DYNAMIC TABLES & AMORTIZED ANALYSIS

DYNAMIC TABLES & AMORTIZED ANALYSIS

DYNAMIC TABLES & AMORTIZED ANALYSIS

Suppose you want to use an array:
\nYou must support insertion but you don't know max'Elements
\narray doubling: start
$$
\omega_1
$$
 array of size 1; every time it fills ω_p , double the size
\nstart : \square
\ninsert : \square
\ninsert : \square
\n

& AMORTIZED ANALYSIS DYNAMIC TABLES Suppose you want to use an array: You must support insertion but you don't know max thelements array doubling: start w/ array of size 1; every time it fills up, double the size
start : [] $stack: \Box$ $insert : $\Box$$ $insert : 0 \rightarrow 0$

 \bullet .

 $insert : [0] \rightarrow [0] \rightarrow$

& AMORTIZED ANALYSIS DYNAMIC TABLES Suppose you want to use an array: You must support insertion but you don't know max telements array doubling: start w/ array of size 1; every time it fills up, double the size
start : [] $stack: \Box$ $insert : $\Box$$ $insert : [0] \rightarrow [0]$ $insert : [0] \rightarrow [0] \rightarrow$ $\mathfrak{y} \quad : \quad \boxed{\bullet \mathrel{\bullet} \bullet \mathrel{\bullet}} \quad \rightarrow \quad \boxed{\bullet \mathrel{\bullet} \bullet \mathrel{\bullet} \bullet}$

& AMORTIZED ANALYSIS DYNAMIC TABLES Suppose you want to use an array: You must support insertion but you don't know max telements array doubling: start w/ array of size 1; every time it fills up, double the size
start: [] $stack: \Box$ $insert : **F**$ $insert : [0] \rightarrow [0]$ $insert : [0] \rightarrow [0] \rightarrow$ $\mathfrak{p} \quad : \quad \bullet \quad \bullet \quad \bullet \quad \rightarrow \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet$ $\bullet \text{col} \bullet \text{col} \bullet \text{col} \rightarrow \text{col} \bullet \$

& AMORTIZED ANALYSIS DYNAMIC TABLES Suppose you want to use an array: You must support insertion but you don't know max telements array doubling: start w/ array of size 1 ; every time it fills up, double the size
start: \Box $stack: \Box$ $insert : $\Box$$ $insert : [0] \rightarrow [0]$ $insert : [0] \rightarrow [0] \rightarrow$ $\begin{picture}(150,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ \mathbf{y} $\begin{picture}(160,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ $\rightarrow \lceil \bullet | \bullet | \bullet | \bullet | \bullet | \bullet | \bullet |$ $\frac{1}{2}$, $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

& AMORTIZED ANALYSIS DYNAMIC TABLES Suppose you want to use an array: You must support insertion but you don't know max telements array doubling: start w/ array of size 1 ; every time it fills up, double the size Gmake a new larger array & copy) $stack: \Box$ n : total number of inserts $insert : **F**$ $insert : 0 \rightarrow 0$ Worst case time of an insert: $O(n)$ $insert : [0] \rightarrow [0] \rightarrow$ $\mathfrak{p} \quad : \quad \boxed{\bullet \mathrel{\bullet} \bullet \mathrel{\bullet}} \quad \rightarrow \quad \boxed{\bullet \mathrel{\bullet} \bullet \mathrel{\bullet} \bullet}$ $\begin{picture}(160,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($ $\rightarrow \lceil \bullet | \bullet | \bullet | \bullet | \bullet | \bullet | \bullet |$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

& AMORTIZED ANALYSIS DYNAMIC TABLES Suppose you want to use an array: You must support insertion but you don't know max thelements

array doubling: start w/ array of size 1 ; every time it fills up, double the size Gmake a new larger array & copy) $stack: \Box$ n : total number of inserts $insert : **F**$ $insert : 0 \rightarrow 0$ Worst case time of an insert : O(n) $insert : [0] \rightarrow [0] \rightarrow$ Gentius de l'averts: 0(n²) $\begin{picture}(150,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($

