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Lissajous Curve Methods for the Identification
of Nonlinear Circuits: Calculation of a Physical

Consistent Reactive Power
Tianqi Hong, Student Member, IEEE, and Francisco de León, Fellow, IEEE

Abstract—This paper presents a novel analysis of nonlinear
circuits useful for the computation of the reactive power from
only terminal measurements. The method computes the reactive
power of unknown circuits based on the physical understanding
of Maxwell equations. The proposed method is able to identify
instantaneous quantities (circuit parameters, powers, etc.) for
two physical equivalent models: series and parallel circuits. The
parallel equivalent model shows advantages for multi-subsystems.
Several numerical examples are provided for validation of the
proposed method and to illustrate step-by-step the calculation
details. To be compatible with digital instrumentation, a time
discrete formulation is used for all calculations. All examples
are simulated in MATLAB and the EMTP (Electro-Magnetic
Transients Program).
Index Terms—Nonlinear circuits, nonsinusoidal excitation,

power definitions, power flow, reactive power.

I. INTRODUCTION

S TEINMETZ established alternating-current circuit theory
in the last few years of the ninetieth century [1]. However,

after more than a century, the definition of reactive power is still
ambiguous for nonlinear circuits. According to the IEEE stan-
dard 1459–2010 [2], there is not yet available a power theory
that can provide a common base for billing, power quality, and
detection and mitigation of waveform distortion.
In the 1930s, Budeanu and Fryze developed power theories for

nonsinusoidal excitations; see [3]. Budeanu proposed the con-
cept of distortion power and Fryze started the concept of instan-
taneous power decomposition. After decades, Budeanu's theory
was considered to be amisconception and Fryze's theorywas fur-
ther developed by Czarnecki. Based on the decomposition con-
cept, Czarnecki developed the Currents' Physical Components
(CPCs) method for both single-phase and three phase systems
[4], [5]. However, although the CPCs are useful for engineering
purposes, the mathematical decomposition lacks full physical
existence and has been questioned by other researchers [6], [7].
Physical definitions of power quantities have been recognized

by Emanuel in [8], which are based on the Poynting Vector
(PV). The practical value of PV was disputed by Czarnecki [10].
In 2007, new power quantities derived from PV were defined
by Sutherland [9]. In 2010 and 2012, a novel identification
method for series nonlinear models was obtained from
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the Poynting Vector Theorem (PVT) [11], [12]. Although this
identification method can properly characterize series nonlinear
systems, bringing physicality back to power theory, the instan-
taneous reactive power computed from this method does not
properly add for multi-branch circuits.
This paper proposes an analytical tool with graphical repre-

sentation (based on Lissajous curves) to analyze the energy (or
power) flow at the PCC (point of common coupling) of an un-
known nonlinear single-phase circuit. With this tool, one is able
to identify the parameters ( , , and ) of the unknown circuit
using solely measurements of the instantaneous voltage and cur-
rent at the PCC. In general , , and are nonlinear or time
varying and can be computed with very simple formulae. Once
the circuit components are identified, physically correct power
quantities can be obtained from first electromagnetic principles.
The contribution of this paper can also been seen as the gener-

alization of the Fryze-Czarnecki theory for the modeling of ac-
tive and reactive powers with time-varying circuit elements that
have full physical meaning in terms of Maxwell equations. Four
examples are provided to illustrate the proposed method. One
can see that the method is accurate and the obtained circuit pa-
rameters have full physical meaning.
The paper is organized as follows: Section II describes the pro-

posed definition of reactive power. Section III presents the Lis-
sajous curvemethods used for the identification of equivalent cir-
cuit elements for linear and nonlinear circuits. Section IV shows
application examples and Section V summarizes the most im-
portant conclusions of the paper.

II. DEFINITION OF ACTIVE AND REACTIVE POWERS

All discussions in this paper are based on Maxwell's physical
definitions of powers. The general expression coming from the
Poynting Vector Theorem (PVT) describing the power transfer
phenomena between a source and a load is:

(1)

where is the electric-field vector in V/m, and is the magnetic
field intensity vector in A/m, is the current density vector in
A , is the magnetic flux density vector in T, is the electric
displacement field vector in C m , refers to a closed surface,
and refers to the volume enclosed by .
According to (1), the transferred energy is split into two parts

(and only two parts): the power of consumed energy is the active
power; and the power of stored and restored energy in electric
and magnetic fields is the reactive power. Mathematically, we
have:

(2)
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(3)

Based on Maxwell's electromagnetic theory, the reactive
power only exists when the system has elements capable of
storing energy. Note that today a gamut of reactive power
definitions can be found in the literature. Most of them express
that reactive power can exist in resistive loads (lacking energy
storage elements) when fed from nonlinear sources; see [13]
as an example. The problem with these calculations is the
use of non-physical definitions for the calculation of reactive
power. This paper proposes that the only physically correct
reactive power should be consistent with (3). In the rest of this
paper, the Maxwell reactive power defined in (3) is called the
instantaneous reactive power.
The physical (in Maxwell terms) definitions of active and re-

active powers proposed in this section assume the knowledge
of the instantaneous equivalent resistance , inductance ,
and capacitance .
According to the physical definition, the instantaneous Joule

power is defined as the power consumed by the resistance
and given by:

