JONATHAN BAIN

AGAINST PARTICLE/FIELD DUALITY: ASYMPTOTIC PARTICLE
STATES AND INTERPOLATING FIELDS IN INTERACTING QFT
(OR: WHO'’S AFRAID OF HAAG'S THEOREM?)

ABSTRACT. This essay touches on a number of topics in philosophy of quantum f
theory from the point of view of the LSZ asymptotic approach to scattering theory. Fi
particle/field duality is seen to be a property of free field theory and not of interacting Q
Second, it is demonstrated how LSZ side-steps the implications of Haag’s theorem. Fil
arecent argument due to Redhead (1995), Malament (1996) and Arageorgis (1995) a
the concept of localized particle states is addressed. Briefly, the argument observe
the Reeh—Schlieder theorem entails that correlations between spacelike separated v
expectation values of local field operators are always present, and this, according t
above authors, dictates against the notion of a localized particle state. | claim that
moral is excessive and that a coherent notion of localized particles is given by the
approach. The underlying moral to be drawn from this analysis is that questions conce
the ontology of interacting QFT cannot be appropriately addressed if one restricts on
to the free theory.

0. INTRODUCTION!

Quantum field theory (QFT) is arguably the best confirmed theory knc
to physics. (Un)fortunately, it is beset with interpretational difficulties ev
more perplexing than those of its cousin non-relativistic quantum mecr
ics. Issues such as renormalizability, localizability, the notions of parti
and field, the nature of spacetime, and the natures of theory reduction
unification are not only of interest to philosophers of QFT, but are a
at the crux of the central problem facing contemporary theoretical pr
ics: that of consistently unifying general relativity and quantum theo
In this essay | shall focus specifically on interpretational issues arisin
interacting QFT surrounding the notions of particle and field.

| indicate first and foremost how particle/field duality is not a viab
ontology for interacting QFT. In Section 1, | indicate how the duali
thesis (briefly, to every field there corresponds a particle and vice ve
is motivated by the equivalence of the “particle” and “field” approaches
the canonical quantization of free fields in Minkowski spacetime, and
the complementarity of the “particle” and “field” operators in the resultit
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Fock space representation. In Sections 2 and 3, | indicate how interact
are described by means of covariant perturbation theory, and how the
tion of an asymptotic particle state arises in this context. | also review
conceptual difficulty for interacting QFT raised by Haag's Theorem.

Section 4, | indicate first how the LSZ formalism solves this problem, a
second how it provides us with an improved definition of an asymptc
particle state and also with the notion of an interpolating field. In Sectic
5 and 6, | indicate how the notions of asymptotic particle state and interj
ating field dictate against the particle/field duality thesis. | demonstrate
For every asymptotic particle state, there corresponds an indefinite nur
of interpolating fields; and (b) There are fields that admit no asymptc
particle states. In Section 7, | draw some morals this analysis has
particle interpretations of QFT, indicating in particular why we need not
afraid of the Reeh—Schlieder theorem in this endeavor. Finally, in Sec
8 | consider some objections to my use of asymptotic particle states

interpolating fields in the duality thesis in particular, and in particle al
field interpretations of interacting QFT in general.

1. THE DUALITY THESIS

In the following, | shall use neutral scalar field theory as a simple examj
The extension to fields with arbitrary spin follows naturally.

In most expositions, one is presented with two equivalent ways
constructing a local quantum field theory in Minkowski spacetime. T
first starts with Wigner's definition of single-particle states as irreducik
representations of the Poincaré group 10(1, 3). A Fock spade then
constructed, raising and lowering operatai$p), a(p), are introduced,
and position-dependent local field operatgns) are obtained as their
Fourier transforms (where the hat is used here solely to distinguish
quantum case from the classical case). The alternative approach is to
with the theory of a classical field, postulating the standard canoni
commutation relations (ccr) for the field variables and their conjugate r
menta, and then identifying the Fourier expansion coefficients of the fie
as raising and lowering operators on a Fock space. After this is done,
finds that both Fock spaces are in fact identical. Schematically,