AMORTIZED ANALYSIS DYNAMIC TABLES $\mathbf{\mathbf{\mathcal{L}}}$ Suppose you want to use an array: You must support insertion but you don't know max telements array doubling: start w/ array of size 1; every time it fills up, double the size
start: Π $start:$ \Box n : total number of inserts $insert : \Box$ $insert : ① \rightarrow ②$ Worst case time of an insert : O(n) $insert : [0] \rightarrow [0] \rightarrow$ Georin inserts: 0(n²) $\mathfrak{p} \quad : \quad \boxed{\circ \; \boxed{\circ$ $\begin{picture}(150,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ Claim: for n inserts: also $O(n)$ $\begin{picture}(160,175) \put(0,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100$

i 1 2 3 4 5 6 7 8 9 10 2^{0} 2^{1} 2^{1} 2^{2} 2^{2+} 2^{2+} 2^{2+} 2^{3} 2^{3+} 2^{3+} $size$; 1 2 4 4 8 8 8 8 16 16

$$
\cosh c_i \left\{ \begin{array}{c} i & \text{if } i-r \text{ is a power of } 2 \\ 1 & \text{otherwise} \end{array} \right\}
$$

Cost
$$
c_i \n\begin{cases} i & \text{if } i-r \text{ is a power of } 2 \\ 1 & \text{otherwise} \end{cases}
$$

$$
\cosh c_i \left\{ i : i \text{ i--} \text{ is a power of 2} \\ 1 \text{ otherwise} \right\}
$$

Cost c:
$$
\begin{cases} i & \text{if } i-j \text{ is a power of } 2 \\ 1 & \text{otherwise} \end{cases}
$$

\n $i \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$

\n $c_i = \text{copy } i \text{ elements}$

\nCheck array: free)

\n(make array: free)

\n $c_i \quad 1 \quad 2 \quad 3 \quad 1 \quad 5 \quad 2 \quad 2^2 \quad 2^2 \quad 2^3 \quad 2^3 \quad 2^4 \quad 2^5 \quad 2^7 \quad 2^8 \quad 2^9 \quad 2^1 \quad 2^1 \quad 2^1 \quad 2^2 \quad 2^2 \quad 2^3 \quad 2^4 \quad 2^5 \quad 2^7 \quad 2^8 \quad 2^9 \quad 2^1 \quad 2^1 \quad 2^2 \quad 2^2 \quad 2^3 \quad 2^4 \quad 2^5 \quad 2^6 \quad 2^7 \quad 2^8 \quad 2^9 \quad 2^1 \quad 2^1 \quad 2^2 \quad 2^2 \quad 2^3 \quad 2^3 \quad 2^4 \quad 2^5 \quad 2^6 \quad 2^7 \quad 2^8 \quad 2^9 \quad 2^1 \quad 2^1 \quad 2^2 \quad 2^3 \quad 2^3 \quad 2^4 \quad 2^5 \quad 2^6 \quad 2^7 \quad 2^8 \quad 2^9 \quad 2^9 \quad 2^1 \quad 2^1 \quad 2^2 \quad 2^3 \quad 2^3 \quad 2^4 \quad 2^4 \quad 2^5 \quad 2^6 \quad 2^7 \quad 2^8 \quad 2^9 \quad 2^9 \quad 2^1 \quad 2^1 \quad 2^2 \quad 2^3 \quad 2^4 \quad 2^4 \quad 2^5 \quad 2^6 \quad 2^6 \quad 2^7 \quad 2^8 \quad 2^9 \quad 2^9 \quad 2^1 \quad 2^1 \quad 2^2 \quad 2^3 \quad 2^4 \quad 2^4 \quad 2^5 \quad 2^6 \quad 2^6 \quad 2^7 \quad 2^8 \quad 2^9 \quad 2^9 \quad 2^1 \quad 2^1 \quad 2^1 \quad 2^$

AMORTIZATION (analyzing cost)

\nApplies to some problems that involve many operations.

\nIf worst case time of operation k is
$$
O(f(k))
$$
, $try to show that n operations cost of $(n \cdot f(n))$.$

Amortized cost of operation i: Ci

Amortized cost of operation
$$
i: C_i
$$

$$
\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i
$$
 for all n
our banking game should always
exagerrate true costs.

Amortized cost of operation i: Ci Back to dynamic tables:

$$
\sum_{i=1}^{m} c_i \leq \sum_{i=1}^{m} \hat{c}_i \quad \text{for all } n
$$
\nov

\nbanking game should always\n

\nexagger of the costs.

