COMP 150-Alg 2, Final Project:

Fibonacci Heaps and Dijkstra’s Algorithm

Daniel Mahoney

August 11, 2020

A Fibonacci Heap is a heap data structure; being a heap means that it maintains easy access to the
minimum element, and any element is less than or equal to its children.

Most importantly, the interesting operations are extracting the minimum and decreasing the key of a
node, which is where the runtime is notably different from a regular heap.

For extraction, we consolidate the trees and combine ones if they have the same degree, so that at the
end, there is at most one tree of each degree.

For decreasing a key, we can immediately move it to the root list layer, instead of heapifying as in a
regular heap. This provides the decrease key function with an amortized runtime of O(1), in comparison
with the O(log(n)) runtime with a regular heap.

This is particularly useful in Dijkstra’s algorithm, which performs 1 extract minimum key for each vertex
and 1 decrease key operation for each edge. Thus, the overall runtime for Dijkstra’s with a regular heap is
O(Elog(V)), while with a Fibonacci heap, it is O(E + V log(V)).

Note that this is only better if V' << E, or in other words, we have a pretty dense graph. A complete
graph would have E = O(V?), which would have the runtime be

O(V?+Vieg(V))=0(V?) wvs. OWV?log(V))

0.1 Fibonacci Heap Implementation

In implementing the Fibonacci heaps, I ran into a few hurdles, particularly with the extract min function.
The main difficulty was making sure I could loop through the root list (circular linked list) to hit each element
only once, but also allowing for the possibility of moving some trees that we’ve already visited around by
connecting with other trees in the consolidation step. I also had some difficulty with the use of the array to
merge, which resulted in the Fibonacci Heap nodes to have even more space required per node. Each node
has 4 pointers to other nodes (parent, children, left, right), 2 booleans uses for marking (one for decrease
key marking, one for helping in the extract min function), and 3 integers for the value stored, the degree

(i.e. number of children), and an ID for use in Dijkstra’s later.



This can be used with the attached executable ./Fib, which takes user input including ’i <k>’ to insert
the value k, ’e’ to extract the minimum, 'rm’ to report the minimum, and ’dk <i><j>’ to decrease the i-th
key to a new value of j.

Note that the decrease key does not decrease the node with value i to value j, but takes the node that
was inserted i-th (0 counting), and decreases its key to the value provided by user (j in the syntax given
above). This was for ease of implementation for testing.

I did not implement merge because I have not yet implemented a copy constructor, and the merge function
takes another FibHeap as argument. Though the merge function itself would be quite simple, just moving a

few pointers to join the root lists.

0.2 Dijkstra’s Implementation

To see the Fibonacci heap in action, I created a simple graph in order to run Dijkstra’s algorithm. I wrote
two versions of Dijkstra’s, one that uses the Fibonacci heap I created, and one that uses a regular heap that
I adapted from an old heap I made in COMP-15.

I then ran some speed tests on some large graphs to see the runtime in action. For extra verification of
correctness, I also compared to see that the heap Dijkstra’s and Fibonacci Heap Dijkstra’s found the same
shortest path lengths.

I predicted that for small graphs, the regular heap would be faster because of the extra overhead time
spent in the Fibonacci heap with more pointers and more logic happening. Moreover, for sparse graphs, the
regular heap would also likely be faster since if E = O(V), then they have the same time complexity.

For this first set of tests, I had approximately VvV edges. I randomly created edges, with random
weights up to 10000. This does allow for repeat edges or self edges, but that doesn’t affect the algorithm.

\Y% E FibHeap (ms) Heap (ms)
100 1000 .206 .098
1000 31000 3.750 1.831
10000 1000000 136.340 111.315
100000 31000000 5121.861 4821.051

Unfortunately, we see that in each of these cases, the regular heap is in fact faster. This was the highest
power of 10 I could do for vertices before running out of memory for my program.

However, if we look at the trends, we can see how much slower the Fibonacci heap is. At 1000 vertices,
it takes about twice as much time. At 10000, about 1.225 as much. And at 100000, about 1.062 times as
much as the regular heap. This indicates that for large enough input, the Fibonacci heap may be faster, as
we expect.

Another set of tests I ran, was to keep the number of vertices constant, but to increase the number of

edges.



v E FibHeap (s) Heap (s)
50000 100000 168 .066
50000 1000000 .300 .193
50000 10000000 1.599 1.483
50000 100000000 16.160 15.765

These results again fall in line with above, where the regular heap is still faster at my memory limit, but
the two sets of times seem to be approaching.

Finally, I ran a separate set of tests which instead of randomly creating edges, it instead created a
complete graph. This means there are ©(V?) edges, although in practice I have as many edges as possible

without self edges.

\Y% E FibHeap (ms) Heap (ms)
1000 100000 24.337 20.211
5000 2500000 493.779 477.215
10000 100000000 1963.657 1898.557

In conclusion, it appears that in the graphs that I am creating, a Fibonacci heap does not improve
the actual runtime of Dijkstra’s algorithm. It may be that for larger graphs, a Fibonacci Heap is indeed
faster, as we have proved with the amortized runtime analysis. Or perhaps I have made a mistake in the
implementation of the Fibonacci heap, or I have coded some portions of it inefficiently. At around the highest

amount of memory I can store before being killed, the two heaps appear to be about the same.

0.3 Future Work

If T were to continue or extend this project, there are a few things I might try. Firstly, I would like to
see larger graphs, as I have been somewhat constrained by memory limits. And for test data, I would be
interested in seeing actual data, such as from a physical source, just to check if realistic graphs are roughly
approximated by my random or complete graphs.

Other heap-like structures would be interesting to compare as well. For example, a binomial heap, which
is quite similar to the Fibonacci heap but with more restrictions, should have the same amortized runtime
as a regular heap. Thus, I would predict it to be in practice worse than the regular heap tested here, since
there is more pointer overheap for a binomial heap. And it would likely also be slower than a Fibonacci
heap, since the decrease key is still O(log(n)) amortized for a binomial heap, compared to O(1) amortized

for Fibonacci, and both have a lot of extra pointer work and general overhead in implementation.

0.4 Links

e Box Folder for Code: https://tufts.box.com/s/2s001bugkwb63kkstrhq6a3qkh2846cm


https://tufts.box.com/s/2s0o1buqkwb63kkstrhq6a3qkh2846cm

	Fibonacci Heap Implementation
	Dijkstra's Implementation
	Future Work
	Links

