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I chose to implement the Misra & Gries edge coloring algorithm, a construc-
tive algorithm of Vizing’s theorem. This algorithm colors a graph using
≤ ∆ + 1 colors. The user is able to build a graph in the GUI, run the
algorithm, then edit the graph and do it all over again.

The Misra & Gries edge coloring algorithm is very similar to Vizing’s
proof. Each iteration of the algorithm picks an uncolored edge uv to color.

• First a maximal fan F [1 : k] of u is created, and the first vertex in the
fan is v (so the first fan edge is the one we want to color).
The fan for the algorithm is similar to the fan in Vizing’s proof. We
keep adding vertices to the fan until we can’t preserve the fan definition.
The algorithm doesn’t use the term ‘missing’ and instead uses the term
‘free’ to describe a color that is not incident to a vertex.
Just like in Vizing’s proof, the fan has k neighbors of u and k−1 colors
used.
In the algorithm, the color of edge (F [i + 1], u) is free on vertex F [i].
Unlike Vizing’s proof, we don’t keep track of a specific missing color
on F [i] and make sure it isn’t equal to the missing color of u.
The fan used also doesn’t have the extra requirement that Vizing’s
proof has, checking that F [i] does not miss any color already missed
by F [j] (j < i).

• Next we find a free color c on vertex u and a free color d on vertex F [k]
(the last vertex in the fan). This is like the missing colors of u and F [k]
that Vizing’s proof keeps track of.

• Like in Vizing’s proof, we look for an alternating path of these two
colors c and d that touches u, so then we can swap colors on the path.

• Next, we find a subset of fan F to rotate. This subset is fan F ′ =
[F [1]...w]. Before we swap colors on the path, we have two cases. Either
a fan edge had color d or no fan edge had color d. The paper explains
how to choose w in each case.
Rotating a fan is like the chain reaction in Vizing’s proof. The edge
color of (F [i], u) changes to be the edge color of (F [i + 1], u). The last
fan edge (w, u) gets uncolored.

• Last, we color (w, u) with color d.
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How to run the code:

• First compile with javac *.java

• Run GUI with java GraphGUI.java

What the GUI looks like when you start.

Details

• I created an undirected graph that doesn’t allow for duplicate edges or
self-loop edges. The original paper also has these two edge restrictions
on the graph.

• Instructions and error messages are displayed in the GUI.

• I randomly pick RGB colors to display in the GUI. Since some edge
colors can be similar, I also show edge color labels (c0, c1, ...)

• In the GUI, you can only run the algorithm if there is an edge in the
graph. You can run the algorithm on a disconnected graph.

• In the GUI, you can only clear the edge colors after the algorithm has
been run.
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• When the graph gets complicated, it can be difficult to know which
edge labels go with which edge. So I run a test to see if the edge
coloring is valid and then I print the result out in the instructions of
the GUI.

• When building a graph, you can add nodes, change the location of
nodes (edges will be moved with the node), add edges between two
nodes, remove edges, and remove nodes.

Dfficulties encountered:

• Understanding the fan definition was tricky from the wikipedia page.
The lecture was helpful for that.

• Understanding what a free color was took a couple of attempts while I
was writing that section of code.

• How to find the path to invert using a BFS strategy. I had written
code for BFS from another class so I reused some of that.

• I used K5 and K6 to continue testing my code as I made changes. I
was having trouble getting the algorithm to work. I originally had a
different idea for finding the F ′ fan by just looking at the pseudocode.
But then I read more of the Wikipedia page and it tells you how to
select the fan for the different cases that could arise.

• During my debugging I also changed how I find the max fan. Originally
I went through all the neighbors once and added them to the fan if it
passed the condition. After reading the paper, I changed the function
to keep a list of nodes not in the fan and keep trying until no nodes
can be added.

It seems like the algorithm finally works.
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Experiment #1: A simple example before and after coloring. The algorithm
produced a valid coloring.
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Experiment #2: K6 before and after coloring. The algorithm produced a
valid coloring.
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Experiment #3: A bigger graph before and after coloring. The algorithm
produced a valid coloring.
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Experiment #4: A disconnected graph before and after coloring. The algo-
rithm produced a valid coloring.
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Experiment #5: A more complex disconnected graph before and after color-
ing. The algorithm produced a valid coloring.
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Experiment #6: A star graph before and after coloring. The algorithm
produced a valid coloring.
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Experiment #7: A bipartite graph before and after coloring. The algorithm
produced a valid coloring.
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Experiment #8: A planar graph before and after coloring. The algorithm
produced a valid coloring.
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Sources:

• Wikipedia: https://en.m.wikipedia.org/wiki/Misra_%26_Gries_

edge_coloring_algorithm

• Original paper published by Elsevier: https://www.sciencedirect.

com/science/article/pii/002001909290041S

• Original paper on Jayadev Misra’s UT Austin webpage: https://www.
cs.utexas.edu/users/misra/psp.dir/vizing.pdf
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