 $\sum_{i=1}^{n} c_i \leqslant \sum_{i=1}^{n} \hat{c}_i$ for all n Amortized cost of operation i: c_i Back to dynamic tables: our banking game should always exagerrate true costs. let $\hat{c}_i = 3 \longrightarrow 1$ to cover insert cost
2 for eventual doubling \hat{C}_i 3 3 3 3 3 3 3 3 3
Amortized cost of operation i: c_i Back to dynamic tables: let $\hat{c}_i = 3 \longrightarrow 1$ to cover insert cost
implies $\sum c_i \le 3n$ 2 for eventual doubling

$$
\sum_{i=1}^{m} c_i \leq \sum_{i=1}^{m} \hat{c}_i \quad \text{for all } n
$$
\nour banking game should always

\nexagerrate true costs.

 $\sum_{i=1}^{n} c_i \leq \sum_{i=1}^{n} \hat{c}_i$ for all n Amortized cost of operation i: c_i Back to dynamic tables: our banking game should always let $\hat{c}_i = 3 \longrightarrow 1$ to cover insert cost implies $\sum c_i \le 3n$ 2 for eventual doubling i 1 2 3 4 5 6 7 8 9 10 When table doubles, use 1 to copy each item. BANK (savings per iteration) Pretend cost is 3 $size$; 1 2 4 4 8 8 8 8 16 16 pay 1 to insert, save/bank 2 \hat{C}_i (3) 3 3 3 3 3 3 3 3

 $\sum_{i=1}^{10} c_i \leq \sum_{i=1}^{10} \hat{c}_i$ for all n Amortized cost of operation i: Ci Back to dynamic tables: our banking game should always
exagerrate true costs. let $\hat{c}_i = 3 \longrightarrow 1$ to cover insert cost
implies $\sum c_i \le 3n$ 2 for eventual doubling i (1) 2 3 4 5 6 7 8 9 10 When table doubles, use 1 to copy each item. BANK (savings per iteration) Pretend cost is 32 $size$; 1 2 4 4 8 8 8 8 16 16 pay 1 to insert, save/bank 21 \hat{C}_i (2) 3 3 3 3 3 3 3 3 We can even give \$ to charity Just this one time

 $\overline{\mathbf{1}}$

Amortized cost of operation i: C_i	$\sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \hat{C}_i$ for all n	
Back to dynamic tables:	over hand in implies $\sum c_i \le 3n - 1$ to cover insert cost implies $\sum c_i \le 3n - 2$ for eventually doubling	exaggered. true costs.
While $\sum c_i \le 3n - 2$ for eventual doubling	$i + 2 - 3$ (b) $\sum c_i \le 1 - 1$ (d) $\sum c_i$ (e) $\sum c_i \le 1 - 1$ (f) $\sum c_i$ (g) $\sum c_i$ (h) $\sum c_i$ (i) $\sum c_i$ (j) $\sum c_i$ (k) $\sum c_i$ (l) $\sum c$	

 $\sum_{i=1}^{n} c_i \leqslant \sum_{i=1}^{n} \hat{c}_i$ for all n Amortized cost of operation i: c_i Back to dynamic tables: our banking game should always
exagerrate true costs. let $\hat{c}_i = 3 \longrightarrow 1$ to cover insert cost
implies $\sum c_i \le 3n$ 2 for eventual doubling 12345678910 When table doubles, use 1 to copy each item. $C_i \begin{array}{c c c c c c c} C_i & 1 & 2 & 3 & 1 & 5 & 1 & 1 & 1 & 9 & 1 \\ \hline C_i & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline C_i & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline C_i & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{array}$ BANK (savings per iteration) $size$; 1 2 4 4 8 8 8 8 16 16 C_i 2 3 3 3 3 3 3 3 3 $\begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline \textbf{c} & \textbf{c} & \textbf{c} & \textbf{c} & \textbf{c} & \textbf{c} \\ \hline \textbf{c} & \textbf{c} \\ \hline \end{array}$ $bank_i$, 1 2 2 4 2 4

 $\sum_{i=1}^{n} c_i \leqslant \sum_{i=1}^{n} \hat{c}_i$ for all n Amortized cost of operation i: c_i Back to dynamic tables: our banking game should always
exagerrate true costs. let $\hat{c}_i = 3 \longrightarrow 1$ to cover insert cost
implies $\sum c_i \le 3n$ 2 for eventual doubling 12345608910 When table doubles, use 1 to copy each item. $C_i \begin{array}{c c c c c c c c} C_i & 1 & 2 & 3 & 1 & 5 & 1 & 1 & 1 & 9 & 1 \\ C_i & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \end{array}$ BANK (savings per iteration) $size$; 1 2 4 4 8 8 8 8 16 16 \hat{C}_i 2 3 3 3 3 3 3 3 3 $bank_i$, 1 2 2 4 2 4 6

