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AGAINST PARTICLE/FIELD DUALITY: ASYMPTOTIC PARTICLE
STATES AND INTERPOLATING FIELDS IN INTERACTING QFT

(OR: WHO’S AFRAID OF HAAG’S THEOREM?)

ABSTRACT. This essay touches on a number of topics in philosophy of quantum field
theory from the point of view of the LSZ asymptotic approach to scattering theory. First,
particle/field duality is seen to be a property of free field theory and not of interacting QFT.
Second, it is demonstrated how LSZ side-steps the implications of Haag’s theorem. Finally,
a recent argument due to Redhead (1995), Malament (1996) and Arageorgis (1995) against
the concept of localized particle states is addressed. Briefly, the argument observes that
the Reeh–Schlieder theorem entails that correlations between spacelike separated vacuum
expectation values of local field operators are always present, and this, according to the
above authors, dictates against the notion of a localized particle state. I claim that this
moral is excessive and that a coherent notion of localized particles is given by the LSZ
approach. The underlying moral to be drawn from this analysis is that questions concerning
the ontology of interacting QFT cannot be appropriately addressed if one restricts oneself
to the free theory.

0. INTRODUCTION1

Quantum field theory (QFT) is arguably the best confirmed theory known
to physics. (Un)fortunately, it is beset with interpretational difficulties even
more perplexing than those of its cousin non-relativistic quantum mechan-
ics. Issues such as renormalizability, localizability, the notions of particle
and field, the nature of spacetime, and the natures of theory reduction and
unification are not only of interest to philosophers of QFT, but are also
at the crux of the central problem facing contemporary theoretical phys-
ics: that of consistently unifying general relativity and quantum theory.
In this essay I shall focus specifically on interpretational issues arising in
interacting QFT surrounding the notions of particle and field.

I indicate first and foremost how particle/field duality is not a viable
ontology for interacting QFT. In Section 1, I indicate how the duality
thesis (briefly, to every field there corresponds a particle and vice versa)
is motivated by the equivalence of the “particle” and “field” approaches to
the canonical quantization of free fields in Minkowski spacetime, and by
the complementarity of the “particle” and “field” operators in the resulting
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Fock space representation. In Sections 2 and 3, I indicate how interactions
are described by means of covariant perturbation theory, and how the no-
tion of an asymptotic particle state arises in this context. I also review the
conceptual difficulty for interacting QFT raised by Haag’s Theorem. In
Section 4, I indicate first how the LSZ formalism solves this problem, and
second how it provides us with an improved definition of an asymptotic
particle state and also with the notion of an interpolating field. In Sections
5 and 6, I indicate how the notions of asymptotic particle state and interpol-
ating field dictate against the particle/field duality thesis. I demonstrate (a)
For every asymptotic particle state, there corresponds an indefinite number
of interpolating fields; and (b) There are fields that admit no asymptotic
particle states. In Section 7, I draw some morals this analysis has for
particle interpretations of QFT, indicating in particular why we need not be
afraid of the Reeh–Schlieder theorem in this endeavor. Finally, in Section
8 I consider some objections to my use of asymptotic particle states and
interpolating fields in the duality thesis in particular, and in particle and
field interpretations of interacting QFT in general.

1. THE DUALITY THESIS

In the following, I shall use neutral scalar field theory as a simple example.
The extension to fields with arbitrary spin follows naturally.

In most expositions, one is presented with two equivalent ways of
constructing a local quantum field theory in Minkowski spacetime. The
first starts with Wigner’s definition of single-particle states as irreducible
representations of the Poincaré group IO(1, 3). A Fock spaceF is then
constructed, raising and lowering operatorsa†(p), a(p), are introduced,
and position-dependent local field operatorsϕ̂(x) are obtained as their
Fourier transforms (where the hat is used here solely to distinguish the
quantum case from the classical case). The alternative approach is to start
with the theory of a classical field, postulating the standard canonical
commutation relations (ccr) for the field variables and their conjugate mo-
menta, and then identifying the Fourier expansion coefficients of the fields
as raising and lowering operators on a Fock space. After this is done, one
finds that both Fock spaces are in fact identical. Schematically,

IO(1, 3)→ “particles”→ F → a†(p), a(p)−→
F.T.

ϕ̂(x) (local

quantum field)

(I)

ϕ(x) (classical field)−→
ccr

ϕ̂(x)−→
F.T.

a†(p), a(p) → F →
“particles”

(II)
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Some expositions construe the equivalence of the two approaches as indic-
ating the dual natures of the “particle” picture (Approach I) and the field
picture (Approach II) (see, e.g., Teller 1995, 113; Peskin and Schroeder
1995, 26; Baez, et al. 1992, 58–59). This duality is further motivated by
the complementarity in Fock space of the particle number operatorN =∫

dτpa†(p)a(p), and the field operator,ϕ(x) = ∫ dτp[a(p)+a†(p)]. Some
take this to indicate a particle/field duality analogous to particle/wave du-
ality in non-relativistic quantum mechanics. Dirac is often cited as giving
this view legitimacy:

. . . thedynamical system consisting of an assembly of similar bosons is equivalent to the
dynamical system consisting of a set of oscillators – the two systems are just the same
system looked at from two different points of view . . . . We have here one of the most
fundamental results of quantum mechanics, which enables a unification of the wave and
corpuscular theories of light to be effected. (Dirac 1947, 229)

These remarks lend themselves to two types of duality thesis. A strong
version claims that particle and field representations are dual in the sense of
being underdetermined by the theory. Either one is adequate in descriptions
of physical phenomena. This version can immediately be put to rest, for
there are types of physical phenomena that do not admit this democracy
of representation (optical phenomena requiring descriptions in terms of
coherent states, for example). A weaker notion of duality is encapsulated
in the following thesis:

Duality Thesis:To every particle, there corresponds a field; and, con-
versely, to every field, there corresponds a particle.

Such a thesis poses the question, What constitutes a particle/field?
Naively, taking a cue from free field theory, we can phrase the duality
thesis in terms of elementary particles and fields, where an elementary
particle is an irreducible representation of IO(1, 3), and an elementary
field for a theoryT is a local operator-valued distribution on the ap-
propriate Hilbert space that appears explicitly inT ’s Lagrangian.2 For
instance, in free Dirac–Maxwell theory, the Lagrangian density is given
by L = −1

4F
2
µν + ψ̄(iγ µDµ − m)ψ , whereψ is the elementary field

of the electron. The associated elementary particle can be represented by
the irreducible representation of IO(1, 3) for whichs = 1

2 andp2 = m2
e .

However, this picture breaks down once interactions are introduced. Due to
the persistence of interactions in field theory, single-particle states are hard
to isolate and can no longer be represented explicitly in terms of the mass-
energy spectrum of the theory they appear in. For instance, QED electrons
are off-shell(p2 6= m2) due to self-interactions, and quarks andW±, Z
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bosons do not appear in the spectrums of QCD and electro-weak theory,
respectively (due, respectively, to confinement and instability). Further-
more, the use of effective Lagrangians problematizes viewing fields that
appear in the Lagrangian as elementary. For instance, low-energy pion-
nucleon scattering can be described by means of an effective Lagrangian
in which appear pion and nucleon fields (Weinberg 1996, Chapter 19.5).
The presence of ghost fields in the Lagrangians of non-Abelian gauge field
theories also problematizes this view.

Instead of taking cues from free field theory in addressing such ontolo-
gical questions, I suggest looking at how the interacting theory is actually
formulated. I shall look specifically at the LSZ formalism3 and extract
from it notions of particle and field that are appropriate in the interacting
context. This is done in Section 4. I first motivate LSZ by considering
the standard perturbative approach to scattering theory, emphasizing the
problems due to the persistence of interactions and their relation to Haag’s
theorem. With the appropriate notions of particle and field in hand, I then
demonstrate in Sections 5 and 6 that the Duality Thesis is wrong, not be-
cause the notions of particle and field no longer make sense in interacting
field theory; but because the notions that do make sense dictate against the
thesis.

2. ASYMPTOTIC PARTICLE STATES AND THE S-MATRIX

At a purely qualitative level, scattering processes occur when some num-
ber, sayn, of particles, traveling freely a short time in the past (effectively
at t = −∞ for elementary particle time scales) collide with each other and
then separate. A short time after the collision (t = +∞), the system is in a
superposition of free states, each of which describes a possible end result of
the collision. The probability amplitudes for these results are given by the
S-matrix, and it is these amplitudes that are what are actually measured in
scattering experiments in the forms of scattering cross-sections and decay
rates.