(4)
where and are the voltage and current of . The
instantaneous power in an inductor is defined as the time
derivative of the energy stored in the inductor given by:

(5)

where is the current in the equivalent inductor. For a con-
stant inductor , we have:

(6)

where is the voltage across the equivalent inductor. For
clear illustration, the integral of voltage (units of magnetic flux)
is denoted as:

(7)

When there is no flux in the circuit, can be treated as a
mathematical function of voltage which can always be computed
from terminal measurements. In most nonlinear circuits, the in-
tegral of voltage is not the flux in the model inductor.
The instantaneous power in a capacitor is computed

from the time derivative of the energy stored as follows:

(8)

where is the voltage across the equivalent capacitor .
For a constant capacitor , we have:

(9)

where is the current of the equivalent capacitor .
In a general system, and may not be the instan-

taneous reactive power , because of hysteresis power
or nonlinear power caused by connecting and discon-
necting energy store-able elements by a switch (see example in
Section IV-C). Note that and exist in both capacitors
and inductors. Hence, the instantaneous active power which
is defined as the power consumed in the system is expressed as:

(10)
The instantaneous active power of a nonlinear general system

is almost impossible to obtain because it is difficult to calculate

the instantaneous hysteresis power and nonlinear power from
only terminal measurements. However, it is possible to obtain
the average hysteresis power and nonlinear power .
According to the definition of instantaneous active power, the

average active power of one period (of the fundamental
component) is defined as:

(11)

Note that for a passive circuit and thus one can sub-
stitute by in (11) to get a similar expression as for re-
active power (see below). Based on the principle of conservation
of energy, the average active power should equal the power
consumed by the circuit . Hence, we have:

(12)

Due to the nonlinearity and non-ideality of general circuit el-
ements, the following relationship exists:

(13)

where is the instantaneous reactive power and is the
total instantaneous power of energy store-able elements (which
may include losses or energy not restored to the source). Since

is defined as a quantity to evaluate the speed of the energy
store/restore process between the reactive circuit elements and
the source, the integral of over a period should equal to zero.
Thus is used to compute the reactive power.
Since (13) takes into consideration that inductors and capaci-

tors may be lossy, it is possible that the average of and/or
is not equal to zero. This non-zero (active) power is

calculated as:

(14)

where is the average nonlinear power and is the average
hysteresis power. is the power consumed by nonlinear in-
ductors and/or capacitors.
Hence, instead of computing average active power from

(11), we calculate it as:

(15)

where is the average joule power.
To compute (the average reactive power, say the power that

can be compensated with reactive elements) corresponding to
actual reactive power , several methods are considered:
1) The “textbook” approach is to use the amplitude of the in-

stantaneous reactive power for linear circuits. The authors
have reviewed over 100 circuit theory books and found
that the most common mathematical expression for reac-
tive power of linear circuits is [14]:

(16)

where and are the amplitude of the voltage and cur-
rent at the terminal measurements (PCC) of Fig. 1, respec-
tively; is the angle of the fundamental frequency com-
ponent of voltage and is the angle of the fundamental
frequency component of current.
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2) The IEEE Std. 1459 [2] definition of reactive power for
linear and nonlinear circuits is:

(17)

where , , and are the fundamental frequency
components of the terminal measurements in Fig. 1 ob-
tained from Fourier analysis and is an integer representing
the number of cycles used in the calculation.

3) A full physical alternative to compute the reactive power
over a period, proposed here, is to take the average of the ab-
solute instantaneous reactive power expressed as follows:

(18)

A factor is introduced in (18) to numerically match
with and for linear circuits. In (17) the
IEEE standard added for the same purpose. The term

is the total energy stored/restored between in-
ductive and capacitive elements and the source during a pe-
riod. is the total energy stored/restored, but it
includes energy that is not returned to the source (losses or
consumed elsewhere in the circuit). is the energy that
failed to be restored to source, which is computed from (14).
Note that is not instantaneously equal to

.We state that the following integral (without
):

(19)

is truly the average reactive power and perhaps should have
been used from the beginning (since this is the definition
coherent with Maxwell equations). At this time in history,
it is perhaps too late to remove the historical factors from
the calculation of .

III. LISSAJOUS CURVES FOR THE IDENTIFICATION OF
EQUIVALENT CIRCUIT ELEMENTS

A. Series and Parallel Equivalent Circuits
From only terminal measurements of instantaneous voltage

and current, it is impossible to obtain the detailed internal con-
nectivity and value of every parameter of a general circuit. To an-
alyze the energy (or power) flow at the point of common coupling
(PCC) of an unknown system, some assumptions are needed. In
this paper, an arbitrary system is represented as one of two types
of circuits. The series model consists of a nonlinear resistor in
series with a nonlinear element able to store energy. The other
one, the parallel model, contains a nonlinear resistor connected
in parallel with a nonlinear element that is able to store energy;
see Fig. 1.
According to Joule's law, the instantaneous power in the resis-

tors of the series and parallel models are, respectively:
(20a)

(20b)

where and are the measured voltage and current at the
PCC, and are the voltage and current of the resistor,

is the power of the resistor in the series model, and
is the power in the resistor of the parallel model. Based on Kirch-
hoff's Voltage Law (KVL) and Kirchhoff's Current Law (KCL),

Fig. 1. Two energy equivalent models for the analysis of arbitrary electrical
circuits: (a) parallel model; (b) series model.

