
 

Block Permutations in Boolean Space to Minimize 

TCAM for Packet Classification 
Rihua Wei, Yang Xu and H. Jonathan Chao 

Department of ECE, Polytechnic Institute of New York University 

rwei01@students.poly.edu, {yangxu, chao}@poly.edu 

 

Abstract—Packet classification is one of the major challenges in 

designing high-speed routers and firewalls as it involves 

sophisticated multi-dimensional searching. Ternary Content 

Addressable Memory (TCAM) has been widely used to 

implement packet classification thanks to its parallel search 

capability and constant processing speed. However, TCAM-based 

packet classification has the well-known range expansion 

problem, resulting in a huge waste of TCAM entries. In this 

paper, we propose a novel technique called Block Permutation 

(BP) to compress the packet classification rules stored in TCAMs. 

The compression is achieved by performing block-based 

permutations on the rules represented in Boolean Space. We 

develop an efficient heuristic approach to find the permutations 

for compression and design its hardware implementation. 

Experiments on ClassBench classifiers and ISP classifiers show 

that the proposed BP technique can reduce TCAM entries by 

53.99% on average.  

Keywords-Packet Classification; TCAM; Range Expansion; 

Classifier Minimization; Logic Optimization 

I.     INTRODUCTION 

 Packet classification has been used as a basic building 

block in many network applications such as quality of service 

(QoS), flow-based routing, firewalls, and network address 

translation (NAT) [1][2]. In packet classification, information 

is extracted from the packet header and compared against a 

classifier consisting of a list of rules. Once an incoming packet 

matches some rules, it will be processed based on the action 

associated with the highest-priority matched rule. 

Table 1 A Sample Packet Classifier 

 

 Table 1 gives a sample classifier with three rules, in which 

each rule specifies a pattern with five fields (i.e., source IP and 

destination IP (prefixes), source port and destination port 

(ranges), and protocol type). From the geometric point of view, 

each rule can be viewed as a hyper-rectangle (also called a 

block) in the 104-dimensional Boolean Space corresponding 

to the 104 bits in the five fields.  

 Ternary Content Addressable Memories (TCAMs) have 

been widely used to implement packet classification because 

of its parallel search capability and constant processing speed. 

A TCAM has a massive array of entries [3], in which each bit 

can be represented in either ‘0’, ‘1’, or ‘*’ (don’t-care). Before 

a rule can be stored in TCAMs, its range fields have to be 

converted to prefixes. For example, Rule r2 in Table 1 

requires only one TCAM entry since it contains only prefix 

fields. But for Rule r1, both the source port and destination 

port contain a range [1, 5]. So both of them needs to be 

expanded to three prefixes, i.e., “001”, “01*”, “10*”. The 

combination of the prefix specifications of the two ranges will 

consume 3 × 3 = 9  TCAM entries, causing the well-known 

range expansion problem1 . Because TCAMs are expensive 

and power-hungry, the range expansion problem increases the 

already high implementation cost of TCAMs. 

 Thus, it is very important to reduce the TCAM entries that 

are required to represent a classifier. Previous work in this 

field can be classified into three categories: TCAM Hardware 

Improvement [4], Range Encoding [5][6][7][12][13] and 

Classifier Compression [8][9][10][11][14]. In this paper, we 

propose a new classifier compression technique called Block 

Permutation (BP), which is motivated by our observation that 

the existing schemes perform badly under some circumstances. 

Our contributions are summarized as follows:  

(1) The existing classifier compression schemes normally 

find semantically equivalent but smaller TCAM 

representations for the packet classifiers. In contrast, 

the BP technique reduces TCAM entries by 

converting the original classifiers to a smaller space 

but unnecessarily equivalent to the TCAM 

representations.  
(2) We propose an efficient heuristic approach to find 

permutations to compress classifiers and develop the 

FPGA-based hardware implementation scheme. 

