

Block Permutations in Boolean Space to Minimize

TCAM for Packet Classification
Rihua Wei, Yang Xu and H. Jonathan Chao

Department of ECE, Polytechnic Institute of New York University

rwei01@students.poly.edu, {yangxu, chao}@poly.edu

Abstract—Packet classification is one of the major challenges in

designing high-speed routers and firewalls as it involves

sophisticated multi-dimensional searching. Ternary Content

Addressable Memory (TCAM) has been widely used to

implement packet classification thanks to its parallel search

capability and constant processing speed. However, TCAM-based

packet classification has the well-known range expansion

problem, resulting in a huge waste of TCAM entries. In this

paper, we propose a novel technique called Block Permutation

(BP) to compress the packet classification rules stored in TCAMs.

The compression is achieved by performing block-based

permutations on the rules represented in Boolean Space. We

develop an efficient heuristic approach to find the permutations

for compression and design its hardware implementation.

Experiments on ClassBench classifiers and ISP classifiers show

that the proposed BP technique can reduce TCAM entries by

53.99% on average.

Keywords-Packet Classification; TCAM; Range Expansion;

Classifier Minimization; Logic Optimization

I. INTRODUCTION

 Packet classification has been used as a basic building

block in many network applications such as quality of service

(QoS), flow-based routing, firewalls, and network address

translation (NAT) [1][2]. In packet classification, information

is extracted from the packet header and compared against a

classifier consisting of a list of rules. Once an incoming packet

matches some rules, it will be processed based on the action

associated with the highest-priority matched rule.

Table 1 A Sample Packet Classifier

 Table 1 gives a sample classifier with three rules, in which

each rule specifies a pattern with five fields (i.e., source IP and

destination IP (prefixes), source port and destination port

(ranges), and protocol type). From the geometric point of view,

each rule can be viewed as a hyper-rectangle (also called a

block) in the 104-dimensional Boolean Space corresponding

to the 104 bits in the five fields.

 Ternary Content Addressable Memories (TCAMs) have

been widely used to implement packet classification because

of its parallel search capability and constant processing speed.

A TCAM has a massive array of entries [3], in which each bit

can be represented in either ‘0’, ‘1’, or ‘*’ (don’t-care). Before

a rule can be stored in TCAMs, its range fields have to be

converted to prefixes. For example, Rule r2 in Table 1

requires only one TCAM entry since it contains only prefix

fields. But for Rule r1, both the source port and destination

port contain a range [1, 5]. So both of them needs to be

expanded to three prefixes, i.e., “001”, “01*”, “10*”. The

combination of the prefix specifications of the two ranges will

consume 3 × 3 = 9 TCAM entries, causing the well-known

range expansion problem1 . Because TCAMs are expensive

and power-hungry, the range expansion problem increases the

already high implementation cost of TCAMs.

 Thus, it is very important to reduce the TCAM entries that

are required to represent a classifier. Previous work in this

field can be classified into three categories: TCAM Hardware

Improvement [4], Range Encoding [5][6][7][12][13] and

Classifier Compression [8][9][10][11][14]. In this paper, we

propose a new classifier compression technique called Block

Permutation (BP), which is motivated by our observation that

the existing schemes perform badly under some circumstances.

Our contributions are summarized as follows:

(1) The existing classifier compression schemes normally

find semantically equivalent but smaller TCAM

representations for the packet classifiers. In contrast,

the BP technique reduces TCAM entries by

converting the original classifiers to a smaller space

but unnecessarily equivalent to the TCAM

representations.
(2) We propose an efficient heuristic approach to find

permutations to compress classifiers and develop the

FPGA-based hardware implementation scheme.

 The rest of this paper is organized as follows. Section II

reviews the related work. Section III summarizes the problem

in previous works and introduces our motivation as well as the

BP technique. Section IV defines terms and concepts. Section

V proposes a heuristic solution to compress classifiers. Section

VI analyzes the hardware implementation of packet

classification based on BP. Section VII presents the simulation

results. Finally, section VIII concludes the paper. Due to the

space limit, more details about the BP are presented in [19].