In a bit more detail, the state of the system before and after the scatter-
ing event has occurred is represented by a multiparticle “in” (resp. “out”)
state|α〉as= |p1 . . . pn〉as, where each particle is labeled by its momentum
p (ignoring spin and additional quantum numbers for simplicity), and “as”
(i.e., “asymptotic”) denotes “in” or “out”. To localize such states, one
may construct them out of single-particle wave-packet states of the form
|p̃〉as =

∫
dτpg(p)|p〉as, where|p〉as is required to become a free, single-

particle state at asymptotic times, and the effect of integrating over the
Gaussian functiong(p) is to localize the state as a wave-packet. Expanding
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the states|α〉as in such a localized superposition and time-evolving them
by means of a HamiltonianH , one obtains (schematically),

e−iH t
∫

dαg(α)|α〉as=
∫

dαe−iEαtg(α)|α〉as(2.1)

(where dα denotes dτp1 . . . dτpn , etc.). To describe the scattering interac-
tion,H is split into a “free” partH0 and an interaction partV :H = H0+V .
This is done in such a way that the eigenstates|α〉 of H0 have the same
eigenvalues as the in/out states:H |α〉as = Eα|α〉as, andH0|α〉 = Eα|α〉.4
The requirement that the localized in/out states are asymptotically free can
then be written, using (2.1), as

e−iH t
∫

dαg(α)|α〉in/out −→
t→∓∞ e

−iH0t

∫
dαg(α)|α〉,(2.2)

or schematically as|α〉in/out = �(∓∞)|α〉, where�(t) ≡ eiHt e−iH0t . We
will see later that this definition of asymptotic particle states is flawed inso-
far as the Møller operators�(t) are ill-defined. For the moment, however,
I shall proceed in accord with the standard theory.

Elements of theS-matrixSβα are probability amplitudes for transitions
between in- and out-states:

Sβα ≡ out〈β|α〉in = 〈β|�†(+∞)�(−∞)|α〉(2.3)

≡ 〈β|U(+∞,−∞)|α〉,

whereU(t , t0) ≡ �†(t)�(t0) is referred to as the evolution operator. For
small interactionsV , it is given by the power series expansion,

U(t, t0) =
∞∑
n=0

((−i)n/n!)
∫ t

t0

dt1

∫ t

t0

dt2 . . .(2.4)

×
∫ t

t0

dtnT {VI (t1)VI (t2) . . . VI (tn)},

where VI(t) ≡ eiH0tV e−iH0t , and the time-order operatorT orders
the VI (t) terms by increasing timet . The S-matrix operatorS is now
identified with U(+∞, −∞) and represented schematically byS =
T {exp(−i ∫∞−∞ dtVI (t))}. In order to calculateS-matrix elements (2.3), an
explicit form for the in/out states remains to be had. The appropriate form
and its relation to the states|α〉 will be obtained in Section 4.
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3. COVARIANT PERTURBATION THEORY AND HAAG’ S THEOREM

In Section 4, I shall develop the LSZ formalism. This allowsS-
matrix elements (2.3) to be calculated from time-ordered vacuum ex-
pectation values of interacting local quantum fields,τ(x1, . . . , xn) =
〈�|T {φH(x1) . . . φH (xn)}|�〉, referred to hereafter asτ -functions. Suchτ -
functions involve interacting Heisenberg fieldsφH(x) and the interacting
vacuum state|�〉. One would like to express them in terms of the free fields
and vacuum state that appear in the non-interacting theory, since these are
easily manipulated. This is accomplished by the Gell-Mann/Low “magic
formula”. After a brief aside in Section 3.1, I present a development of
the magic formula in Section 3.2 and indicate how it runs afoul of Haag’s
theorem in Section 3.3. This will motivate the move to the LSZ formalism
and its attendant notions of asymptotic particle state and interpolating field.

3.1. The Persistence of Interactions

It turns out that the 2-point interactingτ -function 〈�|T {φH(x)φH (y)}|�〉
has a non-perturbative representation in terms of free field elements. It
is instructive to run over the basic notions involved, as they provide a
concrete manifestation of an essential feature of interacting QFT; namely,
the persistence of interactions. This feature is at the heart of the ma-
jor conceptual difficulties normally associated with the theory, including
renormalizability, Haag’s Theorem and the Reeh–Schlieder Theorem.
Non-perturbative techniques will also come in handy in clarifying the
definition of an asymptotic particle state in Section 4.2 below.

Recall that, in the free theory, Heisenberg field solutions to the Klein–
Gordon equation are given by,5

ϕHf (x) = eiHf tϕ(0, x)e−Hf t =
∫

dτp[a(p)e−ip·x+a†(p)eip·x].(3.1)

These act on the free vacuum|0〉, yielding, for instance, the single-particle
plane-wave function,〈0|ϕHf (x)|p〉 = e−ix·p. The time-ordered vacuum
expectation value of two such fields is the free Feynman propagator
−i〈0|T {ϕHf (x)ϕHf (y)}|0〉 ≡ 1F(x − y; m2) which gives the amplitude
for a particle of massm alone in the universe to propagate fromx to y. In
momentum space, this is given by,

−i
∫
d4xeip·(x−y)〈0|T {ϕHf (x)ϕHf (y)}|0〉(3.2)

= 1F(p) = 1

p2−m2+ iε .
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The position of the pole,p2 = m2, in 1F(p) gives the particle’s mass.
Note also that the residue of the pole is unity.

In the interacting theory, the momentum space interacting Feynman
propagator1̃F (p) can be written as,6

−i
∫
d4xeip·x〈�|T {φH(x)φH (0)}|�〉(3.3)

= Z

p2−m2
phy+ iε

+
∫ ∞
M2
n

dµ2ρ(µ2)
1

p2− µ2+ iε ,

whereZ = |〈�|φH (0)|p〉|2 is the field strength renormalization constant.
This should be compared with the free field case (3.2). The first term
on the right of (3.3) describes the contribution to1̃F (p) from the single
particle state|p〉with physical massp2 = m2

phy. The second term describes
additional contributions from the continuum of multiparticle states. (3.3)
essentially is a sum of propagation amplitudes for states created from the
vacuum byφH (0). It differs from the free theory (3.2) by the presence
of Z (which is unity in the free theory) and the multiparticle contribution
term. The existence of this term is a manifestation of the persistence of
interactions in field theory; the fact that interactions can never be turned
off. This entails not only that the field source interacts with itself (hence the
mass renormalization of footnote 4), but that it interacts with everything
else in the universe. The persistence of interactions is at the heart of the
foundational issues surrounding renormalization, Haag’s Theorem and the
Reeh–Schlieder Theorem. More will be said on the latter two issues below.

The constantZ is the residue of the pole in the single particle contribu-
tion to the 2-pointτ -function. The renormalized interacting field is given
by φr(x) = 1√

Z
φH (x) so that the residue of the pole of the single particle

propagator forφr(x) is unity, in keeping with the free theory. In general,
an interacting field is renormalized so that the single-particle contribution
to its propagator has the same behavior near its pole as the propagator of
a free field (i.e., the position of the pole is the physical massm2

phy and the
residue is unity).

For higher orderτ -functions, unfortunately, non-perturbative tech-
niques become intractable, and one is forced to resort to perturbation
theory, to which I now turn.

3.2. Covariant Perturbation Theory and the Magic Formula

Recall that the task is to express an interactingτ -function in terms of free
τ -functions; once this is done,S-matrix elements can then be calculated in
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terms of freeτ -functions. To begin, we require that the ground state|�〉 of
H , and the ground state|0〉 of H0, satisfyH |�〉 = E0|�〉 andH0|0〉 = 0.7

From solutionsϕ(t , x) of the free theory, one definesHeisenbergfields,
φH (x) = eiHtϕ(0, x)e−iH t ; and interaction fields, φI (x) = eiH0t ϕ(0,
x)e−iH0t . Both coincide with free fields at the reference timet = 0. The
interaction fields are given by (3.1) (insofar asH0 is naively taken to be
the free field HamiltonianHf ). The Heisenberg fields are then given by,

φH (x) = eiHt e−iH0tφI (x)e
iH0t e−iH t ≡ U†(t)φI (x)U(t),(3.4)

whereU(t) satisfiesU(t)U†(t) = 1 andU(t)U†(t0) = U(t, t0). U(t, t0)
has already appeared in Section 2 as the evolution operator between in/out
states (where�(t) = U†(t)).

It is now possible to transform an interactingτ -function into a free
τ -function. Consider then-point function 〈�|T {φH (x1) . . . φH (xn)}|�〉.
Using (3.4), the Heisenberg fields can be replaced with interaction fields,
yielding,

〈�|U†(τ )T {φI (x1) . . . φI (xn)(3.5)

× exp(−i∫ τ−τdtVI (t))}U(−τ)|�〉.
The interacting ground state|�〉 can be written in terms of the free ground
state|0〉 via:

|�〉 = lim
τ→∞(e

−iE0(t0−(−τ )〈�|0〉)−1U(t0,−τ)|0〉(3.6)

(for details see, e.g., Peskin and Schroeder 1995, 86). After a bit of
algebra one obtains the Gell-Mann/Low “magic” formula for covariant
perturbation theory:8

〈�|T {φH (x1) . . . φH (xn)}|�〉(3.7)

= lim
τ→∞
〈0|T {φI (x1) . . . φI (xn)exp(−i ∫ τ−τ dtVI (t))}|0〉

〈0|T {exp(−i ∫ τ−τ dtVI (t))}|0〉 .