 The rest of this paper is organized as follows. Section II 

reviews the related work. Section III summarizes the problem 

in previous works and introduces our motivation as well as the 

BP technique. Section IV defines terms and concepts. Section 

V proposes a heuristic solution to compress classifiers. Section 

VI analyzes the hardware implementation of packet 

classification based on BP. Section VII presents the simulation 

results. Finally, section VIII concludes the paper. Due to the 

space limit, more details about the BP are presented in [19]. 

II. RELATED WORK 

 Previously-proposed schemes on classifier compression 

share a common objective that is to find a smaller semantically 

equivalent classifier for a given classifier by taking advantage 

of two properties: 

                                                           
1 Hereafter, we assume that all the classifiers used in the examples 

have been already expanded to prefixes, and no longer contain ranges. 



 

1) Action-Oriented. In packet classification, we can 

modify a classifier as long as the modification doesn’t change 

the action returned by the classification operation.  

2) First-Matching. If multiple rules match the given 

packet, TCAMs natively only return the first matched rule.  

 Based on these properties, Dong et. al. in [10] proposed 

four simple heuristic algorithms called Trimming, Expanding, 

Adding and Merging. Liu et. al. proposed an algorithm based 

on Firewall Decision Diagram [11]. Meiner et. al. proposed 

Topological Transformation Approach [12].  

 Actually, [10] [11] [12] are all field-level schemes, which 

only focus on each field and fail to explore the compression 

across different fields. In viewing this, McGeer et. al. 

proposed a bit-level solution in their work [14] which can 

yield a higher compression. In this solution, the classifier 

compression problem is treated as a special logic optimization 

problem with 104 variables, where each rule in the classifier 

represents a product of several variables. Therefore, the 

existing logic optimization techniques can be applied to 

compress classifiers. Moreover, with the first-matching 

property of TCAM, the compression can be even better [14].  

 In this paper, we propose the BP technique, which can 

achieve significantly higher compression rates compared to 

McGeer’s algorithm. For convenience, in the rest of the paper, 

all rules in the examples consist of only 4 bits, which are 

denoted by W, X, Y and Z, respectively. We always assume 

that the default order of bits is WXYZ. So, denotation like 

Point “0000(WXYZ)” will be simplified to “0000”. 

III. MOTIVATION 

A.  Rule-Distribution 

 
Figure 1 Typical Rule Distributions (a) Dense (b) Sparse 

 As we have stated earlier, the recent progress [14] on 

classifier compression is achieved by logic optimization and 

the first-matching property. These two methods work well for 

the rule distribution like Figure 1 (a) where rule elements 

associated with the same action are “densely” populated (here, 

a rule element is the smallest unit, i.e., a point, in the Boolean 

Space), but perform badly in “sparse” rule distribution like 

Figure 1 (b). This observation motivates us to develop the BP 

technique to convert sparse rule distributions to dense rule 

distributions before applying the logic optimization and the 

first-matching property for compression. 

B. Block Permutation (BP) 

 We use a simple example in Figure 2 to demonstrate the 

main idea of BP. In the example, BP compresses the sparsely-

distributed Original Classifier by two simple permutations. In 

the first permutation, we switch Column “01” and Column “11” 

in the Original Table. In the second permutation, we switch 

Row “10” and Row “11” in Table 1. Then by applying logic 

optimization on Table 2, the original five rules are merged into 

two rules. 

 Corresponding to these two permutations, we need to 

apply two transformations on incoming packets before 

performing the packet classification operation on TCAMs. In 

the first transformation, if the WX bits of the packet header are 

“01” (or “11”), we change them to “11” (or “01”); otherwise, 

we keep the WX bits unchanged. This transformation and its 

corresponding permutation is denoted as “01--<>11--” (or 

“01<>11@WX”). In the second transformation, “--10<>--11” 

is performed. Obviously, by using the transformed packets to 

lookup Classifier 2, we can get the same actions as we use the 

original packets to search the Original Classifier.  