0) 10(1, 3) — “particles” - F — a'(p), a(p) — ¢(x) (local
quantum field) -

(I @(x) (classical field)?gﬁ(x)?aT(p),a(p) - F —
“particles” h
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Some expositions construe the equivalence of the two approaches as i
ating the dual natures of the “particle” picture (Approach I) and the fie
picture (Approach 1) (see, e.g., Teller 1995, 113; Peskin and Schroe
1995, 26; Baez, et al. 1992, 58-59). This duality is further motivated
the complementarity in Fock space of the particle humber openater

[ dr,at(p)a(p), and the field operatog(x) = [ dr,[a(p)+a'(p)]. Some
take this to indicate a particle/field duality analogous to particle/wave c
ality in non-relativistic quantum mechanics. Dirac is often cited as givir
this view legitimacy:

...thedynamical system consisting of an assembly of similar bosons is equivalent to
dynamical system consisting of a set of oscillators — the two systems are just the s
system looked at from two different points of view .... We have here one of the m
fundamental results of quantum mechanics, which enables a unification of the wave
corpuscular theories of light to be effected. (Dirac 1947, 229)

These remarks lend themselves to two types of duality thesis. A strc
version claims that particle and field representations are dual in the sens
being underdetermined by the theory. Either one is adequate in descript
of physical phenomena. This version can immediately be put to rest,
there are types of physical phenomena that do not admit this democit
of representation (optical phenomena requiring descriptions in terms
coherent states, for example). A weaker notion of duality is encapsula
in the following thesis:

Duality Thesis:To every particle, there corresponds a field; and, co
versely, to every field, there corresponds a particle.

Such a thesis poses the question, What constitutes a particleffie
Naively, taking a cue from free field theory, we can phrase the dual
thesis in terms of elementary particles and fields, where an elemen
particle is an irreducible representation of 10(1, 3), and an element:
field for a theoryT is a local operator-valued distribution on the ap
propriate Hilbert space that appears explicitly 7irs Lagrangiar?. For
instance, in free Dirac—Maxwell theory, the Lagrangian density is give
by £ = —%Flfv + ¥ (@iy"*D, — m)y, wherey is the elementary field
of the electron. The associated elementary particle can be represente
the irreducible representation of 10(1, 3) for which= ; and p? = m?.
However, this picture breaks down once interactions are introduced. Du
the persistence of interactions in field theory, single-particle states are t
to isolate and can no longer be represented explicitly in terms of the me
energy spectrum of the theory they appear in. For instance, QED electr

are off-shell(p? # m?) due to self-interactions, and quarks awd, Z
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bosons do not appear in the spectrums of QCD and electro-weak the
respectively (due, respectively, to confinement and instability). Furth
more, the use of effective Lagrangians problematizes viewing fields t
appear in the Lagrangian as elementary. For instance, low-energy p
nucleon scattering can be described by means of an effective Lagran
in which appear pion and nucleon fields (Weinberg 1996, Chapter 19
The presence of ghost fields in the Lagrangians of non-Abelian gauge
theories also problematizes this view.

Instead of taking cues from free field theory in addressing such ontc
gical questions, | suggest looking at how the interacting theory is actu:
formulated. | shall look specifically at the LSZ formalidrand extract
from it notions of particle and field that are appropriate in the interacti
context. This is done in Section 4. | first motivate LSZ by consideri
the standard perturbative approach to scattering theory, emphasizing
problems due to the persistence of interactions and their relation to Ha
theorem. With the appropriate notions of particle and field in hand, 1 t
demonstrate in Sections 5 and 6 that the Duality Thesis is wrong, not
cause the notions of particle and field no longer make sense in interac
field theory; but because the notions that do make sense dictate again:
thesis.