II. RELATED WORK

 Previously-proposed schemes on classifier compression

share a common objective that is to find a smaller semantically

equivalent classifier for a given classifier by taking advantage

of two properties:

1 Hereafter, we assume that all the classifiers used in the examples

have been already expanded to prefixes, and no longer contain ranges.

1) Action-Oriented. In packet classification, we can

modify a classifier as long as the modification doesn’t change

the action returned by the classification operation.

2) First-Matching. If multiple rules match the given

packet, TCAMs natively only return the first matched rule.

 Based on these properties, Dong et. al. in [10] proposed

four simple heuristic algorithms called Trimming, Expanding,

Adding and Merging. Liu et. al. proposed an algorithm based

on Firewall Decision Diagram [11]. Meiner et. al. proposed

Topological Transformation Approach [12].

 Actually, [10] [11] [12] are all field-level schemes, which

only focus on each field and fail to explore the compression

across different fields. In viewing this, McGeer et. al.

proposed a bit-level solution in their work [14] which can

yield a higher compression. In this solution, the classifier

compression problem is treated as a special logic optimization

problem with 104 variables, where each rule in the classifier

represents a product of several variables. Therefore, the

existing logic optimization techniques can be applied to

compress classifiers. Moreover, with the first-matching

property of TCAM, the compression can be even better [14].

 In this paper, we propose the BP technique, which can

achieve significantly higher compression rates compared to

McGeer’s algorithm. For convenience, in the rest of the paper,

all rules in the examples consist of only 4 bits, which are

denoted by W, X, Y and Z, respectively. We always assume

that the default order of bits is WXYZ. So, denotation like

Point “0000(WXYZ)” will be simplified to “0000”.

III. MOTIVATION

A. Rule-Distribution

Figure 1 Typical Rule Distributions (a) Dense (b) Sparse

 As we have stated earlier, the recent progress [14] on

classifier compression is achieved by logic optimization and

the first-matching property. These two methods work well for

the rule distribution like Figure 1 (a) where rule elements

associated with the same action are “densely” populated (here,

a rule element is the smallest unit, i.e., a point, in the Boolean

Space), but perform badly in “sparse” rule distribution like

Figure 1 (b). This observation motivates us to develop the BP

technique to convert sparse rule distributions to dense rule

distributions before applying the logic optimization and the

first-matching property for compression.

B. Block Permutation (BP)

 We use a simple example in Figure 2 to demonstrate the

main idea of BP. In the example, BP compresses the sparsely-

distributed Original Classifier by two simple permutations. In

the first permutation, we switch Column “01” and Column “11”

in the Original Table. In the second permutation, we switch

Row “10” and Row “11” in Table 1. Then by applying logic

optimization on Table 2, the original five rules are merged into

two rules.

 Corresponding to these two permutations, we need to

apply two transformations on incoming packets before

performing the packet classification operation on TCAMs. In

the first transformation, if the WX bits of the packet header are

“01” (or “11”), we change them to “11” (or “01”); otherwise,

we keep the WX bits unchanged. This transformation and its

corresponding permutation is denoted as “01--<>11--” (or

“01<>11@WX”). In the second transformation, “--10<>--11”

is performed. Obviously, by using the transformed packets to

lookup Classifier 2, we can get the same actions as we use the

original packets to search the Original Classifier.

 Based on this idea, the implementation architecture of BP

consists of two modules. Packets should be first processed by

a Transformation Module and then fed into a TCAM Module

that stores the compressed classifier. For this scheme, we need

to consider the following issues:

1) Processing Speed. To ensure a high performance, the

transformation module should be implemented by hardware.

2) Overhead. While BP can reduce the TCAM size, the

transformation module does introduce overhead. Fortunately,

the overhead is much smaller than the TCAM resource saved

(as we will see in Section VII). It is improtant to point out that

switching small blocks causes more overhead than switching

big blocks. For example, in the second permuation of Figure 2,

if we perform “0-10<>0-11”, the overhead required for the

corresponding transformation will be higher. So, we should

switch blocks which are as large as possible when doing the

permutation operations.

3) Programmability. Because the classifier may require

updates from time to time, programmability is another concern.

The classifiers usually do not need very frequent updates,

normally once every day or several days [18]. We suggest use

FPGA to implement the transformation module to achieve the

programmability.