 Based on this idea, the implementation architecture of BP 

consists of two modules. Packets should be first processed by 

a Transformation Module and then fed into a TCAM Module 

that stores the compressed classifier. For this scheme, we need 

to consider the following issues: 

1) Processing Speed. To ensure a high performance, the 

transformation module should be implemented by hardware.  

2) Overhead. While BP can reduce the TCAM size, the 

transformation module does introduce overhead. Fortunately, 

the overhead is much smaller than the TCAM resource saved 

(as we will see in Section VII). It is improtant to point out that 

switching small blocks causes more overhead than switching 

big blocks. For example, in the second permuation of Figure 2, 

if we perform “0-10<>0-11”, the overhead required for the 

corresponding transformation will be higher. So, we should 

switch blocks which are as large as possible when doing the 

permutation operations. 

3) Programmability. Because the classifier may require 

updates from time to time, programmability is another concern. 

The classifiers usually do not need very frequent updates, 

normally once every day or several days [18]. We suggest use 

FPGA to implement the transformation module to achieve the 

programmability.  

IV. TERMS AND CONCEPTS 

 Before introducing the algorithm of BP, we first define 

several terms and concepts below. 

1) Block Size: The size of a block is defined as the number 

of points that are contained in the block. For example, the size 

of the block “0**1” in Table 2 of Figure 2 is 4. The block size 

can also be represented by the number of wildcard ‘*’ in the 

Boolean representation. The more wildcards there are, the 

larger the block is. 

2) Distance: The distance of two blocks (or points) in 

Boolean Space is defined as the number of different non-‘*’ 

counterpart bits in their Boolean representations. For example, 

to calculate the distance between “0*01” and “**00”, we first 

ignore W bit and X bit because these positions contain ‘*’, 

then find only one different bit, i.e. Z, so the distance is 1. 
 



 

 
Figure 2 A Simple Example of the BP Technique

3) Direction: If the Boolean representations of two blocks 

have wildcards that all appear in the same positions, we say 

these two blocks are in the same direction. For example, “0*01” 

and “0*10” are in the same direction, while “0*01” and “*010” 

are not. Any two points, i.e. no wildcard in their Boolean 

representations, are always treated as in the same direction. 

4) Merge and Permutation: Merge and Permutation are 

the two basic operations to manipulate blocks in Boolean 

Space. Only when two blocks meet all the conditions listed in 

Figure 3, can we perform the corresponding operation on them. 

Please note that the condition of “Same action” means that all 

points in the two blocks should be associated with the same 

action (“deny” or “accept”). 

 
Figure 3 Conditions of Merge and Permutation 

5) Target Blocks and Assistant Blocks: In a permutation, 

we switch two Assistant Blocks to merge two Target Blocks 

(the target blocks need to meet the conditions of Permutation 

in Figure 3). For example, in Table 1 of Figure 2, “0*01” and 

“0*10” is a pair of target blocks (denoted as “B6B7(YZ)”). To 

merge them, we perform permutation “--10<>--11” over the 

assistant blocks “**10” and “**11”. In this example, we 

denote the permutation as “--10<>--11” or “10<>11@YZ”. 

Generally, if the assistant blocks are “∗ ⋯ ∗ a�	 ⋯ a�
b�	 ⋯ b�
” 

and “ ∗ ⋯ ∗ a�	 ⋯ a�
b�	���� ⋯ b�
���� ”, then the permutation is 

“ a�	 ⋯ a�
b�	 ⋯ b�
 <> a�	 ⋯ a�
b�	����� ⋯ b�
����@X�	 ⋯ X�
X�	 ⋯ X�
 ”, 

where X�	 , ⋯ , X�
 and X�	, ⋯ , X�
 are the positions of the non-

wildcard bits in the Boolean representations of the assistant 

blocks. Apparently, a pair of assistant blocks specifies a 

permutation. Normally, to merge two target blocks, there 

might be multiple pairs of assistant blocks as options. To 

reduce the overhead, it is wise to choose large assistant blocks. 