The calculation of interactingτ -functions has now been reduced to the
calculation of freeτ -functions. The latter are easily calculated using the
form (3.1). (Wick’s Theorem relating time-ordered products to normal-
ordered products and contractions of fields, is employed at this stage to
simplify the calculations.)
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3.3. Haag’s Theorem

I now consider the ramifications Haag’s theorem has for the perturbative
expansion (3.7). After Arageorgis (1995, 119), the former amounts to two
results:9

1. If two pure ground states are not equal, then they generate unitarily
inequivalent irreducible representations.

2. If two local quantum fields are unitarily equivalent at any given time,
then both fields are free if one of them is free.

Result (1) indicates that the overlap〈0|�〉 of the free ground state and the
interacting ground state is incompatible with the existence of the unitary
operatorU(t, t0). If we allow that 〈0|�〉 6= 0, then, by Result (1), the
interaction picture defined by (3.4) does not in fact exist. On the other
hand, if we allow (3.4), then by the contrapositive of (1), the ground states
must be equal, hence there is no overlap:〈0|�〉 = 0. This entails that the
Gell-Mann/Low magic formula (3.7) contains cancellations of infinity.

There is another place where infinities occur in the magic formula due
to Haag’s theorem. Note that the interacting fieldsφH (x) in (3.7) should
be replaced with renormalized fieldsφr(x) = 1√

Z
φH (x), as indicated in

Section 3.1. However, by Haag’s theorem,Z = |〈�|φH (0)|p〉|2 = 0, since
the overlap〈�|φH (0)|p〉must be zero (being the overlap of two elements,
〈�|φH (0) and |p〉, of different Hilbert spaces). Hence the renormalized
fieldsφr(x) = 1√

Z
φH (x) are singular.

Haag’s theorem presents us with two types of problem. One focuses
on concerns over mathematical consistency in dealing with infinities. The
other involves concerns over conceptual coherence and can be identified in
particular with the apparent incoherence of using the interaction picture
in a situation in which its use dictates its non-existence. The first type
of problem I believe is not too interesting. Renormalization techniques
are a dime a dozen. In particular, the infinite phase factor relating|�〉
to |0〉 in (3.6) was canceled at the expense of introducing the divergent
term in the denominator of (3.7). This latter represents vacuum-to-vacuum
transitions, or bubble graphs, in the language of Feynman diagrams; and
these “cancel” similar bubble graphs generated in the numerator. The up-
shot is that, heuristically, in the perturbative expansion, only non-bubble
graphs need to be calculated. Also, the infinities associated with the integ-
rals defining the mass and field strength renormalization constants,Z and
δm2, can be handled by imposing an ultraviolet cut-off, or by using one of
several other regularization techniques (such as Pauli-Villars, dimensional
regularization, etc.). I submit therefore that if Haag’s theorem is indeed a
foundational problem for interacting QFT, it must be in the second concep-
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tual sense. I shall now demonstrate that it is this second type of conceptual
problem that the LSZ formalism explicitly addresses.

4. LSZ FORMALISM

The LSZ formalism allowsS-matrix elements to be calculated from in-
teractingτ -functions. It is based on a weak convergence condition that
relates the free dynamics to the interacting dynamics asymptotically, in-
stead of perturbatively. In Section 4.1, I describe this condition and how it
avoids Haag’s theorem. In Section 4.2, I indicate the nature of the resulting
asymptotic particle states and how they may be considered free for all
practical purposes. Finally, in Section 4.3, I describe the LSZ reduction for-
mula which provides the means by which theS-matrix can be effectively
calculated and indicates the function of interpolating fields.

4.1. The LSZ Asymptotic Condition and Haag’s Theorem

The LSZ formalism replaces the interaction fieldsφI (x) of Section 3.2
with asymptotic fieldsφas(x). The latter are assumed to be free fields,
hence can be decomposed into the Fourier form (3.1) with asymptotic
raising/lowering operatorsaas(p), a†

as(p) replacinga(p), a†(p). These are
given explicitly by inverting (3.1):

a†
as(p) = −i

∫
d3xe−ip·x

↔
∂ 0φas(x),(4.1)

aas(p) = i
∫
d3xeip·x

↔
∂ 0φas(x),

whereA
↔
∂ 0B = A∂0B − B∂0A. The associated Hilbert spaces will be

denotedHin and Hout with Lorentz-invariant vacuum states|�〉in and
|�〉out.

The problem posed by Haag’s theorem is how to relate the asymptotic
fieldsφas(x) to the interacting Heisenberg fieldsφH (x) in a way consistent
with the assumption that the former are governed by the free dynamics. It
turns out that a strong convergence requirement of the form,

φin(x) ←−
t→−∞

1√
Z
φH (x) −→

t→+∞φout(x),(4.2)

will not work (see below); this essentially reiterates the relation (3.4). The
LSZ weak convergence asymptotic condition modifies this by requiring
simply that matrix elements converge in the limit:
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lim
t→±∞ i

∫
d3xf ∗(x)

↔
∂ 0〈β| 1√

Z
φH (x)|α〉 = 〈β|aout/in[f ]|α〉,(4.3)

lim
t→±∞−i

∫
d3xf (x)

↔
∂ 0〈β| 1√

Z
φH (x)|α〉 = 〈β|a†

out/in[f ]|α〉,

where|α〉, |β〉 are arbitrary elements of the Hilbert spaceH of interact-
ing states.10 Equation (4.3) can be taken as a definition of the asymptotic
raising/lowering operators,aas[f ], a†

as[f ], in terms of the limits of interact-
ing raising/lowering operators that act onH .11 Rigorous proofs exist that
show that the limits in (4.3) are well-defined. These assume the existence
of a mass gap and asymptotic completeness:H = Hout = Hin.12 For
the purposes of this essay, I shall be more concerned with (a) how (4.3)
avoids Haag’s theorem and (b) how the particle states arising from the
fields defined in (4.3) are free for all practical purposes.

To see how (a) comes about, the following theorem is useful.

THEOREM 1.|�〉in = |�〉 = |�〉out (up to phase). The ground states of
H , Hin, Hout are identical up to phase.

Proof. Use (4.3) and asymptotic completeness to show that
〈β|aas[f ]|�〉 = 0, for all 〈β| in H .

Thus the antecedent condition of Result (1) of Section 3.3 is avoided.
Condition (4.3) avoids Result (2) of Section 3.3 in the fol-

lowing sense. Strong convergence (4.2) implies the equality
lim t→∓∞ 1

Z
〈�|φH (x)φH (y)|�〉 = as〈�|φas(x)φas(y)|�〉as, and this indic-

ates thatφH (x) is free (footnote 9), which contradicts the assumption that
it is an interacting field. This equality does not hold for weak convergence
(4.3). For a complete set of states|n〉 and the weak convergence condition
lim t→∓∞ 1√

Z
〈�|φH (x)|n〉 = 〈�|φas(x)|n〉, we have,

〈�|φas(x)φas(y)|�〉

=
∑
n

lim
t→∓∞

1

Z
〈�|φH (x)|n〉〈n|φH (y)|�〉

6= lim
t→∓∞

∑
n

1

Z
〈�|φH (x)|n〉〈n|φH (y)|�〉

= lim
t→∓∞

1

Z
〈�|φH (x)φH (y)|�〉.

Hence no contradiction arises. The crucial observation here is that, in
general, the sum of a limit is not equal to the limit of the sum.
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The right-hand side of the magic formula (3.7) can now be refor-
mulated, replacing the free fieldsφI (x) and the free vacuum|0〉 with
asymptotic fieldsφas(x) and the interacting vacuum|�〉. The calculation of
scattering amplitudes still involves expanding (3.7) in a possibly divergent
power series; however I argued above that these are calculational problems
that can be handled by renormalization techniques. The conceptual prob-
lem indicated by Haag’s theorem, on the other hand, is no longer present,
having been addressed by the introduction of asymptotic fields defined by
the LSZ weak convergence condition (4.3).

4.2. Asymptotic Particle States

In this subsection, I demonstrate that the ever-present contribution from
the multiparticle continuum can be neglected for asymptotic particle states.
Hence they are, for all practical purposes, free states.

DEFINITION 1. A localized asymptotic single-particle state|p̃〉as is given
by,

|p̃〉as= a†
as[fp]|�〉,(4.4)

wherea†
as[fp] is defined by (4.3).

THEOREM 2. The asymptotic single-particle state|p〉as is free for physic-
ally meaningful time scales.