Fig. 2. Instantaneous powers of the two equivalent models, is the
power of the resistive element, is the power of the inductive element,

is the instantaneous power at the PCC: (a) parallel
model; (b) series model.

one can compute the instantaneous power of the energy storage
element (by subtraction) as follows:

(21a)

(21b)

where is the power in the storage element of the series
model and is the power in the storage element in the par-
allel model, and are the voltage and current of the en-
ergy storage element. Therefore, to compute equivalent circuits
with the same energy properties only parameters and
need to be identified. This is different from the formulations of
Fryze and Czarnecki [3], [4] where a constant conductance is
computed.
To illustrate the parameter identification process and the dif-

ferences between the series and parallel equivalent circuits, con-
sider an unknown linear system, whose terminal measurements
are (note that the current is lagging the voltage):

(22)

(23)

For each of the equivalent circuits the instantaneous power at
the PCC, , can be decomposed into two powers:
the power consumed in the resistor and the power stored in
the inductor . These powers are different in each equivalent
circuit; see Fig. 2. In a linear case, as the one illustrated here, only
the phase of the sine functions is different between the series and
parallel circuits (note that in this case because the
inductor has no losses). The average and peak values of instan-
taneous active and reactive powers are identical, which points to
systems with the same and regardless of its connectivity.
Note that is the starting point of the decomposition process
and therefore it is always the same for a linear or nonlinear cir-
cuit (series or parallel).
In a nonlinear system, the average of the active power is the

same for both models. However, the average and peak of the
instantaneous reactive powers are different. Finding a proper
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Fig. 3. Sinusoidal source feeding a linear resistor: (a) electrical circuit; (b)
Lissajous curve.

Fig. 4. Sinusoidal source feeding a linear inductor: (a) electrical circuit; (b)
Lissajous curve.

Fig. 5. Sinusoidal source feeding a linear resistor with a switch: (a) electrical
circuit; (b) voltage and current of source.

method to evaluate the reactive power in a general system is im-
portant for completing the power theory. The following subsec-
tions establish a novel tool for the analysis of an unknown non-
linear system and for the computation of powers based on the
two models (series and parallel). For a circuit fed from a sinu-
soidal excitation, capacitors can be mapped one-to-one to nega-
tive inductors [11]; therefore only two elements (a resistor and
an inductor) need to be identified. Hence, we start our discus-
sion with sinusoidal excitation, but nonsinusoidal excitation is
discussed in Section III-D.

B. 3-D Lissajous Curves
Measurements of the instantaneous voltage and current

of the system at the PCC can always be obtained. To explain
3-D Lissajous curves, two possible 2-D Lissajous curves for a
given circuit are obtained first: voltage versus current ;
and voltage integral (or flux ) versus current .
Due to the simplicity of a linear circuit, 2-D Lissajous curves

can be used for the analysis of the power at the PCC, where “
” can be used to obtain the average reactive power and

“ ” can be used to calculate the average active power .
Consider a resistive load fed from a 50 Hz sinu-

soidal voltage source as shown in Fig. 3(a). The instantaneous
voltage, current, and flux (or voltage integral) are:

(24)
(25)

(26)

The (active) average power consumed in this circuit is com-
puted from:

(27)

The corresponding Lissajous curve is given in Fig. 3(b).
One can appreciate that the curve describes an ellipse with hori-
zontal and vertical maximum values of and

, respectively. The area of the ellipse is the energy con-
sumed by the resistor. Then, the active power can be computed
as the average of the energy as follows:

(28)

For the inductive circuit fed by the same voltage
source shown in Fig. 4(a), the instantaneous current is:

(29)
and the reactive power can be obtained by substituting (24) and
(29) into (16) as follows:

(30)

The corresponding Lissajous curve is plotted in Fig. 4(b).
Similarly to the resistive case, the reactive power of this
circuit can be calculated from the area of the curve as follows
[2]:

(31)
Equation (31) is an expression used to compute the physical

reactive power over a period, or a definition of , from the area
of the Lissajous curve. Note that a division by is needed
to make the value of (31) equal to the traditional reactive power
definition. Equation (31) is used to illustrate that reactive power
can be obtained from the area of the Lissajous curve for a linear
circuit. However, for a general circuit, reactive power should be
computed from (18).
We remark that 2-D Lissajous curves are not sufficient for

the analysis of nonlinear circuits. Take for example the resistive
nonlinear circuit shown in Fig. 5(a), the controlled
switch is closed at and opened at (quarter of a
cycle) periodically.
The corresponding Lissajous curve is plotted in Fig. 6(a).