Amortized cost of operation i: c_i Back to dynamic tables: let $\hat{c}_i = 3 \longrightarrow 1$ to cover insert cost
implies $\sum c_i \le 3n$ 2 for eventual doubling When table doubles, use 1 to copy each item. BANK (savings per iteration)

Amortized cost of operation i: C_i	$\sum_{i=1}^{n} C_i \le \sum_{i=1}^{n} \hat{C}_i$ for all n									
Back to dynamic tables:	over insert cost implies $\sum c_i \le 3n$	2 for several cost implies $\sum c_i \le 3n$	2 for several dosubling	exaggered. Two costs.						
While $\sum c_i \le 3n$	2 for several dosubling	exaggered. Two costs.								
When-talle doubles, use 1 to copy each item	i: 1	2	3	4	5	6	7	8	9	10
BANK (savings per iteration)	C_i 1	2	3	1	5	1	1	9	1	
Use all savings to every 8 items to copy 8 items to copy 8 items to copy 8 items to stop 9 times	size; 1	2	4	4	8	8	8	9	16	16
Chirichrich of all Turing in secret item 9	bank; 1	2	2	4	2	4	6	8		

 $\sum_{i=1}^{10} c_i \leqslant \sum_{i=1}^{10} \hat{c}_i$ for all n Amortized cost of operation i: Ci Back to dynamic tables: our banking game should always let $\hat{c}_i = 3 \longrightarrow 1$ to cover insert cost
implies $\sum c_i \le 3n$ 2 for eventual doubling 2345678900 When table doubles, use 1 to copy each item. BANK (savings per iteration) $11 | 2 | 2 | 2 | 2$ $size$; 1 2 4 4 8 8 8 8 16 16 111112211111
insert 10th etc \hat{C}_i 2 3 3 3 3 3 3 3 3 $bank_i$, 1 2 2 4 2 4 6 8 2 4

Summary of accounting method
Estimate a cost:
$$
\hat{c}_i
$$
 ... higher than what you think average real cost $\frac{1}{n}\Sigma c_i$ will be

Summary of accounting method

\nEstimate a cost:
$$
\hat{c}_i
$$
 ... higher than what you think average real cost $\frac{1}{n} \sum c_i$ will be

\nProve that \hat{c}_i is an overestimate of average c_i

\nSee that \hat{c}_i is an overestimate of average c_i

\nSee $\sum_{i=1}^{n} a_i$ and $\sum_{i=1}^{n} a_i$ and $\sum_{i=1}^{n} a_i$ and $\sum_{i=1}^{n} a_i$ and $\sum_{i=1}^{n} a_i$ are $\sum_{i=1}^{n} a_i$.

Start with data structure
$$
D_0
$$

Operation i : $D_{i-1} \rightarrow D_i$ cost : c_i

Start with data structure Do
Operation i :
$$
D_{i-1} \rightarrow D_i
$$
 cost : c;
Pofential function Φ_i maps $D_i \rightarrow \mathbb{R}$: potential value.
 $\Phi_o = O$ $\Phi_i \gg O$ \Rightarrow 2 conditions that help.

Start with data structure Do
Operation i :
$$
D_{i-1} \rightarrow D_i
$$
 cost : c;
Potential function Φ_i maps $D_i \rightarrow \mathbb{R}$: potential value.
 $\Phi_o = 0$ $\Phi_i \times 0 \Rightarrow 2$ conditions that help.

Let $\hat{c}_i = c_i + \varphi_i - \varphi_{i-1}$ $= c_i + \Delta \Phi_i$

Start with data structure Do
Operation i :
$$
D_{i-1} \rightarrow D_i
$$
 cost : c;
Potential function Φ_i maps $D_i \rightarrow \mathbb{R}$: potential value.
 $\Phi_o = 0$ $\Phi_i \times 0$ \Rightarrow 2 conditions that help.

Let
$$
\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \int |f \Delta \Phi_i > o
$$
, $\hat{c}_i > c_i$: storing potential
= $c_i + \Delta \Phi_i$

PortENTIAL METHOD	aka	Physicists' method
Start with data structure	Do	
Operation i	$D_{i-1} \rightarrow D_i$	$cost: c_i$
Potential function Φ_i maps	$D_i \rightarrow \mathbb{R}$	potential value.
$\Phi_o = O$	$\Phi_i \geq O$	\Rightarrow 2 conditions that help.