2. ASYMPTOTIC PARTICLE STATES AND THE SMATRIX

At a purely qualitative level, scattering processes occur when some n
ber, sayn, of particles, traveling freely a short time in the past (effective
attr = —oo for elementary particle time scales) collide with each other a
then separate. A short time after the collision= +00), the system is in a
superposition of free states, each of which describes a possible end res
the collision. The probability amplitudes for these results are given by
S-matrix, and it is these amplitudes that are what are actually measure
scattering experiments in the forms of scattering cross-sections and d
rates.

In a bit more detall, the state of the system before and after the sca
ing event has occurred is represented by a multiparticle “in” (resp. “ou
state|a)as= |P1. . . Pr)as Where each particle is labeled by its momentul
p (ignoring spin and additional quantum numbers for simplicity), and “a
(i.e., “asymptotic”) denotes “in” or “out”. To localize such states, or
may construct them out of single-particle wave-packet states of the ft
IB)as = J dr,g(P)IP)as Where|p),s is required to become a free, single
particle state at asymptotic times, and the effect of integrating over
Gaussian functiog(p) is to localize the state as a wave-packet. Expandi
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the statega)asin such a localized superposition and time-evolving thel
by means of a Hamiltonia#, one obtains (schematically),

(21) &' / dog(a)|a)as = f doce™ P g ()] t) as

(where @& denotes d,, ...dr,,, etc.). To describe the scattering interac
tion, H is split into a “free” partHy and an interaction pait: H = Ho+V.
This is done in such a way that the eigenstdtgsof Hy have the same
eigenvalues as the infout statésto),s = E,|a)as and Hyla) = Eyla).?
The requirement that the localized in/out states are asymptotically free
then be written, using (2.1), as

(2.2) e_iH’/dag(d)ld)in/outtzooe"”o’/dozg(a)la),

or schematically agx)in/out = Q(Fo0)|a), whereQ (1) = e'H'e~'Ho We
will see later that this definition of asymptotic particle states is flawed ins
far as the Mgller operatoiR (¢) are ill-defined. For the moment, however
| shall proceed in accord with the standard theory.

Elements of the§-matrix Sz, are probability amplitudes for transitions
between in- and out-states:

(23) Spu = outlBla)in = (BIQ"(+00)Q(—00)|a)

whereU (1, 1) = Q1 (1)Q(1o) is referred to as the evolution operator. Fo
small interactiond/, it is given by the power series expansion,

(2.4) U(t,to):Z((—i)”/n!)/ dtlf dey . ..

n=0
< / ATV, ()i (1) ... Vi),

where V;(t) = ¢'Ho'Veifol and the time-order operatdf orders
the V;(¢) terms by increasing time. The S-matrix operatorS is now
identified with U (+00, —o0) and represented schematically By =

T {exp(—i ffooo d:V;(t))}. In order to calculat&-matrix elements (2.3), an
explicit form for the in/out states remains to be had. The appropriate fo
and its relation to the statés) will be obtained in Section 4.
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3. COVARIANT PERTURBATION THEORY AND HAAG S THEOREM

In Section 4, | shall develop the LSZ formalism. This allov§s
matrix elements (2.3) to be calculated from time-ordered vacuum e
pectation values of interacting local quantum fieldgys, ..., x,) =
(QT{pu(x1) ... du(x,)}R), referred to hereafter asfunctions. Such -
functions involve interacting Heisenberg fieldg (x) and the interacting
vacuum stat¢2). One would like to express them in terms of the free field
and vacuum state that appear in the non-interacting theory, since these
easily manipulated. This is accomplished by the Gell-Mann/Low “mag
formula”. After a brief aside in Section 3.1, | present a development
the magic formula in Section 3.2 and indicate how it runs afoul of Haac
theorem in Section 3.3. This will motivate the move to the LSZ formalisi
and its attendant notions of asymptotic particle state and interpolating fie

3.1. The Persistence of Interactions

It turns out that the 2-point interactingfunction (Q|T {¢y (x)dy (¥)}|2)
has a non-perturbative representation in terms of free field elements
is instructive to run over the basic notions involved, as they provide
concrete manifestation of an essential feature of interacting QFT; nam:
the persistence of interactions. This feature is at the heart of the r
jor conceptual difficulties normally associated with the theory, includin
renormalizability, Haag’s Theorem and the Reeh-Schlieder Theore
Non-perturbative techniques will also come in handy in clarifying th
definition of an asymptotic particle state in Section 4.2 below.