Proof. For the “out” case, operating on the left of (4.4) with
〈�| 1√

Z
φH (x

′), one obtains the asymptotic single-particle plane-wave

function,13

〈�| 1√
Z
φH(x

′)|p〉out = lim
t→∞−i

∫
d3xe−ip·x

↔
∂0〈�|(4.5)

× 1

Z
φH(x

′)φH (x)|�〉

= e−ip′x ′ + lim
t→∞

∫ ∞
M2
n

dµ2ρ(µ2)

× Eµ(p
′)+ p′0

2Eµ(p′)
e−Eµ(p

′)(t−t ′)e−ip·x
′+ip′0t ,

This should be compared with the free theory case〈0|ϕHf (x)|p〉 = e−ix·p
(see below (3.1)). The second term on the right of (4.5) is the multiparticle
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contribution. By the Riemann–Lebesque Lemma,14 it vanishes if the in-
tegrand is a smooth function ofµ2. In general, however, it will not be
smooth at the pointsµ2 = M2

n , whereM2
n is the threshold at which the

n-particle state contribution begins. It turns out that the contributions from
such multiparticle states in fact are washed out for physically meaningful
time scales. It can be shown that, in the vicinity of the threshold massM2

n ,
the multiparticle contribution to (4.5) goes as,

(M|t − t ′|)−3/2(n−1)e−iEMn (p
′)(t−t ′)(4.6)

whereM is some characteristic particle mass scale.15 For time differences
|t − t ′| � M−1, (4.6) is negligible, decreasing as an inverse power. For
example, a typical mass isM ∼ 1 GeV, whenceM−1 ∼ 10−23 sec (in
“natural” units with h̄ = 1). Then for |t − t ′| ∼ 10−13 sec� M−1,
the 2-particle contribution from (4.6) is on the order of 10−15, and the
contributions fromn-particle states,n > 2, will be even smaller. Hence,
for such time differences, the asymptotic state|p〉out is, for all practical
purposes, free and satisfies the same normalization conditions as the free
single-particle state,out〈p′|p〉out = (2π)32Epδ

3(p′ − p). A similar analysis
holds for the in-state|p〉in as well.16

4.3. The LSZ Reduction Formula and the Role of Interpolating Fields

I now indicate how the LSZ weak convergence condition (4.3) allows
S-matrix elements to be expressed in terms of interactingτ -functions.
Consider theS-matrix elementout〈β|α〉in = out〈p̃1 . . . p̃n|q̃1 . . . q̃m〉in for
m in-coming localized particles withith momentumqi andn out-going
localized particles withith momentumpi. We want to express this in terms
of the(n+m) τ -function 〈�|T {φH (x1) . . . φH (xn+m)}|�〉. The strategy is
to extract, out of the in/out multiparticle states, individual particle states
p̃i, q̃i, one at a time, using the asymptotic raising/lowering operators (foot-
note 10, smeared versions) and then use (4.3) to replace these operators
with interacting fieldsφH(x). This is repeated until the in/out multiparticle
states have been reduced to the vacuum and we are left with aτ -function.
The end result is the LSZ reduction formula, given here for scalar fields:

out〈p̃1 . . . p̃n|q̃1 . . . q̃m〉in(4.7)

= (i/√Z)m+n
∫
d4x1 . . . d

4ymfq1(y1) . . . fqn(ym)
−→
K y1 −−→K ym

×〈�|T {φH(x1) . . . φH (xn)φH (y1) . . . φH (ym)}|�〉
×←−K x1 . . .

←−
K xnf

∗
p1
(x1) . . . f

∗
pn(xn),
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whereKx = ∂2
(x) + m2 is the Klein–Gordon (KG) operator (for details

consult Kaku 1993, 141–5).
To put (4.7) into a more suggestive form, one can take the Fourier

transform of both sides. This turns the KG operatorsKi into factors of
the form(p2

i −m2
i + iε). It also introduces a momentum-conserving delta

function δ4(pi − qi) due to the translation-invariance of theτ -function.
This serves to force all momenta on-shell (p2 = m2), and one obtains the
form,17

out〈p1 . . . pn|q1 . . . qm〉in = (i/√Z)m+n(2π)4(4.7′)

×δ4

(∑
m

q −
∑
n

p

)∏
j

(q2
j −m2

qj
+ iε)

×τ(p1 . . . pn, q1 . . . qm)
∏
i

(p2
i −m2

pi
+ iε),

whereτ(p1 . . . pn, q1 . . . qm) is the momentum-spaceτ -function. Isolating
it then leads to the behavior,

τ(p1 . . . pn, q1 . . . qm) −→
p2
i
→m2

pi

q2
j
→m2

qj

(
n∏
i=1

−i√Z
p2
i −m2

pi
+ iε

)
(4.8)

×
 m∏
j=1

−i√Z
q2
j −m2

qj
+ iε

 out〈p1 . . .pn|q1 . . .qm〉in.

Thus theS-matrix elementout〈p1 . . . pn|q1 . . . qm〉in is the coefficient of the
multipole term of the on-shell limit (viz.p2, q2 → m2) of its associated
(momentum-space)τ -function. This form of the reduction formula is in-
structive insofar as it indicates the role of the interacting fieldsφH (x).
These are referred to as interpolating fields insofar as they may be said
to interpolate between asymptotic particle states. According to (4.8), each
interpolating fieldφH(xi) serves to produce a pole atp2

i = m2
pi

in the
Fourier transform of theτ -function. The position of this pole is the mass of
the particle associated with the field. Intuitively, since the form of the pole
is just the form of a propagator, an interpolating field serves to produce a
propagator for its associated asymptotic particle.
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5. NON-UNIQUENESS OF INTERPOLATING FIELDS: PARTICLES WITH

NO UNIQUE FIELDS

In this section I indicate how the Duality Thesis fails insofar as the particle
content of an interacting theory underdetermines the field content: To any
stable particle there corresponds an infinite number of interpolating fields.

In the LSZ reduction formula (4.8), the interpolating fieldsφH (x)
explicitly appear in the Lagrangian:L = 1

2(∂µφH )
2 − 1

2m
2φ2
H + LI .

Furthermore, they satisfy the condition〈�|φH (x)|q〉as 6= 0, for each
asymptotic particle state|q〉as. It turns out that this is a sufficient condition
for any local fieldO(x) to be an interpolating field for|q〉as, regardless
of whetherO(x) appears in the original Lagrangian, provided only that
O(x) transform appropriately under IO(1, 3). This motivates the following
definition:

DEFINITION 2. An interpolating field associated with an asymptotic
single-particle state|q〉as is a local quantum fieldO(x) that transforms
irreducibly under IO(1, 3) and satisfies〈�|O(x)|q〉as 6= 0.

The following theorem establishes this definition:

THEOREM 3. LetO(x) be any local field operator transforming irre-
ducibly under IO(1, 3) with〈�|O(x)|q〉as 6= 0, where|q〉as is a stable
asymptotic single-particle state. ThenO(x) can be used as an interpolating
field for |q〉as in the LSZ reduction formula; i.e.,O(x) contributes a pole
atp2 = m2

q to then+ 1-pointτ -function 〈�|T {O(x)A(y1) . . . A(yn)}|�〉,
whereA(yi) local field operators.

Proof. See Appendix for a brief outline. Detailed proofs are given in
Weinberg (1995, 428–39), and Nishijima (1969, 332–5).

(Theorem 3 can be qualified even further. It can be shown that the fields
O(x) for which 〈�|O(x)|q〉as 6= 0 form an equivalence class under local
relativity, whereO(x) is local relative toO ′(y) just when[O(x),O ′(y)] =
0, for spacelike(x − y) (see Emch 1972, 293; Haag 1992, 103 and ref-
erences therein). Such equivalence classes are called Borcher’s classes.
Hence, to every asymptotic single-particle state|q〉as there corresponds a
Borcher’s class of interpolating fields.)

As an example of a well-defined asymptotic particle state with no
unique field associated with it, take the pion. It is stable, has well-defined
q-numbers, and is given by an irreducible representation of IO(1, 3). Hence
the states|pπ 〉asare well-defined. By Theorem 3, any local irreducible field
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5(x) that satisfies〈�|5(x)|pπ 〉as 6= 0 serves as a pion field insofar as it
can be used to interpolate between in/out asymptotic pion states.

It is tempting to object at this point by claiming that the duality thesis
does not apply to pions since they are composite particles, reducible, under
the auspices of QCD, to bound states of quark/anti-quark doublets. My
reply is two-fold. First, pion fields have as much right to elementary status
as quark fields insofar as pion fields appear in effective Lagrangians for
low-energy pion scattering. (One might object here that quark fields are
“more elementary” insofar as QCD applies over a much wider range of
energies than effective pion theories. However, there is growing consensus
that QCD and the Standard Model in general are themselves effective the-
ories that approximate a more “elementary”, at present unknown, theory
that applies at even larger energy scales. The duality thesis, phrased in
terms of elementary particles/fields, is then either vacuously true or must
be contextualized to a given theory.) Second, it is problematic to describe
pion scattering via QCD, for quark fieldsψ(x) are not interpolating fields.
There are no particle states|q〉as such that〈�|ψ(x)|q〉as 6= 0. I now show
how this comes about.