Let
$$
\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \int |f \Delta \Phi_i > 0
$$
, $\hat{c}_i > c_i$: storing potential
= $c_i + \Delta \Phi_i$ $\Delta \Phi_i < 0$, $\hat{c}_i \angle c_i$: release work.

$$
\hat{c}_i = c_i + \Delta \Phi_i \Rightarrow \sum \hat{c}_i = \sum_{i=1}^{n} (c_i + \Delta \Phi_i) = ?
$$

$$
\hat{c}_i = c_i + \Delta \Phi_i \implies \sum \hat{c}_i = \sum_{i=1}^{n} (c_i + \Delta \Phi_i) + \text{elescoping series}
$$

= $\Phi_n - \Phi_0 + \sum_{i=1}^{n} c_i$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i}) + \text{elescoping series}
$$
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i}^{n} c_{i} \implies \sum_{j}^{n} c_{j}
$$
\n
$$
\frac{1}{\angle 0} \Rightarrow \Phi_{o} - \Phi_{o} + \sum_{i}^{n} c_{i} \implies \sum_{j}^{n} c_{j}
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 Helscoping series
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i}^{n} c_{i} \implies \sum_{i}^{n} c_{i}
$$
\n
$$
\frac{1}{\frac{1}{\frac{1}{2} \cdot \frac{1}{2} \
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i=1}^{n} c_{i} \implies \sum_{i=1}^{n} c_{i}
$$
\n
$$
\Rightarrow \Phi_{o} - \Phi_{o} + \sum_{i=1}^{n} c_{i} \implies \sum_{i=1}^{n} c_{i}
$$
\nNow, figure out

\nSo we know that the amortized cost will not underestimate real cost.

\nindivial \hat{c}_{i}

\nIdeally, this will give a good (and easy) bound for total cos

 $\sum c_i \leqslant \sum \hat{c}_i \leqslant n \cdot \max \hat{c}_i$

$$
H_{ow}
$$
 this works
• (Subjectively) define what a complicated / costly operation (c_i) is.

How this works

- . (Subjectively) define what a complicated / costly operation (ci) is.
- . Find something that changes a lot in the data structure in such cases.

How this works
\n• (Subjectively) define what a complicated / costly operation (c_i) is.
\n• Find something that changes a lot in the data structure in such cases
\n
$$
\Leftrightarrow
$$
 Quantity this change as $\Delta\Phi_i$: let it "kill" c_i: $\hat{c}_i = c_i + \Delta\Phi_i$

How this works
\n• (Subjectively) define what a complicated / costly operation (c_i) is.
\n• Find something that changes a lot in the data structure in such cases
\n
$$
\Leftrightarrow
$$
 Quantity this change as $\Delta\Phi_i$: let it "kill" c_i: $\hat{c}_i = c_i + \Delta\Phi_i$

 ϵ

Back to dynamic tables:
\n
$$
S_{abc}
$$
 by $2\hat{c}_i = c_i + \Delta\Phi_i$
\n
$$
S_{abc}
$$
 by $2\hat{c}_i = c_i + \Delta\Phi_i$

Back to dynamic tables:
\n
$$
\begin{aligned}\n&\int \hat{c}_i = c_i + \Delta \Phi_i \\
&\text{Subjectively)} define what a complicated/costly operation (c_i) is. \\
&\text{whenever we insert on a full array: c_i=#items}\n\end{aligned}
$$

Back to dynamic tables:
\n• (Subjectively) define what a complicated / costly operation (c_i) is.
\n• Find something that changes a lot in the data structure in such cases.
\n• Find something that changes a lot in the data structure in such cases.
\n• Since of array
$$
\rightarrow
$$
 try ϕ = -size? \rightarrow $\Delta \phi$ is \sim -# items
Back to dynamic tables:

\n
$$
\begin{aligned}\n\hat{c}_i &= c_i + \Delta \Phi_i \\
\hline\n\end{aligned}
$$

\n
$$
\begin{aligned}\n\text{Sobjectively} \text{ define what a complicated } / \text{costly operation (c_i) is.} \\
\hline\n\end{aligned}
$$

\n
$$
\begin{aligned}\n\text{Therefore, we insert on a full array: } c_i = \text{#items} \\
\text{Find something that changes a lot in the data structure in such cases.} \\
\text{Size of array } \rightarrow \text{try } \Phi = - \text{size? } \rightarrow \Delta \Phi_i \sim -\text{#items } \cup \\
\hline\n\end{aligned}
$$