For a purely resistive load , voltage and current are
in phase. Hence, a straight line with as the slope can be seen at
the beginning of the Lissajous curve (first quadrant). After
one quarter cycle, when both voltage and current are zero, the
switch opens (Lissajous curve is at the origin). After this, the
voltage still exists but the current is zero (the switch is
considered to be a part of the load). As the time progresses, the

Lissajous curve moves down and up along the voltage axis
from zero to negative maximum and from negative maximum to
positivemaximum (as illustrated with the continuous arrows). At
that last point jumps from zero to its maximum value when
the switch closes (following the dotted arrow) and a new cycle
starts. The voltage integral is 90 behind , hence the
Lissajous curve can be drawn as in Fig. 6(b) following the same
method. Note that it is not physically correct to have a non-zero
reactive power in a resistive circuit since energy cannot be stored
in a resistor. In contrast, the active power can be calculated



2878 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 62, NO. 12, DECEMBER 2015

correctly from the 2-D Lissajous curve of Fig. 6(b) using (28).
The process is as follows (note that from to ):

Computing the reactive power by averaging the area under the
curve (hatched area in Fig. 6(a)) of curve, we have:

(32)

To analyze both linear and nonlinear systems, 3-D Lissajous
Curves (3-D LCs) are introduced in this paper, which are the
combination of two 2-D Lissajous curves. A 3-D Lissajous curve
can be obtained by joining two 2-D Lissajous curves; see Fig. 7.
Based on Figs. 6(a) and 6(b), the 3-D Lissajous curve of the
nonlinear circuit (linear resistor with a switch) can be obtained.
The projections of the curve over the and axes are the
2-D Lissajous curves described above.
Since there are two different models (series or parallel), 3-D

Lissajous curves are separated into two different types. For the
parallel models, the corresponding 3-D parallel Lissajous curves
(3-D PLC) are plotted in coordinates consisting of voltage,
voltage integral (flux ), and current axes (parallel coordinate).
Each instantaneous state of a given system can be described as
a point in this 3-D PLC; subscript stands
for parallel type.
For series models, the corresponding 3-D series Lissajous

curves (3-D SLC) are drawn in coordinates of current, current
derivative , and voltage (series coordinate). Any point

of this 3-D SLC is presented as: ;
subscript stands for series type.
Based on the principle of 3-D LCs, we postulate that each

plane in the Lissajous coordinates (parallel or series) represents
a two-element linear circuit with series or parallel connectivity.
This postulate is proven for parallel model only, the same argu-
ment can be proven for the series model using a similar process.
In the following proof, only inductive and resistive elements are
considered since capacitors can be mapped to negative inductors
under sinusoidal excitation; see Section III-D.
For two elements in a linear system with parallel connection

see Fig. 1(a), we can write:

(33)

(34)

where is the initial current of the inductance, is the
initial flux of the inductor, and is the inductance of system.
Assuming and , and solving (33) and (34) for
currents after applying KCL to the parallel circuit, we have:

(35)

Fig. 6. 2-D Lissajous curves of sinusoidal source feeding a linear resistor with
a switch: (a) Lissajous curve; (b) Lissajous curve.

Fig. 7. 3-D Lissajous curve in parallel coordinate .

Fig. 8. 3-D and 2-D Lissajous curves for a constant resistive system under si-
nusoidal voltage excitation: (a) 3-D Lissajous curve; (b) 2-D Lissajous
curve.

which represents a plane function in the parallel coordinate
system. To avoid a numerical problem in the discussion below
when or become infinity, (35) is rewritten as:

(36)
where ; . Note that and in general are
functions of time, but they are constant in this (linear) example.

C. Calculation of the Parallel Model
According to (36), when , we have:

(37)

where is shown in Fig. 8. Hence, the corresponding normal
vector of a resistive plane can be written as:

. For a sinusoidal voltage source, the 3-D PLC of a
resistive system is shown in Fig. 8(a). To illustrate the relation-
ship in (37), the Lissajous curve is plotted in Fig. 8(b).
According to (37) and Fig. 8(b), when increases from zero
to infinity, the resistive plane rotates around the flux axis from
0 to 90 . The Lissajous curve projection on the voltage plane
is fixed by the amplitude of the voltage source. Similarly, when

we have:

(38)

where is shown in Fig. 9. Hence, a corresponding normal
vector of an inductive plane is . For
a sinusoidal voltage source, the inductive 3-D PLC is shown in
Fig. 9(a) and its corresponding 2-D Lissajous curve is
plotted in Fig. 9(b). According to (38) and Fig. 9(b), when
increases from zero to infinity, the pure inductive plane rotates
around voltage axis from 0 to 90 .



HONG AND DE LEÓN: LISSAJOUS CURVE METHODS FOR THE IDENTIFICATION OF NONLINEAR CIRCUITS 2879

Fig. 9. 3-D and 2-D Lissajous curves of a constant inductive system under
sinusoidal voltage excitation: (a) 3-D Lissajous curve; (b) 2-D Lissajous curve.