6. QUARK CONFINEMENT: FIELDS WITH NO PARTICLES

In this section I indicate how the Duality Thesis fails insofar as there is
good reason to believe that there are fields that have no corresponding
particle states. These are the quark fields that appear in the Lagrangian of
quantum chromodynamics (QCD). To a good approximation, the potential
between two quarks grows linearly with increasing distance. The effect is
that quarks cannot exist in asymptotic free single-particle states. This is a
non-perturbative prediction of the lattice approximation to QCD.

In brief the amplitude for a quark/anti-quark creation/annihilation event
can be identified as the continuum limit of a lattice Wilson loop observable
W(C). The latter obeys the Area Law for Wilson loops on a lattice:

W(C) = e−KA,(6.1)

whereA is the area enclosed by the loopC andK is a constant.18 This Area
Law can then be used to determine the form of the interaction potentialE0

between the quark/anti-quark pair. It turns out that the potential is linear in
the separation distanceR:

E0(R) = KR(6.2)
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Figure 1. Elementary plaquettep.

Hence confinement results and asymptotic particle states for quarks cannot
exist. In the remainder of this section, I shall briefly run through the cent-
ral ideas. Readers willing to accept the above statements without further
comment may skip ahead to Section 7.

Wilson loops are gauge-invariant observables that appear in Yang–
Mills theories. In non-Abelian theories like QCD, for which the gauge
fields Aµ(x) do not commute, Wilson loops are given byW(C) =
P {exp(ig

∮
C

dxµAµ(x))} (whereP is the path-order operator). Intuitively,
W(C) can be viewed as a phase shift experienced by a source due to mo-
tion around a loopC in a background gauge field. When Yang–Mills theory
is put on a lattice, Wilson loops are given by the expectation valueW(C) =
〈T r∏n Un〉, where the loopC has been divided inton discrete linksUn.19

This expectation value can be calculated using functional integration tech-
niques (Creutz 1983, 36). The result isW(∂p) = Z−1

∫
(dU)T r{Up}e−S ,

for an elementary loop∂p (such loops enclose elementary plaquettesp

(footnote 19)). HereUp is the product of the links in∂p, Z is a nor-
malization constant, andS is the lattice Yang–Mills action.20 To calculate
W(C) for an arbitrary loopC, it turns out that the only contributions to
the integral come from plaquettes that fill the area enclosed byC.21 Thus
to first order we haveW(C) = W(∂P )A/a

2
, whereA/a2 is the number

of plaquettes filling the areaA enclosed byC (a2 being the area of each
plaquette). The Area Law (6.1) then follows after a bit of algebra.

To make the connection with quarks, consider the loop in Figure 2, call
it (R, T ). It can be interpreted as representing two static color chargesq,
q ′ (a quark/anti-quark pair) created at timet = 0 a distanceR apart, and
subsequently annihilated at timet = T . It can be shown that the amplitude
for theqq ′ event just described is the continuum limit of the expectation
value given by the lattice Wilson loopW(R, T ). The interaction potential
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Figure 2. Quark/anti-quark loop.

between theqq ′ pair can then be determined by means of the Area Law
(6.1).

Let 9(t) = ψ̄(0, t)P eig
∫ R

0 dxA1(x,t)ψ(R, t) be theqq ′ pair operator.22

Then the amplitude for theqq ′ event is given by〈0|9†(T )9(0)|0〉 ≡
�(T,R). One now contracts the quark/anti-quark fields to produce two
propagators of the formSF (y − y′) (via Wick’s Theorem). It can be
shown that these propagators are proportional to exponential terms in-
volving the time componentsA0(x, t) of the gauge fields in the large
mass (viz. static) approximation.23 The amplitude�(T,R) then takes the
form 〈0|Peig ∫ R0 dxA1(x,t)P eig

∫ T
0 dtA0(x,t)P e−ig

∫ 0
R dxA1(x,t)P e−ig

∫ 0
T dtA0(x,t)|0〉,

and this is identifiable as the continuum limit of the lattice expectation
value〈T r{UABUBCU†

DCU
†
AD}〉 = W(R, T ).

The Area Law forW(R, T ) can now be used to determine the behavior
of the interaction potential betweenq andq ′ (see, e.g., Kaku 1993, 513–4).
Inserting a complete set of states into�(T , R), one obtains,∑

n

〈0|9†(T )|n〉〈n|9(0)|0〉 =
∑
n

|〈0|9†(0)|n〉|2e−EnT .

SinceEn > E0 for all n, in the limit T →∞ (i.e., for large loops (R, T )),
the ground state energyE0 dominates. Hence,

lim
T→∞

�(T,R) ∼ e−E0(R)T .(6.3)

Comparing (6.3) with the Area Law (6.1), one obtains (6.2).

7. DISCUSSION: THE REHABILITATION OF PARTICLES

Given that the particle/field duality thesis should be abandoned, are we left
with anything more to say about what interacting QFT is describing, other
than the rather bland statement that it describesboth asymptotic particle
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statesand interpolating fields? I believe that any stronger statement is
simply not well-motivated. In particular, I believe that fundamentalism, of
either the field or particle type, is not forth-coming. I have claimed that the
notion of a particle as a localized asymptotic LSZ state is well-motivated
insofar as it addresses the problem at the heart of the interacting theory
manifested by Haag’s theorem. In this section I suggest that such a notion
also addresses a recent critique of the particle interpretation based on the
Reeh–Schlieder theorem. This is discussed in Section 7.2 below. Section
7.1 offers brief commentary on the problems raised by Teller and Redhead
against a particle interpretation of the LSZ formalism.

7.1. The Redhead/Teller Objection

Teller (1995, 123) charges that the LSZ formalism restricts what we can
identify as particles to asymptotic times, “. . . thereby significantly limit-
ing the interpretation of the [interacting] theory in terms of [particles]”
(his “quanta”). (See, also, Redhead 1988, 21, for a similar assessment.)
This charge is based on the fact that, while an occupation number op-
erator can be constructed for the asymptotic in/out particle states, no
such operator can be constructed for the interacting states. This is due to
the fact that the un-renormalized interacting fieldsφH(x) do not satisfy
the canonical commutation relations. To see this, note that the interact-
ing Feynman propagator in position space is given by1̃F (x − y) =
−i〈�|[φH (x), φH (y)]|�〉, and the time derivative of the free propagator
is ∂t i1F (x − y) = iδ3(x − y). Taking the time derivative of the Fourier
transform of (3.3) then yields,

[πH(x), φH (y)] = iδ3(x− y)

(
Z +

∫ ∞
M2
n

dµ2ρ(µ2)

)
,(7.1)

where πH(x) = ∂tφH (x). For the free field case,Z = 1, and the
multiparticle contribution is zero. As indicated in Section 3.1, the inter-
acting fieldsφH (x) should be replaced with renormalized fieldsφr(x) =

1√
Z
φH (x). However, as (7.1) explicitly shows, this absorption ofZ into the

interacting field only reproduces the correct single-particle contribution to
the commutator. It is the existence of multiparticle contributions that pre-
vents (7.1) from having the canonical form. This consequently prevents the
renormalized interacting fields from commuting with the free Hamiltonian.
Thus an occupation number operator cannot be constructed for theφH (x),
which leads Redhead and Teller to conclude that they cannot be given a
particle interpretation
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I suggest that a particle interpretation should not be dependent on the
existence of a (free field) occupation number operator. To require other-
wise seems to me to be placing undue emphasis on the free theory. Due to
the persistence of interactions, any notion of particle derived from the free
theory will be hard to extend to the interacting theory. Instead, I propose
using the definition (4.4), that was motivated directly by how the inter-
acting theory is formulated, as the basis for a particle interpretation. In
particular, I suggest that a “particle” be considered a system that minimally
possesses an asymptotic state (i.e., a system that is free for all practical
purposes at asymptotic times). Whether or not such a system has a corres-
ponding number occupation operator, I would claim, is irrelevant. Under a
literal construal of the LSZ description of scattering experiments, there are
two types of system that we might consider to be particles: “asymptotic”
particles defined directly by (4.4), and “interacting” particles. These latter
may be defined in analogy with (4.4) by,

|p̃〉int = a†
int[fp, t]|�〉,(7.2)

wherea†
int[fp, t] is an “interacting” raising operator (see footnote 11). I

suggest that both types of system can legitimately be called particles in so
far as both types have well-defined asymptotic states ((4.4) is by definition
an asymptotic state; (7.2) has (4.4) as an asymptotic state). It turns out that
“asymptotic” particles so-defined also possess number occupation operat-
ors whereas “interacting” particles do not. My point is that this deficiency
should not prevent us from interpreting the latter as particles. Furthermore,
I suggest viewing both types of system not as distinct types of particle;
but rather, as different states in which a particle can be found; viz. an
asymptotic (free for all practical purposes) state, and an interacting state.
To avoid confusion, I shall use the term “LSZ particle” to refer to such a
system capable of possessing both an asymptotic state (given by (4.4)) and
an interacting state (given, schematically, by (7.2)). The main claim of this
subsection, then, is that a viable particle interpretation of interacting QFT
can be had, based on the notion of an LSZ particle (by this I do not mean
to say that only LSZ particles appear in the ontology of QFT; I also claim
that fields appear as well).