V. CLASSIFIER COMPRESSION 

 In this section, we propose the algorithm of BP in Figure 4 

to compress classifiers. There are two phases in the algorithm: 

the preprocess phase and the permutation phase. In the 

preprocess phase, we apply logic optimization on the original 

classifier to group adjacent rule elements together. This is to 

reduce the rule number involved in the permutation phase and 

hence reduce the computation complexity. To lower the 

overhead, in the permutation phase, we recursively search 

permutations by checking assistant blocks from the size of 

large to small. If the allowed maximum iteration (indicated by 

Nr) has been reached, or we can’t find a valid permutation in 

the current round of iteration, the program will be terminated. 

 
Figure 4  Procedure for BP Algorithm 

As listed in Figure 4, there are three steps in each round of 

iteration in the permutation phase, such as FIND_TARGET 

(Find Targets), EVAL_PERM (Evaluate Permutations) and 

EXEC_PERM (Execute a Permutation). And there is a 

parameter Wp specifies the expected assistant block size and 

can be used to reduce the computation complexity by applying 

the following properties, which disclose the relationship 

between assistant blocks and target blocks.  

Property 1: The size of the assistant block cannot be 

smaller than the size of the corresponding target block. 

 For example, in Table 1 of Figure 2, the assistant block 

“**10” covers the target block “0*10”. So the assistant block 

size is not less than the target block size. Assuming the size of 

the assistant block is Wp wildcards and the size of the target 

block is Wt wildcards, then we have (1): 

                       �� ≥ ��                          (1) 

Property 2: The size of the assistant block cannot be larger 

than the number of bits in a rule minus the distance between 

the two corresponding target blocks. 

Generally, assuming that a rule has L bits, the distance of 

the two target blocks is D and the size of each assistant block 

is Wp wildcards, we have (2) (please refer to [19] for proof): 

         �� ≤ (� − �)                              (2) 



 

1) FIND_TARGET 

 In this step, we don’t need to find out all target block pairs, 

but just those that meet all the permutation conditions listed in 

Figure 3 and satisfy (1) and (2) with the expected assistant 

block size Wp of the current iteration.  

2) EVAL_PERM 

 In this step, we have two tasks. One is to search all 

possible permutations for the target block pairs that we have 

obtained in the previous step. The other is to determine if these 

permutations are worth to be executed and find out the “best” 

permutation that can yield the largest gain (gain is the 

compression minus the overhead). 

 
Figure 5 An Example for Finding Permutations for a Pair of Target Blocks 

 The way to find a permutation for two target blocks is by 

checking their Boolean representations. Here is an example in 

Figure 5. Let us consider the two target blocks “B1B2(XYZ)”. 

To merge these target blocks, a possible permutation should 

reduce their distance from 3 to 1. According to (1) and (2), the 

assistant block size Wpt for these target blocks can be Wpt=1 

or Wpt=0. Then by fixing one bit to be unchanged and 

inverting the other bits, we can list all possible permutations 

(please refer to [19] for more details).  

 After we find out all possible permutations for a given 

target, we need to select the “best” one to execute. There are 

two situations that we need to consider when evaluating 

permutations. First, one permutation may merge multiple pairs 

of target blocks. Second, although a permutation can merge 

target blocks, it might also break some existing blocks, which 

introduces new blocks. So, the actual compression achieved by 

a permutation is the number of blocks reduced minus the 

number of new blocks introduced. If the new blocks are more 

than the eliminated blocks, then the permutation is considered 

invalid (please refer to [19] for more details). 

3)  EXEC_PERM 

 In this step, we execute the permutation selected in the 

previous step to merge the target blocks. Consider table 1 in 

Figure 2. After executing the permutation “--10<>--11”, B7 

“0*10” is changed to “0*11” and then merged with B6 “0*01”, 

resulting a big block B8 “0**1”. 