Remark that the normal vector of a plane is not unique. Hence,
normal vector and normal vector are written as:

(39)
(40)

where is the amplitude of voltage component of normal
vector in V, is the amplitude of flux component of
in Wb, and are the current components of and
in A.
Based on KCL, any two-element linear system with parallel

connection is a combination of those two planes and the normal
vector of that combined circuit plane is:

(41)
where . A plane can be defined by a normal
vector and a known point on the plane. Assume that two known
points in a plane are and . A vector between
these two points can be obtained by subtracting the coordinates
of the points as . The scalar product of
this vector and a normal vector should
be zero . Hence, the function of the circuit plane
can be written as:

(42)
By substituting three non-collinear points into (42), a normal
vector can be obtained. Assuming that the origin is located at
this circuit plane, mathematically expressed as:

(43)
one gets:

(44)
Because of the consistent relationship between a sinusoidal

voltage and its integral, when the source voltage reaches its max-
imum value , its integral is zero and the current is propor-
tional to . Replacing and and in (44) by this
steady relationship, we have:

(45)
where is the maximum value of the current in the resistive
branch, and

(46)

Following a similar approach, can be computed as:

(47)

where is the maximum value of the current in the inductor.
The resistance and inductance of linear circuits with parallel con-
nection can be computed with (46) and (47), respectively.
For nonlinear systems, we assume that any two-element

system has a small period where the resistance and induc-
tance are constant. Based on this assumption, the 3-D Lissajous

Fig. 10. Topology of a general multi-branch nonlinear system.

curve for a nonlinear system can be linearized using a piece-wise
approximation. Each linearized section can be assigned to a cor-
responding circuit plane, which means two determined circuit
parameters. By applying (46) and (47) to each linearized circuit
plane, the time varying parallel model of the two-element non-
linear system can be obtained. The details of the computation
process, including linear and nonlinear examples, are provided
in Section IV below.
Given that the resistance can be computed as:

(48)

the resistor is a “memoryless” element (each point depends only
on quantities at time ). In contrast, an inductor has “memory”
since information from the past is needed; see (34). We calculate
the instantaneous resistance using (46) and the current of the
inductive branch can be computed from KCL as:

(49)
According to the voltage-current relation of an inductance, the
correct inductance can be obtained by:

(50)

Remark that any hysteretic inductor can be made equivalent to a
nonlinear resistor connected in parallel with a nonlinear inductor
[12]; see Section IV-C. Based on the 3-D PLC method, the hys-
teresis power will be merged into the system equivalent resistor
automatically. Now, we can compute the current in the resistive
and inductive branches. With the current in each branch, the in-
stantaneous power quantities can be computed from first electro-
magnetic principles using (20) and (21).
Based on the two-element parallel model, only two parameters

(resistance and inductance) can be obtained. For an -element
system, only two equivalent parameters can be obtained from
measurements at the PCC.
Because the branch voltage of a parallel circuit is the same and

the currents must comply with KCL, for multi-branch systems as
the one in Fig. 10, one expects the power quantities to fulfill the
following properties:

(51)

(52)

where and are the average active and reactive powers of the
entire system. and are the average powers of branch .
and are the total instantaneous active and reactive powers
and and are the instantaneous powers of branch .

D. 4-D Lissajous Curve for Non-Sinusoidal Excitation
To fully analyze circuits under nonsinusoidal excitation a

fourth axis needs to be added because inductors and capacitors
no longer store/restore energy in phase with each other (see
below). Thus one axis is used to compute the inductor and
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another one needs to be added to compute the capacitor. It is not
possible to provide a pictorial representation, but mathemati-
cally the concept of 4-D Lissajous curves is simply the addition
of another hyperplane to the 3-D Lissajous curves.
According to [11], the relationship between the inductance

and capacitance is:

(53)

The function is constant under sinusoidal current excitation
since the sine or cosine functions in the numerator and denomi-
nator cancel. For a constant capacitor , the corresponding neg-
ative inductance is:

(54)

Under nonsinusoidal excitation, the poles and zeroes of no
longer occur at the same time , therefore function varies
from negative infinity to positive infinity. To solve this problem,
the equivalent capacitance needs to be separated from the equiv-
alent inductance. Hence, another axis needs to be introduced to
solve the problem. For the parallel model, the 4th axis is the
derivative of voltage . For the series model, the 4th axis
is the integral of current .
We can prove that each hyperplane in the 4-D Lissajous coor-

dinates (parallel or series) represents a three-element linear cir-
cuit with series or parallel connectivity. For the parallel model,
the parallel capacitor can be computed from:

(55)

where is the component of the normal vector of
the hyperplane in V/s.
According to the 3-D and 4-D Lissajous curve methods de-

scribed in this section, an equivalent circuit for any nonlinear
single-phase circuit (including nonsinusoidal excitation) can be
obtained in terms of equivalent energy consumed and stored/re-
stored.

E. Model Selection
Based on a similar approach, the Lissajous method can be ap-

plied to obtain a series model. The series model is not developed
here because of lack of space.
The parallel model method can identify perfectly any three-

element nonlinear parallel system. Meanwhile, the series model
method can identify precisely any three-element nonlinear series
system. This is irrespective to type of source (current or voltage).
Loads in power systems are connected in parallel and are

(intended to be) supplied with voltage excitation; see Fig. 10.
Therefore, to obtain active and reactive powers of a black-box,
it is wiser to use a parallel circuit (as done by Fryze and Czar-
necki).

IV. ILLUSTRATION EXAMPLES

Several examples are discussed in this section to demonstrate
the applicability and scopes of the new analytical method. All
cases are simulated with the EMTP (Electro-Magnetic Tran-
sients Program) [15] and MATLAB to replicate digital data
acquisition systems. The voltage source in the first three cases
is a cosine function with the following discrete form:

(56)

where is the (constant) sampling time. Let us take a voltage
amplitude of V at a frequency of , giving
a period and . The integral of the

Fig. 11. Topology of the linear circuit: (a) parallel circuit; (b) series circuit.