\n
$$
\begin{aligned}\n\text{Size of array } \rightarrow \text{try } \Phi = - \text{size? } \rightarrow \Delta \Phi_i \sim -\text{#items } \cup \\
\hline\n\end{aligned}
$$

Back to dynamic tables:

\n
$$
\begin{aligned}\n\hat{c}_i &= c_i + \Delta \Phi_i \\
\hline\n\end{aligned}
$$

\n
$$
\begin{aligned}\n\text{Sobjectively} \text{ define what a complicated } / \text{costly operation (c_i) is.} \\
\hline\n\end{aligned}
$$

\n
$$
\begin{aligned}\n\text{Therefore, we insert on a full array: } c_i = \text{#items} \\
\text{Find something that changes a lot in the data structure in such cases.} \\
\text{Size of array } \to \text{try } \Phi = - \text{size? } \to \Delta \Phi_i \sim -\text{#items } \cup \\
\hline\n\end{aligned}
$$

\n
$$
\begin{aligned}\n\text{Size of array } \to \text{try } \Phi = - \text{size? } \to \Delta \Phi_i \sim -\text{#items } \cup \\
\hline\n\end{aligned}
$$

Back to dynamic tables:

\n
$$
\begin{aligned}\n\hat{c}_i &= c_i + \Delta \Phi_i \\
\hline\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Subjectively) define what a complicated } \cos \theta \text{ by operation } (c_i) \text{ is.} \\
\hline\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Subine's theorem} &= \text{Cisometricity} \\
\text{Subine's theorem} &= \text{Cisometricity} \\
\text{Sisometricity} &= \text{Cisometricity} \\
\hline\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Sisometricity} &= \
$$

$$
\hat{c}_i = c_i + \Delta \Phi_i \implies \sum \hat{c}_i = \sum_{i=1}^{n} (c_i + \Delta \Phi_i)
$$
 telescoping series
= $\Phi_n - \Phi_o + \sum_{i=1}^{n} c_i \implies \sum_{i=1}^{n} c_i$
dynamic tables: $\Phi_i = 2 \cdot (\# \text{ items in table}) - (\text{size of table})$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i}^{n} c_{i} \implies \sum_{i}^{n} c_{i}
$$
\ndynamic tables: $\Phi_{i} = 2 \cdot (\# \text{ items in table}) - (\text{size of table}) \ge \Phi_{o} = C$

(and doesn't change rapidly) always
$$
\frac{1}{2}
$$
 table

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{\infty} (c_{i} + \Delta \Phi_{i})
$$
 Halescoping series
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i}^{\infty} c_{i} \implies \sum_{i}^{\infty} c_{i}
$$
\ndynamic -tables: $\Phi_{i} = 2 \cdot (\# items in table) - (size of table) \ge \Phi_{o} = 0$
\n(and doesn't change rapidly + always $\frac{1}{2}$ table
\n
$$
type 1 : c_{i} = 1
$$
 (when element i doesn't trigger a doubling)
\n
$$
Type 2 : c_{i} = i
$$
 (when element i does 'trigger a doubling)