IV. TERMS AND CONCEPTS

 Before introducing the algorithm of BP, we first define

several terms and concepts below.

1) Block Size: The size of a block is defined as the number

of points that are contained in the block. For example, the size

of the block “0**1” in Table 2 of Figure 2 is 4. The block size

can also be represented by the number of wildcard ‘*’ in the

Boolean representation. The more wildcards there are, the

larger the block is.

2) Distance: The distance of two blocks (or points) in

Boolean Space is defined as the number of different non-‘*’

counterpart bits in their Boolean representations. For example,

to calculate the distance between “0*01” and “**00”, we first

ignore W bit and X bit because these positions contain ‘*’,

then find only one different bit, i.e. Z, so the distance is 1.

Figure 2 A Simple Example of the BP Technique

3) Direction: If the Boolean representations of two blocks

have wildcards that all appear in the same positions, we say

these two blocks are in the same direction. For example, “0*01”

and “0*10” are in the same direction, while “0*01” and “*010”

are not. Any two points, i.e. no wildcard in their Boolean

representations, are always treated as in the same direction.

4) Merge and Permutation: Merge and Permutation are

the two basic operations to manipulate blocks in Boolean

Space. Only when two blocks meet all the conditions listed in

Figure 3, can we perform the corresponding operation on them.

Please note that the condition of “Same action” means that all

points in the two blocks should be associated with the same

action (“deny” or “accept”).

Figure 3 Conditions of Merge and Permutation

5) Target Blocks and Assistant Blocks: In a permutation,

we switch two Assistant Blocks to merge two Target Blocks

(the target blocks need to meet the conditions of Permutation

in Figure 3). For example, in Table 1 of Figure 2, “0*01” and

“0*10” is a pair of target blocks (denoted as “B6B7(YZ)”). To

merge them, we perform permutation “--10<>--11” over the

assistant blocks “**10” and “**11”. In this example, we

denote the permutation as “--10<>--11” or “10<>11@YZ”.

Generally, if the assistant blocks are “∗ ⋯ ∗ a�	 ⋯ a�
b�	 ⋯ b�
”

and “ ∗ ⋯ ∗ a�	 ⋯ a�
b�	���� ⋯ b�
���� ”, then the permutation is

“ a�	 ⋯ a�
b�	 ⋯ b�
 <> a�	 ⋯ a�
b�	����� ⋯ b�
����@X�	 ⋯ X�
X�	 ⋯ X�
 ”,

where X�	 , ⋯ , X�
 and X�	, ⋯ , X�
 are the positions of the non-

wildcard bits in the Boolean representations of the assistant

blocks. Apparently, a pair of assistant blocks specifies a

permutation. Normally, to merge two target blocks, there

might be multiple pairs of assistant blocks as options. To

reduce the overhead, it is wise to choose large assistant blocks.

V. CLASSIFIER COMPRESSION

 In this section, we propose the algorithm of BP in Figure 4

to compress classifiers. There are two phases in the algorithm:

the preprocess phase and the permutation phase. In the

preprocess phase, we apply logic optimization on the original

classifier to group adjacent rule elements together. This is to

reduce the rule number involved in the permutation phase and

hence reduce the computation complexity. To lower the

overhead, in the permutation phase, we recursively search

permutations by checking assistant blocks from the size of

large to small. If the allowed maximum iteration (indicated by

Nr) has been reached, or we can’t find a valid permutation in

the current round of iteration, the program will be terminated.

Figure 4 Procedure for BP Algorithm

As listed in Figure 4, there are three steps in each round of

iteration in the permutation phase, such as FIND_TARGET

(Find Targets), EVAL_PERM (Evaluate Permutations) and

EXEC_PERM (Execute a Permutation). And there is a

parameter Wp specifies the expected assistant block size and

can be used to reduce the computation complexity by applying

the following properties, which disclose the relationship

between assistant blocks and target blocks.

Property 1: The size of the assistant block cannot be

smaller than the size of the corresponding target block.