7.2. The Reeh–Schlieder Objection: Localizability and the Vacuum

Recently Redhead (1995), Malament (1996), and Arageorgis (1995) have
developed an argument against the notion of particle in interacting field
theory. In brief, they represent a particle by a projection operatorP onto
the appropriate single-particle subspace ofH . (Think ofP as the outcome
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of a particle detection measurement.) After Arageorgis (1995, 334),P

must satisfy the following constraints:

〈�|P |�〉 = 0,(1)

〈9|P |9〉 = 1, for some9 ∈ H .(2)

These are interpreted as stating that the vacuum is empty and the particle
exists in some state9, respectively. By the Reeh–Schlieder Theorem,24 if
P is a local observable (viz. an element of a von Neumann algebraR(O)
for O a bounded open region of spacetime), then (1) impliesP = 0, hence
(1) and (2) are inconsistent. Moreover, the assumption thatP is a local
observable can be relaxed, and we can require only that,

[A, P ] = 0, for all local observablesA ∈ R(O ′) and some
bounded open regionO ′.25

(3)

It can then be shown that (3) is inconsistent with (1) and (2). This
is taken to imply that the notion of particle given by (1) and (2) comes
with it a radical holism, given by the denial of (3), for the regionO ′ may
be spacelike related to the region in whichP finds support. Malament
concludes,

To whatever extent we have evidence that [Nature] does not allow such correlations,
we have evidence that quantum mechanical phenomena must ultimately be given a
field-theoretic interpretation. (1996, 2)

The moral that Redhead draws is slightly stronger:

[Particle states] are an idealization which leads to a plethora of misunderstandings about
what is going on in quantum field theory. The theory is about fields and their local
excitations. That is all there is to it. (1995, 135)

I want to suggest that this moral is a bit excessive insofar as an LSZ
particle is localizable for all practical purposes (FAPP-localizable, here-
after) in the asymptotic regime; i.e., an LSZ particle satisfies conditions
(1)–(3) above in the asymptotic regime, for all practical purposes. As
discussed in Section 4.2, for time scales on the order of 10−13 sec, the
asymptotic localized single-particle state|p̃〉as satisfies,

〈�|p̃〉as= 0,(1′)

as〈p̃′|p̃〉as= (2π)32Epδ
3(p′ − p).(2′)

Furthermore,

[φas[f ], φas[g]] → 0, as the distance between the supports off

andg goes to infinity.
(3′)
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For a proof of (3′) see Haag (1992, 85). Strictly speaking, (3′) requires that
the asymptotic smeared fieldsφas[f ] be “almost local” operators; i.e., the
functionsf andg decrease rapidly at infinity. But this is what was assumed
in the construction of the asymptotic states|p̃〉as.

I submit that anything more than FAPP-localizability in the asymptotic
regime is too much to expect for the interacting theory. There are two
possible objections to this:

FAPP-localizability is not good enough for the notion of a
particle;

(1)

Even if it is good enough, the interacting states of LSZ particles
do not possess it.

(2)

(1) objects to treating LSZ particles as localized in the asymptotic regime
in so far as they still possess finite exponential “tails”, regardless of how-
ever fast these tend to zero, that may span spacelike separated regions, and
this possibility should not be countenanced under any reasonable defini-
tion of localizability. My response is that such tails are a consequence of
the persistence of interactions. To require no tails is in essence to require
no interactions. This seems to me to hold the free theory as a paradigm
from which to draw interpretive conclusions. It certainly is possible to
claim that, by definition, the notion of particle only makes sense in the
free theory. What seems to me to be a more interesting project is to see
how much of the particle concept can be retained in the interacting theory
while minimizing damage to intuitions about localizability. This response
holds as well for objection (2) above. The intuition that localizability is
something we would expect of a particle regardless of the state it might
find itself in just fails for the interacting theory. This does not mean that
we have to give up the notion of particle completely. I suggest that LSZ
particles provide a half-way house that effectively bridges the conceptual
gap between the free theory and the interacting theory.

It might further be objected that FAPP-localizability is a property that
philosophers of physics should shy away from. FAPP-localized particles
may be justified for the practicing physicist, but their application to
foundational issues may be questionable. In particular, the notion of FAPP-
localized particles runs the risk of being labeled ad hoc, appealed to simply
to avoid the consequences of the Reeh–Schlieder Theorem. But this charge
is easily defused. Specifically, to the extent that we are concerned with the
conceptual difficulty posed by Haag’s Theorem, we should be willing to
adopt the notion particle as defined by the LSZ weak convergence limit
(which, itself, is certainly not ad hoc: it has been rigorously proven to
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exist). It then turns out that in doing so we are able to avoid a further
conceptual difficulty posed by the Reeh–Schlieder Theorem. (One might
argue that both difficulties stem from the same source; namely, the per-
sistence of interactions in interacting QFT; hence, they are not completely
independent of one another. My hunch is that they are independent enough
on whatever criterion of independence one might adopt to explicate the
notion of ad hocness.)

8. SUMMARY AND FURTHER DISCUSSION

In this essay, I have argued first and foremost that the particle/field duality
thesis cannot be applied to interacting quantum field theory: any attempt
to give it a precise formulation in the interacting context fails. I took the
thesis to be the general claim that to every field there corresponds a unique
particle, and vice versa; and then considered various ways by which the
notions of field and particle could be cashed out. I argued that a literal read-
ing of fields as those objects appearing in the Lagrangian of one’s theory
is problematic. I further argued that the standard Wigner group-theoretic
definition of particle is problematic in the interacting theory context. I
then considered a notion of particle obtained from the LSZ formulation of
interacting QFT; namely, that based on the notion of an asymptotic particle
state. I argued that there is a very good reason for adopting this formalism;
namely, that by adopting it, one is able to avoid the conceptual difficulty
posed by Haag’s Theorem. I then demonstrated that, given such a notion
of particle, and the corresponding notion of interpolating field, the duality
thesis is wrong in so far as,

to every asymptotic particle state there corresponds an indefin-
ite number of interpolating fields;

(a)

and

there are fields with no corresponding asymptotic particle
states.

(b)

Finally, I argued that the LSZ notion of asymptotic particle state helps
to address the locality problem raised by the Reeh–Schlieder Theorem
for particle interpretations of interacting QFT. In particular, if we allow
“particles” to be “LSZ particles” which may exist in asymptotic states and
interacting states, then locality can be retained in FAPP-form for asymp-
totic states, and this is the best one can expect given the nature of the
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interacting theory. In this last section, I shall consider a few potential ob-
jections to claims (a) and (b) (I thank an anonymous referee for raising
these concerns).

8.1. Objections to (a)

One might wish to read “field” in the duality thesis as “physical field”, and
then reject claim (a) in so far as interpolating fields are not physical fields;
rather, they are formal artifacts; surplus structure of the formalism. Perhaps
the duality thesis survives in some form in which a unique set of “field
facts”, which underlie the indefinite number of possible interpolating fields
of a given asymptotic particle state, are uniquely correlated to that state
(in particular, one might associate the essential structure underlying the
notion of a field with a Borscher’s equivalence class of interpolating fields
(see Section 5)). I would agree that this is one way of making objection
(a) to the duality thesis disappear. However, I would add that it assumes a
particular interpretational stance with respect to interacting QFT, one that
I shall now attempt to make explicit.

Certainly part of being a realist with respect to QFT is to read the the-
ory literally.26 A realist takes the theoretical claims that QFT makes about
fields and particles at their face value: “[Theoretical claims] are not to be
understood either as mere assertions of verifiability, as covert, complex
reports on observation, or as meaningless devices for the systematization
of data” (Horwich 1982, 182). Part of the task facing the realist then is to
decide just how to read QFT literally. In particular, how should a semantic
realist approach the duality thesis? It seems to me that a semantic anti-
realist will claim that the thesis just contends that “field facts” are uniquely
correlated with “particle facts” and be content with leaving it at that. The
semantic realist, on the other hand, wants to know just what a “field fact” in
the theory amounts to. My concern with the duality thesis is a concern with
how to read it through semantic realist’s eyes. I argued above in Section 1
that a literal construal of a field as a particular mathematical object appear-
ing in the Lagrangian of one’s theory is problematic for use in the duality
thesis. Moreover, even if we grant that such objections are not worrisome
for a semantic realist, and that by “physical field” we mean “mathematical
field appearing in a theory’s Lagrangian”, there is still a problem. Note
that interpolating fields may occur in the Lagrangian of one’s theory. The
electron fieldψ(x) that occurs in the Dirac–Maxwell Lagrangian (Section
1) is a perfectly acceptable interpolating field in so far as it can be used to
interpolate between asymptotic electron states in the LSZ formalism. What
Theorem 3 of Section 5 demonstrates is that it is not unique in this ability.
The point here is that, if one is motivated to consider the fields that appear
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in Lagrangians as “physical” fields to which the duality thesis applies,
then one should also allow that the duality thesis applies to interpolating
fields as well. Objection (a) then shows that a duality thesis, so-informed,
is incorrect. (Again, this is not to say that some form of duality thesis
under which “field facts” are uniquely correlated with “particle facts” is
unobtainable. My specific claim is just that the duality thesis fails, not
only for standard semantic realist construals of “field” and “particle”, but
also for, what I consider to be, more well-informed construals (viz., those
informed by the LSZ formalism).)