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \Rightarrow \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i=1}^{n} c_{i} \Rightarrow \sum_{i=1}^{n} c_{i}
$$
\ndynamic tables: $\Phi_{i} = 2 \cdot (\# \text{ items in table}) - (\text{size of table}) \ge \Phi_{o} = 0$
\n(and doesn't change rapidly + always $\frac{1}{2} + \text{able}$
\n
$$
\text{type 1 : } c_{i} = 1 \quad \text{(when element i doesn't trigger a doubling)}
$$
\n
$$
\hat{c}_{i} = \sum_{i=1}^{n} \sum_{i=1}^{n} (c_{i} + \Phi_{i})
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{\infty} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i=1}^{\infty} c_{i} \implies \sum_{i=1}^{\infty} c_{i}
$$
\n
$$
\Delta y_{\text{namic} + \Delta b} = 2 \cdot (\# \text{ items in table}) - (size \text{ of table}) \times \Phi_{o} = 0
$$
\n
$$
\Delta y_{\text{manic} + \Delta b} = 0 \text{ and } \Delta y_{\text{on}} + \
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 Helsing series
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i}^{n} c_{i} \implies \sum_{i}^{n} c_{i}
$$
\ndynamic +ables: $\Phi_{i} = 2 \cdot (\# \text{ items in table}) - (size \text{ of table}) \circ \Phi_{o} = 0$
\n(and doesn't change rapidly) + always $\lambda \frac{1}{2}$ table
\n
$$
type 1 : c_{i} = 1 \quad \text{(when element i doesn't trigger } \Delta \text{ doubling})
$$
\n
$$
\hat{c}_{i} = 1 + [2i - \text{Size}_{i}] - [2(i-1) - \text{Size}_{i-1}]
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 Helsing series
\n
$$
= \Phi_{n} - \Phi_{e} + \sum_{i}^{n} c_{i} \implies \sum_{i}^{n} c_{i}
$$
\ndynamic +ables: $\Phi_{i} = 2 \cdot (\# \text{ items in table}) - (size \text{ of table}) \circ \Phi_{e} = 0$
\n
$$
\frac{(and doesn't change rapidly) + always \times \frac{1}{2} + able}{s \times \frac{1}{2} + able} \qquad \frac{d}{s} \Phi_{i} \gg 0
$$
\n
$$
type 1 : c_{i} = 1 \quad \text{(when element i doesn't trigger } \triangle \text{ doubling})
$$
\n
$$
\hat{c}_{i} = 1 + [2i - \text{Size}_{i}] - [2(i-1) - \text{Size}_{i-1}] = 3
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{e} + \sum_{i=1}^{n} c_{i} \implies \sum_{i=1}^{n} c_{i}
$$
\ndynamic -tables: $\Phi_{i} = 2 \cdot (\# items in table) - (size of table) \ge \Phi_{e} = 0$
\n(and doesn't change rapidly + always $\frac{1}{2} + able$
\n
$$
type 1 : c_{i} = 1 \quad \text{(when element i doesn't trigger a doubling)}
$$
\n
$$
\hat{c}_{i} = 1 + [2i - \text{Size}i] - [2(i-1) - \text{Size}i - 1] = 3
$$
\n
$$
Type 2 : c_{i} = i \quad \text{(when element i does 'trigger a doubling)}
$$
\n
$$
\hat{c}_{i} = ?
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \Rightarrow \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{e} + \sum_{i=1}^{n} c_{i} \Rightarrow \sum_{i=1}^{n} c_{i}
$$
\ndynamic -tables: $\Phi_{i} = 2 \cdot (\# items in table) - (size of table) \times \Phi_{e} = 0$
\n(and doesn't change rapidly + always $\frac{1}{2}$ table
\n
$$
type 1 : c_{i} = 1 \quad \text{(when element i doesn't trigger a doubling)}
$$
\n
$$
\hat{c}_{i} = 1 + [2i - \text{Size}[- [2(i-1) - \text{Size}[-]] = 3
$$
\n
$$
type 2 : c_{i} = i \quad \text{(when element i does 'trigger a doubling)}
$$
\n
$$
\hat{c}_{i} = c_{i} + \Phi_{i} \qquad \Phi_{i-1}
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \Rightarrow \sum \hat{c}_{i} = \sum_{i=1}^{\infty} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{e} + \sum_{i=1}^{\infty} c_{i} \Rightarrow \sum_{i=1}^{\infty} c_{i}
$$

\ndynamic -tables: $\Phi_{i} = 2 \cdot (\# \text{ items in table}) - (\text{size of table}) \times \Phi_{e} = C$
\n(and doesn't change rapidly + always $\frac{1}{2} + \text{able}$
\n
$$
+ \text{type 1}: c_{i} = 1 \quad (\text{when element i doesn't trigger a doubling})
$$

\n
$$
\hat{c}_{i} = 1 + [2i - \text{Size}i] - [2(i-1) - \text{Size}i - 1] = 3
$$

\n
$$
+ \text{type 2}: c_{i} = i \quad (\text{when element i does 'trigger a doubling})
$$