 For example, in Table 1 of Figure 2, the assistant block

“**10” covers the target block “0*10”. So the assistant block

size is not less than the target block size. Assuming the size of

the assistant block is Wp wildcards and the size of the target

block is Wt wildcards, then we have (1):

 �� ≥ �� (1)

Property 2: The size of the assistant block cannot be larger

than the number of bits in a rule minus the distance between

the two corresponding target blocks.

Generally, assuming that a rule has L bits, the distance of

the two target blocks is D and the size of each assistant block

is Wp wildcards, we have (2) (please refer to [19] for proof):

 �� ≤ (� − �) (2)

1) FIND_TARGET

 In this step, we don’t need to find out all target block pairs,

but just those that meet all the permutation conditions listed in

Figure 3 and satisfy (1) and (2) with the expected assistant

block size Wp of the current iteration.

2) EVAL_PERM

 In this step, we have two tasks. One is to search all

possible permutations for the target block pairs that we have

obtained in the previous step. The other is to determine if these

permutations are worth to be executed and find out the “best”

permutation that can yield the largest gain (gain is the

compression minus the overhead).

Figure 5 An Example for Finding Permutations for a Pair of Target Blocks

 The way to find a permutation for two target blocks is by

checking their Boolean representations. Here is an example in

Figure 5. Let us consider the two target blocks “B1B2(XYZ)”.

To merge these target blocks, a possible permutation should

reduce their distance from 3 to 1. According to (1) and (2), the

assistant block size Wpt for these target blocks can be Wpt=1

or Wpt=0. Then by fixing one bit to be unchanged and

inverting the other bits, we can list all possible permutations

(please refer to [19] for more details).

 After we find out all possible permutations for a given

target, we need to select the “best” one to execute. There are

two situations that we need to consider when evaluating

permutations. First, one permutation may merge multiple pairs

of target blocks. Second, although a permutation can merge

target blocks, it might also break some existing blocks, which

introduces new blocks. So, the actual compression achieved by

a permutation is the number of blocks reduced minus the

number of new blocks introduced. If the new blocks are more

than the eliminated blocks, then the permutation is considered

invalid (please refer to [19] for more details).

3) EXEC_PERM

 In this step, we execute the permutation selected in the

previous step to merge the target blocks. Consider table 1 in

Figure 2. After executing the permutation “--10<>--11”, B7

“0*10” is changed to “0*11” and then merged with B6 “0*01”,

resulting a big block B8 “0**1”.

VI. TRANSFORMATION IMPLEMENTATION

 As we have explained, if the classifier has been

compressed by executing a series of permutations, we need to

apply a series of corresponding transformations on the

incoming packets. Generally, if we execute the permutation

“ a�	 ⋯ a�
b�	 ⋯ b�
 <> a�	 ⋯ a�
b�	����� ⋯ b�
����@X�	 ⋯ X�
X�	 ⋯ X�
 ”

(see section IV for the definition) in an n-dimension Boolean

Space, then the X�	, ⋯ , X�
 bit of the incoming packets need to

be transformed. Assuming that the original values of X�	 , ⋯ , X�
 are x�	, ⋯ , x�
 respectively, we can calculate their

new values after a transformation by the following equations:

 !"	# = !"	 ∙ % + !"	 ∙ % ⋮ !"(# = !"(∙ % + !"(∙ % (3)
 Where, if X�	 ⋯ X�
 = a�	 ⋯ a�
 and X�	 ⋯ X�
 = b�	 ⋯ b�

or b�	���� ⋯ b�
����, then % = 1; Otherwise, % = 0.

 Based on (3), we can design circuit on FPGA to implement

the transformations. Intuitively, we can use the Pipeline

Structure to implement a series of transformations. If there are

N transformations, we can design an N-stage pipeline. Or we

can design a 1-stage pipeline by merging all transformations

together. N-stage structure can run at high speed but consumes

large hardware resource. 1-stage structure costs less, but the

only stage will inevitably become very complicated thus suffer

from low speed. Considering the pros and cons of two

structures, we propose a solution called Stage-Grouping in

Figure 6 to achieve the tradeoff between the speed and the cost.

Figure 6 Algorithm of Stage-Grouping

 Figure 6 shows the proposed algorithm of stage-grouping.

