2	2
3	1	3	0	1	0	2	4	6	8
4	1	4	0	1	1	3	0	6	14
5	1	5	0	1	2	0	0	6	20
6	1	6	6	7	9	9	9	15	35