\n
$$
\hat{c}_{i} = i + [2i - \text{Size}i] - [2(i-1) - \text{Size}i - 1]
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{\infty} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i=1}^{\infty} c_{i} \implies \sum_{i=1}^{\infty} c_{i}
$$
\n
$$
\Rightarrow \text{dynamic -tables: } \Phi_{i} = 2 \cdot (\# \text{ items in table}) - (\text{size of +table}) \quad \Phi_{o} = 0
$$
\n
$$
\text{(and doesn't change rapidly to always } \frac{1}{2} + \text{table}
$$
\n
$$
\text{type 1 : } c_{i} = 1 \quad \text{(when element i does not doobling)}
$$
\n
$$
\hat{c}_{i} = 1 + [2i - \text{Size}_{i}] - [2(i-1) - \text{Size}_{i-1}] = 3
$$
\n
$$
\text{type 2 : } c_{i} = i \quad \text{(when element i does 'trigger a doubling)}
$$
\n
$$
\hat{c}_{i} = i + [2i - \text{Size}_{i}] - [2(i-1) - \text{Size}_{i-1}]
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{\infty} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i=1}^{\infty} c_{i} \implies \sum_{i=1}^{\infty} c_{i}
$$
\n
$$
\Delta y_{\text{nameic}} + \Delta l \text{les: } \Phi_{i} = 2 \cdot (\# \text{ items in table}) - (\text{size of table}) \cdot \frac{\Phi_{o} = 0}{\Phi_{i} \cdot \lambda 0}
$$
\n
$$
\Delta u_{\text{max}} + \frac{1}{2} \cdot \frac{\Delta u_{\text{max}} + \frac{1}{2} \cdot \frac{\Delta l}{\Delta l}}{\Phi_{i} \cdot \lambda 0}
$$
\n
$$
\Delta u_{\text{max}} + \frac{1}{2} \cdot \frac{\Delta u_{\text{max}} + \frac{1}{2} \cdot \frac{\Delta l}{\Delta l}}{\Phi_{i} \cdot \lambda 0}
$$
\n
$$
\hat{c}_{i} = 1 + [2i - \frac{\Delta l}{2} \cdot \frac{\Delta l}{2} - [2(i-1) - \frac{\Delta l}{2} \cdot \frac{\Delta l}{2} \cdot \frac{\Delta l}{2}] = 3
$$
\n
$$
\Delta u_{\text{max}} + \frac{1}{2} \cdot \frac{\Delta l}{2} \cdot \frac{\Delta l}{2} - [2(i-1) - \frac{\Delta l}{2} \cdot \frac{\Delta l}{2} \cdot \frac{\Delta l}{2}] = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{\Delta l}{2} \cdot \frac{\Delta l}{2} - [2(i-1) - \frac{\Delta l}{2} \cdot \frac{\Delta l}{2}] = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{\Delta l}{2} \cdot
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{e} + \sum_{i=1}^{n} c_{i} \implies \sum_{i=1}^{n} c_{i}
$$
\n
$$
\Rightarrow \text{Symamic tables: } \Phi_{i} = 2 \cdot (\# \text{ items in table}) - (\text{size of table}) \ge \Phi_{e} = C
$$
\n
$$
\text{(and doesn't change rapidly to always } \frac{1}{2} + \text{able}
$$
\n
$$
\text{type 1: } c_{i} = 1 \quad \text{(when element i doesn't trigger a doubling)}
$$
\n
$$
\hat{c}_{i} = 1 + [2i - \text{Size}_{i}] - [2(i-1) - \text{Size}_{i-1}] = 3
$$
\n
$$
\text{type 2: } c_{i} = i \quad \text{(when element i does 'règger a doubling)}
$$
\n
$$
\hat{c}_{i} = i + [2i - \text{Size}_{i}] - [2(i-1) - \text{Size}_{i-1}]
$$
\n
$$
= i + [2i - 2(i-1)] - [2(i-1) - (i-1)] = 3i - 3(i-1)
$$

 ϵ

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i=1}^{n} c_{i} \implies \sum_{i=1}^{n} c_{i}
$$
\n
$$
\Delta y_{\text{namic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$
\n
$$
\Delta y_{\text{ramic} + \Delta} \neq 0
$$

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \Rightarrow \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{e} + \sum_{i=1}^{n} c_{i} \Rightarrow \sum_{i=1}^{n} c_{i}
$$
\ndynamic -tables: $\Phi_{i} = 2 \cdot (\# \text{ items in table}) - (size \text{ of table}) \times \Phi_{e} = 0$
\n(and doesn't change rapidly) - always $\frac{1}{2} + \text{able}$
\nType 1 : $c_{i} = 1$ (when element i doesn't trigger a doubling)
\n $\hat{c}_{i} = 1 + [2i - \text{Size}_{i}] - [2(i-1) - \text{Size}_{i-1}] = 3$
\nType 2 : $c_{i} = i$ (when element i does trigger a doubling)
\n $\hat{c}_{i} = i + [2i - \text{Size}_{i}] - [2(i-1) - \text{Size}_{i-1}]$
\n
$$
= i + [2i - 2(i-1)] - [2(i-1) - \text{Size}_{i-1}] = 3i - 3(i-1) = 3
$$

\nNower needed to know how many of each type, or order of operations