Fig. 12. Numerical data of voltage, current, and flux. The markers in the plot
are the 21 points used for calculations.

instantaneous voltage is obtained from a simple discrete integra-
tion method (forward Euler) as:

(57)

The instantaneous current derivative is computed from the
discrete current measured at the terminals as:

(58)

The computation error introduced with (57) and (58) is given by
the sampling time. Better numerical methods can be applied of
course, but for the sake of illustration let us use (57) and (58).

A. Linear Circuits
The first two examples are the parallel and series linear

circuits with and shown
in Fig. 11. We start from the knowledge of the instantaneous
voltage and current . To simplify the calculation process,

has been chosen as the sampling time, which means
that the number of samples is only 21 (when including the initial
and end points). Due to the calculation similarities between the
series and parallel models, only the calculations for the parallel
circuit are presented, but results for both circuits are provided.
The discretized instantaneous voltage, current, and flux for

the parallel circuit are plotted in Fig. 12. To obtain accurate flux
data more samplings are needed. Because the voltage source is
a cosine function (starts at its peak), therefore, the initial flux for

is zero .
Assuming that the initial current of the inductor is zero

, the first three points (points 0 to 2) are used to com-
pute the circuit plane; see Fig. 13. Note that, for nonlinear sys-
tems, point 0 may not be a point of all linearized circuit planes.
Under those conditions one can use points 1 to 3 to calculate the
normal vector. For more details see the nonlinear example shown
in Fig. 19(b).
According to the numerical results given in Table I, the first

normal vector can be com-
puted, using point 0, as:

(59)
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Fig. 13. Detailed computation process for the first and second time steps.

TABLE I
DATA FOR THE PARALLEL CIRCUIT

Fig. 14. Calculation results of resistor and inductor: (a) resistor and inductor
in parallel circuit; (b) resistor and inductor in series circuit.

where is the amplitude of voltage component of normal
vector , is the amplitude of flux component of

, is the current component of .
Applying (46) and (47) in their discrete form:

(60)

(61)

we get:

(62)

and

(63)

Then points 2, 3, and point 0 are used to form a new circuit
plane and compute the circuit parameters of the next time pe-
riod. Repeating this process for all sample points (21 points in
this case), the instantaneous parallel resistor and inductor can be
obtained; the results are given in Fig. 14(a). One can see that the
method identifies correctly the resistance and inductance of the
circuit from data (instantaneous voltage and current) obtained at
the PCC.
The 3-D series Lissajous curve (3-D SLC) can be applied to

compute the circuit parameters of the circuit of Fig. 11(b). One
can see from Fig. 14(b) that the resistive and inductive parame-
ters are properly identified.
Once and are known, all power quantities can be

obtained as described in Section III. The instantaneous active
and reactive powers are presented in Fig. 15. The instantaneous

Fig. 15. Calculation result of active and reactive powers: (a) and
for the parallel model; (b) and for the series model.

TABLE II
POWER QUANTITIES OF TWO LINEAR CIRCUITS USING ONLY 21 POINTS

Fig. 16. Circuit of controlled switch with resistor and its terminal measure-
ments: (a) Topology of nonlinear circuit; (b) and of the nonlinear
circuit.

active power matches with Joule's law and the instantaneous re-
active power is equal to the time derivative of the energy stored
in the inductor.
The average powers are given in Table II. Note that the results

shown in Table II are not very precise because the number of
sample points is small. By increasing the samples to 1000 points
per cycle, the relative error is reduced to . For this linear
case, the reactive powers of the three expressions discussed in
Section III give exactly the same result.

B. Controlled Switch Feeding a Resistor
A simple nonlinear circuit is chosen to illustrate a problem

with the IEEE Standard definitions and Czarnecki's CPCs
method [16]. In the circuit of Fig. 16, is in series with a
controlled switch . Assume that the switch opens at
(quarter of a cycle) and . The time step for this case is
chosen as 0.02 ms to reduce the computation error.
By substituting (7) into (17), can be rewritten as:

(64)

As discussed in Section III, the factor is a coefficient nec-
essary to match the value of classic (textbook) calculation of re-
active power. Based on (64), instead of zero reactive power, the
reactive power of a resistive nonlinear circuit is:

(65)
where is the amplitude of (the fundamental current
component) and is the amplitude of , is the angle
between and . Because is non-zero it cannot be
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Fig. 17. 3-D Lissajous curve of the nonlinear circuit and the computed parame-
ters: (a) 3-D Lissajous curve in parallel coordinates of nonlinear circuit; (b)
and computed from 3-D Lissajous curve method. The lines overlap from
0.005 s to 0.02 s.