8.2. Objections to (b)

An epistemic realist might question claim (b). One might argue that evid-
ence for quark confinement (and thus evidence for treating quarks as fields
with no corresponding particles) is not on par with evidence for treating
quarks as particles. Evidence of this latter type arguably comes from exper-
iments involving deep inelastic scattering in which high energy particles
scatter off of the constituents of nucleons in a manner that implies that
these constituents behave like free point-like particles. Such experiments
originally contributed to the acceptance of the QCD theory of quark inter-
actions. They also established that QCD is characterized by asymptotic
freedom. This is a property unique to non-Abelian gauge theories like
QCD, which entails that, at high energies and short distances, the coupling
constant of the theory goes to zero. In the QCD context, this means that
the strong color force experienced by quarks weakens as the distance of
quark separation decreases. In the limit when two quarks, considered as
point-particles, coincide in spacetime, the coupling they experience due
to the strong color force is zero, and they can effectively be treated as
free point-particles. Conversely, at low energies and large distances, the
coupling grows linearly and confinement results. Hence perhaps the notion
of an LSZ particle is not adequate, since it does not allow us to treat quarks
as particles.27 In particular, the property of possessing an asymptotic state
may be inadequate to the particle concept.

I have two responses to this objection. First, it is not that apparent how
to flesh out the intuition that quarks are particles if it is motivated by deep
inelastic scattering experiments. Asymptotic freedom dictates that quarks
behave as free point particles in the limit of large energies/small distances.
In effect, to treat two quarks as free particles, they have to coincide at
the same point in spacetime. Such entities do not seem very much like
particles. In any event, I would again stress that my primary claim is
that, under standard semantic realist interpretations of interacting QFT, the
duality thesis cannot be maintained. This is not to say that one cannot
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treat quarks as particles. It is just to say that one cannot maintain a dual
particle/field interpretation of interacting QFT that applies at once to field
theories characterized by asymptotic freedom, like QCD, as well as to field
theories that are not so characterized (like quantum electrodynamics). My
claim is that a non-dual particle/field interpretation of interacting QFT is
viable based on the notions of LSZ particle and interpolating field. Un-
der this interpretation, quarks cannot be viewed as particles, but must be
viewed as fields.

9. CONCLUSION

The persistence of interactions indicates that particle states in the inter-
acting theory will always possess non-vanishing exponential tails, even at
asymptotic times, and the Reeh–Schlieder theorem indicates that such tails
may span spacelike separated regions in spacetime. However, these facts
alone do not dictate against a coherent notion of particle, as I have at-
tempted to demonstrate. Such a coherent notion of particle may be derived
from the asymptotic particle states that appear in the LSZ formalism of
interacting field theory. I have argued that there is a very good reason for
adopting this notion, in so far as the LSZ formalism solves the conceptual
problem generated by Haag’s theorem.

More generally, I have argued that particle/field duality is incoherent
in interacting field theory in so far as, given notions of particle and field
motivated by the interacting theory (as opposed to the free theory), (1) for
every particle there exists an infinite number of corresponding fields, and
(2) there are fields with no corresponding particle states.

Finally, I conclude that, if we are to take interacting field theory ser-
iously (and not view it as a stop-gap temporary fix en route to a more
well-behaved theory), then we should look to it, as opposed to free field
theory, to inform us as to what the world would be like if it were true.

APPENDIX

Theorem 3, Section 5. LetO(x) be any local Heisenberg field op-
erator transforming irreducibly under IO(1, 3) with〈�|O(x)|q〉as 6=
0, where |q〉as is a stable asymptotic single-particle state. ThenO(x)
contributes a pole atp2 = m2

q to the n + 1-point τ -function
〈�|T {O(x)A(y1) . . . A(yn)}|�〉, whereA(yi) are local Heisenberg field
operators.
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Proof. In momentum spaceτ(p1, q1 . . . qn) = ∫
d4xd4y1 . . .

d4yne
i(p·x−q1·y1−···−qn·yn)〈�|T {O(x)A(y1) . . . A(yn)}|�〉. Now insert a

complete set of states 1= |�〉〈�| + ∫ dτq |q〉as as〈q| +∑ (multiparticle
states) and consider the single-particle overlap term with the time ordering
x0 > max(y0

i ):∫
d4x . . . d4yne

i(p·x−q1·y1−···−qn·yn)θ(x0−max(y0
i ))(A.1)

×
∫

dτq〈�|O(x)|q〉as as〈q|T {A(y1) . . . A(yn)}|�〉.

The term〈�|O(x)|q〉as can be written as〈�|eiP ·xO(0)e−iP ·x |q〉as =
e−iq·x〈�|O(0)|q〉as, and the θ-function is given by θ(x) =∫

dωeiωx 1
2πi(ω−iε) . Equation (A.1) then becomes,∫

d4y1 . . . d
4yne

i(q1·y1−···−qn·yn)
∫

dτq(A.2)

×
∫

dω
1

2πi(ω − iε)
∫
d4xei(p−q)·xeiω(x

0−max(y0
i ))

×〈�|O(x)|q〉as as〈q|T {A(y1) . . . A(yn)}|�〉.
The

∫
d4x integral can now be done, yielding a factor of(2π)4δ3(p −

q)δ(p0− Eq + ω), whereEq = q0 = √q+m2. Hence we have,∫
d4y1 . . . d

4yne
i(q1·y1 −...−qn·yn)

∫
dτq(2π)

3δ2(p− q)(A.3)

×
∫

dω
δ(p0− Eq + ω)
i(ω − iε) e−iωmax(y0

i ))

×〈�|O(x)|q〉as as〈q|T {A(y1) . . . A(yn)}|�〉

=
∫
d4y1 . . . d

4yne
i(q1·y1 −···−qn·yn)(2Ep)−1 e

−i(Ep−p0)max(y0
i )

i(Ep − p0− iε)
×〈�|O(x)|q〉as〈q|T {A(y1) . . . A(yn)}|�〉.

Now note that

1

Ep − p0− iε =
Ep + p0

E2
p − p2

0 − iε
−→
p0→Ep
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2Ep
p2+m2

q − p2
0 − iε

= −2Ep
p2−m2

q + iε
.

Hence

τ(p1, q1 . . . qn) −→
p2→m2

q

i

p2−m2
q

〈�|O(x)|q〉as

×
∫
d4y1 . . . d

4yne
i(q1·y1−···−qn·yn)

as〈q|T {A(y1) . . . A(yn)}|�〉.

The proof is complete since this is the behavior advertised by the theorem:
the fieldO(x) has been “extracted” from theτ -function and, in doing
so, produces a momentum space Feynman propagatori

p2−m2
1
; i.e.,O(x)

produces a pole atp2 = m2
q .

NOTES

1 In this essay, 4-vectorsx are given by(x0, −x), bold-face denotes 3-vectors, and the
Lorentz covariant measure is denoted by dτp ≡ (2π)−3d3p/2Ep, whereEp = p0 =√

p2+m2 andp0 > 0. Single-particle states are thus normalized according to〈p|p′〉 =
(2π)32Epδ

3(p− p′).
2 An irreducible representation of the Poincaré group may appear too abstract a notion
to define a particle. The intuition motivating such a definition is based on two essential
properties such irreducible representations possess that we minimally associate with the
notion of a particle. First, they are uniquely labeled by 2 parameters associated with mass
and spin (or helicity for the massless case). Second, they are invariant under IO(1, 3)
transformations, hence they conform to our intuitions concerning the continuity of particle
identity through spacetime.
3 Developed originally in H. Lehmann, K Symanzik and W. Zimmermann: 1957, ‘On the
Formulation of Quantized Field Theories II’,Nuovo Cimento6, 319.
4 In general, an interaction will shift the mass, so the spectrums ofH andH0 will not
be identical. To mask this effect, a modified splitH = H ′0 + V ′ can be made where
V ′ = V −1,H ′0 = H0+1, and1 is the energy difference corresponding to the mass shift.

