Stack operations: push $multipop(k)$ $\sqrt{4}$ pop $Cost = k$ $Cost = 1$ $Cost = 1$ What will n operations cost? $= k$ per operation Worst case: n. (max individual op) = n.k $Amortized = $O(1)$ per operation$ Intuitive: each element can be pushed precisely once but also only popped or multipopped once Contribution per element ≤ 2 / # elements $\leq n$ / Total cost = 0(n)

AMORTIZATION

Applies to some problems that involve many operations.
\nIf worst case time of operation k is
$$
O(f(k))
$$
,
\ntry to show that n operations cost of $n \cdot f(n)$

 $\overline{}$

Stack operations:	push	pop	multiply(k)
$Cost = 1$	$Cost = 1$	$Cost = k$	
Pretend 2	0	0	
AccountING METHOD	Method 2	0	0
RecountING METHOD	Sketch some cheap operation type costs more stack	State the difference, use it later	
True cost $\leq n \cdot (most a mortality cost)$	BANK \rightarrow	$\frac{1}{1}$	

 $\overline{}$

PortENTIAL METHOD	aka	Physicists' method
Start with data structure	Do	
Operation i	$D_{i-1} \rightarrow D_i$	$cost: c_i$
Potential function Φ_i maps	$D_i \rightarrow \mathbb{R}$	potential value.
$\Phi_o = O$	$\Phi_i \geq O$	\Rightarrow 2 conditions that help.

Let
$$
\hat{c}_i = c_i + \Phi_i - \Phi_{i-1} \int |f \Delta \Phi_i > 0
$$
, $\hat{c}_i > c_i$: storing potential
= $c_i + \Delta \Phi_i$ $\Delta \Phi_i < 0$, $\hat{c}_i \angle c_i$: release work.

$$
\hat{c}_{i} = c_{i} + \Delta \Phi_{i} \implies \sum \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Delta \Phi_{i})
$$
 telescoping series
\n
$$
= \Phi_{n} - \Phi_{o} + \sum_{i=1}^{n} c_{i} \implies \sum_{i=1}^{n} c_{i}
$$
\n
$$
\Rightarrow \Phi_{o} - \Phi_{o} + \sum_{i=1}^{n} c_{i} \implies \sum_{i=1}^{n} c_{i}
$$
\nNow, figure out

\nSo we know that the amortized cost will not underestimate real cost.

\nindivial \hat{c}_{i}

\nIdeally, this will give a good (and easy) bound for total cos

 $\sum c_i \leqslant \sum \hat{c}_i \leqslant n \cdot \max \hat{c}_i$

$$
H_{\text{ou}} + \text{his works}
$$
\n• (Subjectively) define what a complicated / costly operation (c_i) is.
\n• Find something that changes a lot in the data structure in such cases
\n
$$
\leftarrow
$$
 Quantity this change as $\Delta\Phi_i$: let it "kill" c_i: $\hat{c}_i = c_i + \Delta\Phi_i$
\n
$$
\leftarrow
$$
 Invent your Φ accordingly
\n
$$
\leftarrow
$$
 Make sure $\Delta\Phi_i$ doesn't add much to c_i, when c_i is cheap.
\n
$$
\leftarrow
$$
 Solve \leftarrow Make sure $\Delta\Phi_i$ does not add much to c_i, when c_i is cheap.
\n
$$
\leftarrow
$$
 Consider \leftarrow target \hat{c}_i (for all i if possible)
\n
$$
\leftarrow
$$
 change / { \leftarrow 11111 | \leftarrow 3 or to left $\Delta\Phi_i$ > 0, but try to limit this

 ϵ

$$
\Phi: #leading 1's \rightarrow \hat{c}: 2, 1, 11, 1 ... (op to k-i) \sum \hat{c} \le n.max(\hat{c}) = n(k-i)
$$
\n
$$
4 \le k-1 \text{ per increment}
$$
\n
$$
\Phi = +b + a1 \pm 1's \quad \text{First } 0 \text{ at position } i+1
$$
\n
$$
\frac{100011111111}{i+1} \sum_{i=1}^{k-1} \sum_{j=1}^{k-1} \hat{c}: 2 (always)
$$
\n
$$
\frac{100011111111}{i+1} \sum_{j=1}^{k-1} \sum_{j=1}^{k-1} \hat{c} \le n.max(\hat{c}) = 2n
$$
\n
$$
\Phi_n > 0 \text{ but } \Phi_0 \text{ not necessarily } 0, \text{ so } \Phi_n - \Phi_0 \text{ could be negative}
$$
\n
$$
\Rightarrow e_0 = 0 \text{ if we start count up from zero}
$$
\n
$$
\Phi \le k \to \Phi_n - \Phi_0 \text{ and } \Phi_0 \ge -k \to \sum \hat{c} \text{ is } \sum c - k \to \sum c \le k + \sum \hat{c} \to \sum c \in \sum c \to k + \sum \hat{c} \to 3n
$$

Incrementing a k-bit counter AccountinG Every $0 \rightarrow 1$ will cost $\hat{c} = 2$ (instead of $c = 1$) Use the extra 1 to pay for $1\rightarrow o$ for the same bit (later) L_3 $1\rightarrow 0$ will cost $\hat{c} = o$

Aggregate method: Just count everything

* relies on full understanding of operation types, frequencies, costs

* not always possible