VI. TRANSFORMATION IMPLEMENTATION 

 As we have explained, if the classifier has been 

compressed by executing a series of permutations, we need to 

apply a series of corresponding transformations on the 

incoming packets. Generally, if we execute the permutation 

“ a�	 ⋯ a�
b�	 ⋯ b�
 <> a�	 ⋯ a�
b�	����� ⋯ b�
����@X�	 ⋯ X�
X�	 ⋯ X�
 ” 

(see section IV for the definition) in an n-dimension Boolean 

Space, then the X�	, ⋯ , X�
 bit of the incoming packets need to 

be transformed. Assuming that the original values of X�	 , ⋯ , X�
 are x�	, ⋯ , x�
 respectively, we can calculate their 

new values after a transformation by the following equations: 

  !"	# = !"	 ∙ % + !"	 ∙ %                           ⋮                 !"(# = !"( ∙ % + !"( ∙ %                             (3) 
 Where, if X�	 ⋯ X�
 = a�	 ⋯ a�
 and X�	 ⋯ X�
 = b�	 ⋯ b�
 
or b�	���� ⋯ b�
����, then % = 1; Otherwise, % = 0.  

 Based on (3), we can design circuit on FPGA to implement 

the transformations. Intuitively, we can use the Pipeline 

Structure to implement a series of transformations. If there are 

N transformations, we can design an N-stage pipeline. Or we 

can design a 1-stage pipeline by merging all transformations 

together. N-stage structure can run at high speed but consumes 

large hardware resource. 1-stage structure costs less, but the 

only stage will inevitably become very complicated thus suffer 

from low speed. Considering the pros and cons of two 

structures, we propose a solution called Stage-Grouping in 

Figure 6 to achieve the tradeoff between the speed and the cost.  

 
Figure 6 Algorithm of Stage-Grouping 

 Figure 6 shows the proposed algorithm of stage-grouping. 

The stage-grouping starts from a 1-stage pipeline. In other 

words, we first merge all transformations into a single stage 

and synthesize it to estimate the clock rate performance. If the 

estimated clock rate is faster than the targeted clock rate, the 

obtained pipeline will be accepted and the stage-grouping will 

ends. Otherwise, we will split the stage as evenly as possible 

into two sub-stages, then construct and synthesize a new 2-

stage pipeline. If there are multiple stages, we will split the 

worst-performance one. So on and so forth, we can finally get 

a well-balanced structure. The way to evenly split a stage is by 

checking the assistant block sizes of all permutations 

encapsulated. For example, if a stage incorporates + (+ > 1) 

consecutive permutations whose assistant block sizes are m	, ⋯ , m�  respectively, we need to find the � (1 ≤ � < +) , 

such that ∑ ./(/0	  and ∑ ./"/0((1	)  are as close as possible.  

VII. EXPERIMENTS 

 Our experiments are based on seven artificial classifiers 

generated by ClassBench [16] and one real-life firewall classi- 



 

Table 2 Classifier Statistics and Results from BP Compression Experiments 

Entries Gate Count CFs Registers Gate Count Stages Clock Rate

acl-1 187 357 1.91 50 14.01% 139 38.94% 189 52.94% 79 139 72280 2346 1560 16398 22.69% 15 114.53

acl-2 217 271 1.25 1 0.37% 154 56.83% 155 57.20% 134 154 80080 4389 1872 24399 30.47% 18 101.36

acl-3 221 312 1.41 3 0.96% 66 21.15% 69 22.12% 57 66 34320 1335 936 9621 28.03% 9 118.12

fw-1 60 115 1.92 69 60.00% 12 10.43% 81 70.43% 7 12 6240 69 104 831 13.32% 1 395.57

fw-2 132 277 2.10 173 62.45% 23 8.30% 196 70.76% 13 23 11960 50 208 1398 11.69% 2 216.59

ipc-1 202 584 2.89 14 2.40% 237 40.58% 251 42.98% 101 237 123240 2813 1768 19047 15.46% 17 114.29

ipc-2 207 538 2.60 0 0.00% 326 60.59% 326 60.59% 121 326 169520 3469 1768 21015 12.40% 17 101.36

Real-life firewall-1 660 807 1.22 295 36.56% 148 18.34% 443 54.89% 59 148 76960 967 832 7893 10.26% 8 109.19

Avg. 235.75 407.63 1.91 75.63 22.09% 138.13 31.90% 213.75 53.99% 71.38 138.13 71825 1929.75 1131 12575.3 18.04% 10.88 158.88

Total

Comp.