For instance, if the mass inH ism2
B (the bare mass) and the mass shift due to interaction is

δm2, then, under the modified split, the mass occurring inH ′0 ism2
B
+ δm2 ≡ m2

phy. This
is the physical mass that is actually measured. Note, too, thatH0 need not be identical to
the free Hamiltonian. The split is made so that the interactionV is weak compared toH0,
allowingH0 to be treated as the zeroth-order approximation toH .
5 Here and below free fieldsϕ(x) are distinguished from interacting fieldsφ(x). In what
follows, fields are defined at a point. When it becomes crucial to the exposition, they will
appear properly smeared with appropriate test functions. Finally,Hf denotes the (truly)
free Hamiltonian, whichH0, in general, denotes the zeroth-order approximation to the
interacting HamiltonianH .
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6 This is the Källén–Lehmann spectral representation (for details see Peskin and
Schroeder 1995, 211–6). The derivation is non-perturbative, requiring only Lorentz in-
variance and unitarity of the 2-pt function. The particular form (3.3) also assumes the
existence of a mass gap between the vacuum and the lowest energy state. The spectral
functionρ(µ2) is given byρ(µ2) =∑α(2π)δ(µ

2−m2
α)|〈�|φH (0)|α〉|2, where the sum

is over all states. The lower bound of integrationM2
n is the threshold mass at which the

n-particle contribution begins, forn ≥ 2.
7 The physical vacuum|�〉 is the state of lowest energy; the bare vacuum|0〉 is the “no-
particle” state.
8 Given originally in Gell-Mann and Low (1951), ‘Bound States in Quantum Field
Theory’,Physical Review84, 350. For further discussion consult Haag (1992, 67–71).
9 This follows the account given in Emch (1972, 247–53). See also Haag (1992, 55–7),
and Streater and Wightman (1979, 165–6). In rough outline, the proof of (2) in the latter
is based on two subsidiary results. First, given two irreducible fieldsφ2(x), φ1(x) defined
on Hilbert spacesH1, H2 and transforming under irreducible representationsU1(3, a),
U2(3, a), of IO(1, 3) with unique invariant vacuum states|0〉1, |0〉2, and related by a
unitary transformationV at some timet according to82(t , x) = V φ1(t , x)V−1, one
can prove that the ground states are related byc|0〉2 = V |0〉1, wherec is a complex
constant with modulus 1. This implies that the vacuum expectation values of the fields
at a given timet are equal:1〈0|φ1(x1) . . . φ1(xn)|0〉1 =2 〈0|φ2(x1) . . . φ2(xn)|0〉2. The
second result shows that, ifφ(x) is a scalar field for which the vacuum is cyclic, and
〈0|φ(x)φ(y)|0〉 = i1+(x − y; m2), m > 0, thenφ(x) is a free field of massm. Result
(2) then follows: Ifφ1(x) is a free field of massm > 0 related to another fieldφ2(x) by
a unitary transformationφ2(x) = V φ1(x)V

−1, and ifφ1(x) andφ2(x) transform under
irreducible representations of IO(1, 3), thenφ2(x) is a free field of massm.
10 In (4.3) the smeared versions of (4.1) have been used:

a
†
as[fp] = −i

∫
d3xfp(x)

↔
∂ 0φas(x),(4.1′)

aas[fp] = i
∫
d3xf ∗p (x)

↔
∂ 0φas(x),

wherefp(x) is a normalized positive frequency wave packet solution of the Klein–Gordon
equation.
11 In analogy with (4.1′), footnote 10, the objects appearing within the limits on the LHS
of (4.3) can be identified as interacting raising and lowering operatorsaint[f , t], a†

int[f ,
t]. They are not, however, operator-valued distributions insofar as they depend on time
(φH (x) is not a solution of the Klein–Gordon equation). This can be fixed by smearing
them with smooth functions of time.
12 See Haag (1992, 88–92) and references therein.

13 Where Eµ(p′) =
√

p′2+ µ2, p′0 =
√

p′2 +m2
phy and a form of the spectral

representation (footnote 6) has been used.
14 Briefly, if f (ω) is a smooth function which vanishes asω → ±∞, then its Fourier
transform vanishes in the limitt →∞:

∫ +∞
−∞ dωf (ω)e−ωt −→

t→∞ 0.

15 Here I rely on the proof in Brown (1992, 293). Nearµ2 = M2
n , the spectral function

behaves likeρ(µ2) ∼ (µ2−M2
n)

1/2(3n−5). ExpandingEµ(p′) aboutM2
n and substituting

into the multiparticle contribution to (4.5), one obtains, after integration, the behavior (4.6).
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16 For localized asymptotic single-particle states|p̃〉as, the same analysis holds since the
wave-packet functionsfp(x) decrease rapidly outside the velocity cone (see Haag 1992,
89).
17 Technically, this requires taking the limit in which all wave-packet Gaussian functions
g(pi ), g(qi), tend to delta functions. (4.7′) has a nice graphical representation. In mo-
mentum space, aτ -function can be represented by a Feynman graph consisting of a Blob
with various legs attached to it, each leg representing a propagator1

p2
i −m2

pi
+iε for a given

in/out particle. In general, such particles will be off-shell. The correspondingS-matrix is
obtained by forcing all momenta on-shell and then amputating external legs via the factors
(p2
i −m2

pi
+ iε).

18K = −(1/a2) lnW(∂p), whereW(∂p) is the Wilson loop observable for the boundary
loop ∂p surrounding the elementary plaquettep with edges of length a (see below for
details).
19 For anSU(N) gauge theory, each linkUn is anN ×N matrix representation ofSU(N)

given explicitly byUn = exp
(
iagλαAαµ

(
n+ aµ̂

2

))
. Such links form the edges (of length

a) of a 4-dim Euclidean lattice that models spacetime. The 2-dim faces of cells in the lattice
are referred to as plaquettes and denoted byp. See Figure 1.
20 Given byS = N

g2

∑
p

(
1− 1

N
T r{Up}

)
, where thep-sum is taken over all oriented

plaquettesp in the lattice. One can show that, in the continuum limita → 0, this form
produces the standard Yang–Mills action with coupling constantg (see, e.g., Creutz 1983,
35–6).
21 This “tiling” is due essentially to the properties

∫
(dU)Uij = 0, and

∫
(dU)Uij U

†
kl =

(1/N)δjkδil , where the link indices label lattice vertices. These indicate thatW(C) is non-
zero only when either a link inC is paired with the same oppositely oriented link in a
plaquette in the terme−S , or when this occurs for plaquette links in the terme−S . Hence
in the sum over all plaquettesp in the lattice, only those that fill the area enclosed byC

contribute.
229(t) acts on the vacuum to produce aqq′ pair a distanceR apart at timet . The
ψ/ψ̄-terms are quark/anti-quark fields and the exponential factor is required for gauge
invariance. Only 1 spatial dimension is considered.
23 SF (y − y′) is the Green’s function for the QCD operator(iγµDµ − m). For largem,
(iγµDµ − m) ∼ (iγ 0D0 − m). The exponential form of the propagator is derived by
solving(iγ 0D0−m)SF (y − y′) = δ4(y − y′).
24 See, e.g., Haag (1992, 101), Streater and Wightman (1979, 138), Emch (1972, 290).
Briefly, it states that the vacuum� is cyclic for the von Neumann algebraR(O) of any
bounded open regionO of spacetime; i.e., for all9 ∈ H , there areAn ∈ R(O) such
that9 = ∑

n An�. Furthermore, if the spacelike complement ofO is non empty,� is
separating forR(O); i.e., for allA ∈ R(O), if A� = 0, thenA = 0.
25 This is a necessary condition for the independence of the amplitudes ofP andA:
〈AP 〉 = 〈A〉〈P 〉. Since the status ofP is being left open, we do not stipulate thatO′
be spacelike to the regions of support forP .
26 After Earman (1993) and Horwich (1982), I take scientific realism to be composed of
two components: a semantic component and an epistemic component. The semantic com-
ponent characterizes the realist’s desire to read the theoretical claims of certain theories
literally. The epistemic component characterizes the realist’s contention that there can be
good reasons to believe the theoretical claims of certain theories. (These definitions are
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admittedly a bit vague. For instance, if some sub-set of the theoretical claims of a theoryT

are of the form “Objects of typeX exist”, then epistemic realism with respect to T would
seem to entail semantic realism with respect toT . The distinction between the compon-
ents, as I see it, is meant to follow the distinction between the two separate enterprises of
interpretation and confirmation. For any theoryT , the former enterprise endeavors to give
an account of what the world would be like ifT were true. The latter enterprise endeavors
to give an account of the conditions under which we are justified in believingT ’s claims.
The scientific realist must be able to give accounts of both endeavors.)
27 I don’t think that, if correct, this claim can be used as evidence that the LSZ formalism
fails to successfully avoid the problem associated with Haag’s Theorem. Haag’s Theorem
specifically demonstrates that the free dynamics cannot be connected to the interacting
dynamics by means of the strong convergence criterion (4.2). The LSZ formalism allows
the free dynamics to be connected to the interacting dynamics by means of the weak
convergence criterion (4.3). The LSZ notion of asymptotic particle state (4.4) is defined in
terms of this weak convergence criterion but is independent of the latter’s use in avoiding
Haag’s Theorem. One need not talk about asymptotic particles at all in the LSZ context if
one so desires; rather, one can talk only in terms of the convergence properties of matrix
elements of fields (4.3).
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