TABLE III
AVERAGE POWER QUANTITIES OF NONLINEAR CIRCUIT

a physically correct reactive power (according to Maxwell equa-
tions) since the circuit lacks of elements capable of storing en-
ergy. In the following examples we do not calculate .
The decomposition method CPCs has a similar problem with

this nonlinear circuit. The CPCs method computes the load con-
ductance of this nonlinear circuit as [4]:

(66)

The “active current” through that load conductance is:
(67)

This active current is a sinusoidal function in phase with the
voltage, is not the current that consumes power in the circuit
resistor. It represents the ideal circumstances when the circuit
has been fully compensated (for both reactive power and cur-
rent distortion). In other words, is the current that delivers
energy to a linear resistive load that consumes the same active
power than the circuit resistor. The reminder current component

is decomposed into three parts which are “reactive
current” , “scattered current” , and “generated current”

. The so-called reactive current is

(68)
where and are the rms values of the fundamental
components of voltage and current measured at the PCC.
Although CPCs method does not claim to be a way to calcu-

late reactive power, modeling a nonlinear circuit as a constant
resistor in parallel with three nonlinear elements is not a physi-
cally correct identification of this nonlinear circuit. In contrast,
the 3-D Lissajous curve method is a comprehensive represen-
tation of any parallel circuit under sinusoidal excitation. By ap-
plying the proposed process, the correct conductance of this non-
linear circuit can be calculated and the corresponding average
and instantaneous powers can be obtained. The results are pre-
sented in Fig. 17 and Table III.
According to Fig. 17, the conductance of the circuit is equal to

0.5 S for the first 1/4 of the cycle which is equal to the resistor in
the actual circuit. For the following 3/4 of the cycle, the switch
opens which causes an open circuit and the computed conduc-
tance is zero. The computed zero inductance leads to a zero re-
active power at every instant, which satisfies the physical reality

Fig. 18. Topology and measurements of hysteresis and switching nonlinear
circuits: (a) topology of hysteresis and switching nonlinear circuit; (b) source
voltage and current of source , current in subsystem 1 , current in
subsystem 2 .

of this nonlinear circuit. Two working states can be clearly seen
in the 3-D Lissajous curve of Fig. 17(a), which satisfy the phys-
ical states of the switch. The actual active power in a period
is:

(69)

and the actual reactive power is zero. The comparison be-
tween the physical definition, given by Joule's law, and the
3-D PLC method is given in Table III. The power quantities in
Table III show that our method is physically correct. Because
of (16) cannot be applied to nonlinear circuits, in the remaining
examples, will not be calculated.
A spike caused by the sudden shift of circuit planes is delib-

erately shown in Fig. 17(b). This can be easily identified and fil-
tered numerically since the derivative becomes very large at dis-
continuity points. In the next examples, the spikes are removed
by a detection and filtering algorithm.

C. Hysteresis Loss and Nonlinear Loss due to Switching
Two nonlinear energy consumption mechanisms, hysteresis

loss and nonlinear consumption due to switching, are discussed
in this example. Hysteresis loss is the well-known nonlinear loss
in magnetic cores and dielectric materials. Nonlinear energy
consumption due to switching appears mainly in power elec-
tronic devices when energy is stored in reactive elements and
restored to the load (and not returned to the source). The circuit
in Fig. 18(a) is designed to illustrate these two phenomena; the
terminal measurements are shown in Fig. 18(b). Subsystem 1 is
a transformer core in parallel with a linear resistor .
The hysteresis curve of the transformer core, see Fig. 19(a), is
obtained by a nonlinear inductor connected in parallel
with a constant resistor . The behavior of
and are shown in Fig. 19(b). Subsystem 2 illustrates the
nonlinear energy consumption due to switching. The inductor

stores energy from the source in the first 3/4 of the
cycle and restores the energy to the linear resistor
in the last 1/4 cycle. Resistor cannot be seen from PCC
measurements. Note that many power electronics converters
work on the principle of charging and discharging inductors
and capacitors; take for example PFC (power factor correction)
circuits.
Note that for the nonlinear inductor case shown in

Fig. 19(b) the origin (point 0) is not a point of the circuit
plane formed by points and . By the application of the 3-D
Lissajous curve method at the system PCC, subsystem ,
and subsystem , the parameters and power quantities of
the assembled system and each of the subsystems are obtained
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Fig. 19. Generation of transformer core model: (a) Hysteresis loop of trans-
former core; (b) behavior of nonlinear inductor and linear resistor

.

Fig. 20. Computation results of hysteresis and switching nonlinear circuit:
(a) equivalent conductance at PCC, equivalent conductance at

, and equivalent conductance at ; and are
overlapped. (b) Inductance at PCC, inductance at , and
inductance at ; and are overlapped when is open
from 0.015 s to 0.02 s.

Fig. 21. Power quantities of each subsystem and system: (a) instantaneous
joule power of the system, instantaneous joule power of sub-
system 1, and instantaneous joule power of subsystem 2; and

are overlapped. (b) Instantaneous power of the system, instan-
taneous power of subsystem 1, and instantaneous power of
subsystem 2.

as shown in Figs. 20 and 21. Instead of calculating a constant
resistor , is equal to the conductance of in par-
allel with the hysteresis loss in . In other words, from the
measurements at , the hysteresis loss of the transformer
core cannot be distinguished from the joule loss in . Hence,

equals . The conductance of subsystem 2, shown
in Fig. 20(a), is zero at all times which satisfies the fact that

cannot be seen at . The inductances in Fig. 20(b) are
calculated based on (50). A clear switching action can be seen
in Fig. 20(b) at 15 ms, which produces nonlinear energy con-
sumption. According to Fig. 21(b), the nonlinear consumption
due to switching is acting as an incomplete reactive power

(lacks one quarter of the restoring process). Based on
the physical definition of consumed power, we can calculate the
total consumed power in one period as:

(70)

TABLE IV
AVERAGE POWER QUANTITIES OF HYSTERESIS AND

SWITCHING NONLINEAR CIRCUIT

Fig. 22. Topology of nonlinear circuit with nonsinusoidal excitation.