Comp.

Rate
# of Perms

TCAM saved FPGA consumed
Ratio

Pipeline

Class-

Bench

Source Classifier

Statistics Classifier Compression FPGA Implementation

Rules Prefixes Rate
Preprocess

Comp.

Comp.

Rate

 BP

Comp.

Comp.

Rate

 

fier obtained from ISP. The sizes of eight classifiers vary from 

60 rules to 660 rules. The average prefix expansion ratio is 

1.91. For classifier compression process, in the preprocess 

phase, we use the Espresso algorithm [15] to do logic 

optimization. In BP phase, we set 23 = 150, �.5! = 102, �.78 = 54  and run the program on a Linux workstation 

driven by Intel 2.0GHz E5335 CPUs. 

 The results of our experiments are presented in Table 2. On 

average, the BP technique can reduce prefixes by 53.99%, 

among which the preprocess phase contributes 22.09% and the 

permutation phase contributes 31.90%. For the IPC classifiers, 

while the permutation phase can save 50.59% prefixes on 

average, the preprocess phase can barely give any compression. 

This is because the rule distributions of IPC classifiers are 

very “sparse”, so logic optimization in preprocess phase works 

poorly. This is what motivated our research on the BP 

technique. For the very “dense” FW classifiers, permutation 

phase can still contribute 9.37% compression. For those rule 

distributions between “dense” and “sparse”, like ACL 

classifiers and the real-life classifier, the permutation phase 

can give significant compression. 

In FPGA implementation process, we set the targeted 

throughput to 100M packets per second and implemented the 

transformations on Altera Cyclone III FPGA by using the 

Quartus II synthesis tool. To estimate the hardware resource 

saved by using BP technique (TCAM entries reduced minus 

FPGA resource consumed), we used the concept of 

“Equivalent Gate Count”. From the TCAM chip ICFWTNM1 

[17], we can estimate that the implementation of one TCAM 

bit requires about 20 transistors. Because a standard 2-input 

NAND gate consists of 4 transistors, we have (4):    :;<= >5�? ;@A8� =  # CD EF(G/EH ×	IJ K/(H ×LI (GMFH/H(CGHJ (GMFH/H(CGH    (4) 

The Altera FPGA resource consumption is reported in 

Combinational Functions (CFs) and Registers. We calculate 

the FPGA gate count using (5):  

    %N>< >5�? ;@A8� = # @O ;%P × 3 + # @O Q?R7P�?3P × 6   (5) 

Experiments show that the average gate count of FPGA 

consumption is only 18.04% of that of TCAM saved. 

 In the experiments, the average run-time of compression 

processes is 15.007 minutes. A classifier with more prefixes 

and a higher compression ratio requires a longer run-time. For 

FPGA implementation, the average run time for the synthesis 

is 20.75 minutes. More pipeline stages require more run-time.  

VIII. CONCLUSION  

 In this paper, we propose a new technique called Block 

Permutation (BP) to reduce the number of TCAM entries 

required to represent a classifier. The BP technique 

significantly improves the compression under the 

circumstances that direct logic optimization and the first-

matching property perform poorly. The improvement is 

achieved by using a series of permutations to change the rule 

distribution in Boolean Space. The proposed BP is a new 

technique for logic optimization. It is not limited to packet 

classification and TCAM, but can also be applied to other 

hardware implementation-based applications.  
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