The stage-grouping starts from a 1-stage pipeline. In other

words, we first merge all transformations into a single stage

and synthesize it to estimate the clock rate performance. If the

estimated clock rate is faster than the targeted clock rate, the

obtained pipeline will be accepted and the stage-grouping will

ends. Otherwise, we will split the stage as evenly as possible

into two sub-stages, then construct and synthesize a new 2-

stage pipeline. If there are multiple stages, we will split the

worst-performance one. So on and so forth, we can finally get

a well-balanced structure. The way to evenly split a stage is by

checking the assistant block sizes of all permutations

encapsulated. For example, if a stage incorporates + (+ > 1)

consecutive permutations whose assistant block sizes are m	, ⋯ , m� respectively, we need to find the � (1 ≤ � < +) ,

such that ∑ ./(/0	 and ∑ ./"/0((1) are as close as possible.

VII. EXPERIMENTS

 Our experiments are based on seven artificial classifiers

generated by ClassBench [16] and one real-life firewall classi-

Table 2 Classifier Statistics and Results from BP Compression Experiments

Entries Gate Count CFs Registers Gate Count Stages Clock Rate

acl-1 187 357 1.91 50 14.01% 139 38.94% 189 52.94% 79 139 72280 2346 1560 16398 22.69% 15 114.53

acl-2 217 271 1.25 1 0.37% 154 56.83% 155 57.20% 134 154 80080 4389 1872 24399 30.47% 18 101.36

acl-3 221 312 1.41 3 0.96% 66 21.15% 69 22.12% 57 66 34320 1335 936 9621 28.03% 9 118.12

fw-1 60 115 1.92 69 60.00% 12 10.43% 81 70.43% 7 12 6240 69 104 831 13.32% 1 395.57

fw-2 132 277 2.10 173 62.45% 23 8.30% 196 70.76% 13 23 11960 50 208 1398 11.69% 2 216.59

ipc-1 202 584 2.89 14 2.40% 237 40.58% 251 42.98% 101 237 123240 2813 1768 19047 15.46% 17 114.29

ipc-2 207 538 2.60 0 0.00% 326 60.59% 326 60.59% 121 326 169520 3469 1768 21015 12.40% 17 101.36

Real-life firewall-1 660 807 1.22 295 36.56% 148 18.34% 443 54.89% 59 148 76960 967 832 7893 10.26% 8 109.19

Avg. 235.75 407.63 1.91 75.63 22.09% 138.13 31.90% 213.75 53.99% 71.38 138.13 71825 1929.75 1131 12575.3 18.04% 10.88 158.88

Total

Comp.

Comp.

Rate
of Perms

TCAM saved FPGA consumed
Ratio

Pipeline

Class-

Bench

Source Classifier

Statistics Classifier Compression FPGA Implementation

Rules Prefixes Rate
Preprocess

Comp.

Comp.

Rate

 BP

Comp.

Comp.

Rate

fier obtained from ISP. The sizes of eight classifiers vary from

60 rules to 660 rules. The average prefix expansion ratio is

1.91. For classifier compression process, in the preprocess

phase, we use the Espresso algorithm [15] to do logic

optimization. In BP phase, we set 23 = 150, �.5! = 102, �.78 = 54 and run the program on a Linux workstation

driven by Intel 2.0GHz E5335 CPUs.

 The results of our experiments are presented in Table 2. On

average, the BP technique can reduce prefixes by 53.99%,

among which the preprocess phase contributes 22.09% and the

permutation phase contributes 31.90%. For the IPC classifiers,

while the permutation phase can save 50.59% prefixes on

average, the preprocess phase can barely give any compression.

This is because the rule distributions of IPC classifiers are

very “sparse”, so logic optimization in preprocess phase works

poorly. This is what motivated our research on the BP

technique. For the very “dense” FW classifiers, permutation

phase can still contribute 9.37% compression. For those rule

distributions between “dense” and “sparse”, like ACL

classifiers and the real-life classifier, the permutation phase

can give significant compression.