After obtaining the correct circuit parameters, the power quan-
tities can be easily calculated as shown in Table IV. By com-
paring the results shown in Table IV with , we conclude that:

(71)
which means that the calculations are correct.
Based on the simulation parameters, the power in and

can be obtained from Joule's Law as (see (20)):

(72)
which is nearly equal to the result shown in Table IV.
The 3-D Lissajous method also provides a new view of reac-

tive power. The part of the instantaneous power of the inductor
that is restored to the source is reactive power. The part of the
instantaneous power of the inductor that is eventually consumed
becomes active power. The reactive power of the inductor

can be calculated analytically as:

(73)
which means 3-D Lissajous method has a correct physical
meaning in Maxwell terms.

D. Circuit with Nonsinusoidal Voltage Excitation
To verify the 4-D Lissajous curve method and the additivity

of the power quantities obtained by the Lissajous curve method
for the parallel model, a circuit with two subsystems is intro-
duced in Fig. 22. In this nonlinear circuit, and are non-
linear elements with behavior shown in Fig. 23. and are
linear elements where and . and
are linear capacitors, where and . A
voltage source containing fundamental component, 2nd and 3rd
harmonics is selected for this case. The discrete voltage function
of this source, with and , is:

(74)

By the application of the method described in this paper to
each subsystem and system separately, the parameters of each
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Fig. 23. Behavior of nonlinear elements in the nonlinear circuit: (a) nonlinear
behavior of resistor; (b) nonlinear behavior of inductor.

Fig. 24. Computation results of the nonlinear circuit: (a) Equivalent conduc-
tance at PCC, equivalent conductance at , and equivalent
conductance at ; (b) equivalent capacitance at PCC, equiva-
lent capacitance at , and equivalent capacitance at .

Fig. 25. Active power and reactive power of each subsystem and system:
(a) active power of the system, active power of subsystem 1, and
active power of subsystem 2; (b) reactive power of the system,
reactive power of subsystem 1, and reactive power of subsystem 2.

TABLE V
AVERAGE POWER QUANTITIES OF NONLINEAR CIRCUIT

subsystem and the total system can be obtained accurately. The
results are shown in Figs. 24 and 25, and in Table V. Based on
the correct resistances and capacitances computed from (46) and
(55) respectively, the inductances can be obtained based on KCL
and (50).
According to Fig. 24(a), the equivalent conductances perfectly

match the parameters used in the simulation, where equals
and is the conductance of the parallel

equivalent circuit of subsystem 2. The additivity of conductances
is then confirmed:

(75)

The additivity can also be found in capacitance where plus
equals to , see Fig. 24(b). Because the conductances

Fig. 26. Instantaneous power of capacitor and inductor in each subsystem.
(a) Instantaneous power of and instantaneous power
of ; (b) instantaneous power of and instantaneous power

of . One can see that for nonsinusoidal excitation inductors and
capacitors can store and restore energy at the same time.

can be properly added, the instantaneous power quantities can
also be added:

(76)
(77)

One can see from Table V that the average active powers can
be added.
The reactive power compensation between the two subsys-

tems can be observed from Fig. 25(b). As one can see, the reac-
tive compensation becomes complicated for nonsinusoidal ex-
citation. From Fig. 26 one can see that there are regions where
inductive and capacitive instantaneous reactive powers have op-
posite signs and thus partially compensate each other, but there
are other regions where they add. Thus, under nonsinusoidal ex-
citation, different from sinusoidal excitation, the capacitor and
inductor can store energy at the same time; see the regions in
boxes in Fig. 26.
Because the absolute value calculation is a nonlinear opera-

tion, is not equal to the difference of the reactive power
(equivalent inductor) and the reactive power (equivalent

capacitor) in each subsystem. Mathematically, we have:

(78)

Consequently, of the system is not equal to the sum-
mation of in each subsystem; see Table V.
Due to the properties of the 4-D Lissajous curve tool, sepa-

rating into capacitive reactive power and inductive
reactive power in Table V is a wiser choice because they add:

and .
Inductive, or capacitive, reactive power can be added indepen-
dently, but does not have this property for nonsinu-
soidal voltage excitation.

V. CONCLUSION

A graphical-analytical tool has been presented for the cal-
culation of the instantaneous active and reactive powers in
nonlinear circuits from only terminal measurements. The tool
has full physical meaning since it is derived from the Poynting
Vector Theorem.
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The method first identifies the circuit components, , ,
and of the nonlinear system model (series or parallel). Then
the instantaneous active and reactive powers are com-
puted from basic electromagnetic principles. Last, the average
powers, and , are computed from integration of the instanta-
neous energy consumed and the energy that is stored and restored
based on Maxwell theory.
Four examples illustrate the application and virtues of the

identification method proposed in the paper.
This paper closes the theoretical gap in the power theory for

non-linear circuits by providing a physically consistent defini-
tion (in Maxwell terms) and a computation method for reactive
power.
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