In FPGA implementation process, we set the targeted

throughput to 100M packets per second and implemented the

transformations on Altera Cyclone III FPGA by using the

Quartus II synthesis tool. To estimate the hardware resource

saved by using BP technique (TCAM entries reduced minus

FPGA resource consumed), we used the concept of

“Equivalent Gate Count”. From the TCAM chip ICFWTNM1

[17], we can estimate that the implementation of one TCAM

bit requires about 20 transistors. Because a standard 2-input

NAND gate consists of 4 transistors, we have (4): :;<= >5�? ;@A8� = # CD EF(G/EH ×	IJ K/(H ×LI (GMFH/H(CGHJ (GMFH/H(CGH (4)

The Altera FPGA resource consumption is reported in

Combinational Functions (CFs) and Registers. We calculate

the FPGA gate count using (5):

 %N>< >5�? ;@A8� = # @O ;%P × 3 + # @O Q?R7P�?3P × 6 (5)

Experiments show that the average gate count of FPGA

consumption is only 18.04% of that of TCAM saved.

 In the experiments, the average run-time of compression

processes is 15.007 minutes. A classifier with more prefixes

and a higher compression ratio requires a longer run-time. For

FPGA implementation, the average run time for the synthesis

is 20.75 minutes. More pipeline stages require more run-time.

VIII. CONCLUSION

 In this paper, we propose a new technique called Block

Permutation (BP) to reduce the number of TCAM entries

required to represent a classifier. The BP technique

significantly improves the compression under the

circumstances that direct logic optimization and the first-

matching property perform poorly. The improvement is

achieved by using a series of permutations to change the rule

distribution in Boolean Space. The proposed BP is a new

technique for logic optimization. It is not limited to packet

classification and TCAM, but can also be applied to other

hardware implementation-based applications.

REFERENCES

[1] D.E. Taylor, “Survey and taxonomy of packet classification
techniques,” ACM Computer Surverys, pp. 238–275, 2005.

[2] Y. Xu, Z. Liu, Z. Zhang, H. J. Chao, “An Ultra High Throughput and
Memory Efficient Pipeline Architecture for Multi-Match Packet
Classification without TCAMs”, ACM/IEEE ANCS, 2009.

[3] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE
Journal of Solid-State Circuits, vol. 41, no. 3, pp. 712–727, Mar 2006.

[4] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification using
extended tcams,” IEEE ICNP, 2003.

[5] A. Bremler-Barr and D. Hendler, "Space-Efficient TCAM-based
Classification Using Gray Coding," in IEEE INFOCOM, 2007.

[6] A. Bremler-Barr, D. Hay and D. Hendler, "Layered Interval Codes for
TCAM-based Classification," in IEEE INFOCOM, 2009.

[7] M. Bando, N. S. Artan, R. Wei, X. Guo and H. J. Chao, "Range Hash
for Regular Expression Pre-Filtering," ACM/IEEE ANCS, 2010.

[8] R. Draves, C. King, S. Venkatachary, and B. Zill, “Constructing
optimal IP routing tables,” in Proceedings of IEEE INFOCOM, 1999.

[9] S. Suri, T. Sandholm, and P, “Warkhede. Compressing two-
dimensional routing tables,” Algorithmica, 35:287–300, 2003.

[10] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla, “Packet
classifiers in ternary CAMs can be smaller,” in SIGMETRICS, 2006.

[11] A. X. Liu, E. Torng, and C. Meiners, “Firewall compressor: An
algorithm for minimizing firewall policies,” in INFOCOM, 2008.

[12] C. R. Meiners, A. X. Liu and E. Torng, “Topological Transformation
Approaches to Optimizing TCAM-Based Packet Classification
Systems,” in SIGMETRICS, 2009.

[13] O. Rottenstreich and I. Keslassy, “Worst-Case TCAM Rule
Expansion,” in IEEE INFOCOM, 2010.

[14] R. McGeer and P. Yalagandula, “Minimizing Classifiers for TCAM
Implementation,” in IEEE INFOCOM, 2009.

[15] http://en.wikipedia.org/wiki/Espresso_heuristic_logic_minimizer

[16] http://www.arl.wustl.edu/∼det3/ClassBench/index.htm

[17] http://www.ece.uwaterloo.ca/~cdr/www/chip.html

[18] http://www.snort.org

[19] http://eeweb.poly.edu/chao/publications/TechReports.html