Recall that, in the free theory, Heisenberg field solutions to the Kleir
Gordon equation are given By,

B ou, () =900 = f dryla(p)e"* +a' (p)e™].

These act on the free vacuyf, yielding, for instance, the single-particle
plane-wave function{Ol¢y, (x)|p) = e~*P, The time-ordered vacuum
expectation value of two such fields is the free Feynman propaga
—i (0T {¢n, (x)pu, ()}I0) = Ar(x — y; m?) which gives the amplitude
for a particle of mass: alone in the universe to propagate franto y. In
momentum space, this is given by,

(32 —i / dxe? D O T (g, (Vs ()}]0)

r(P) p2—m?+ie
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The position of the polep? = m?, in Ap(p) gives the particle’s mass.
Note also that the residue of the pole is unity.

In the interacting theory, the momentum space interacting Feynr
propagatorA (p) can be written a8,

(3-3) —i/d4x€i’”(QIT{¢H(X)¢>H(0)}IQ)

Z * 2 2
:—+ d T 5 . >
7k tic e up(u)pz_MZJ”g

whereZ = [(Q¢y (0)|p)|? is the field strength renormalization constan
This should be compared with the free field case (3.2). The first te
on the right of (3.3) describes the contributionAg (p) from the single
particle statep) with physical masg? = mghy. The second term describe:
additional contributions from the continuum of multiparticle states. (3
essentially is a sum of propagation amplitudes for states created frorm
vacuum byey (0). It differs from the free theory (3.2) by the presenc
of Z (which is unity in the free theory) and the multiparticle contributic
term. The existence of this term is a manifestation of the persistenc
interactions in field theory; the fact that interactions can never be tur
off. This entails not only that the field source interacts with itself (hence
mass renormalization of footnote 4), but that it interacts with everythi
else in the universe. The persistence of interactions is at the heart o
foundational issues surrounding renormalization, Haag’'s Theorem anc
Reeh-Schlieder Theorem. More will be said on the latter two issues be

The constang is the residue of the pole in the single particle contribi
tion to the 2-pointr-function. The renormalized interacting field is give
by ¢, (x) = 717¢H (x) so that the residue of the pole of the single partic
propagator fok, (x) is unity, in keeping with the free theory. In genera
an interacting field is renormalized so that the single-particle contribut
to its propagator has the same behavior near its pole as the propaga
a free field (i.e., the position of the pole is the physical mﬂﬁhﬁ/ and the
residue is unity).

For higher orderz-functions, unfortunately, non-perturbative tect
niqgues become intractable, and one is forced to resort to perturba
theory, to which | now turn.

3.2. Covariant Perturbation Theory and the Magic Formula

Recall that the task is to express an interactiAfginction in terms of free
r-functions; once this is doné;matrix elements can then be calculated |
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terms of freer-functions. To begin, we require that the ground si&eof
H, and the ground stat@) of Hy, satisfy H|Q) = Eo|Q2) and Hp|0) = 0.’
From solutionsp (¢, x) of the free theory, one definéseisenberdfields,
ou(x) = €ef'p(0, x)e *"; and interaction fields, ¢;(x) = ¢'f'¢(0,
X)e~iHo'  Both coincide with free fields at the reference time 0. The
interaction fields are given by (3.1) (insofar Hg is naively taken to be
the free field Hamiltoniar /). The Heisenberg fields are then given by,

(B4) ¢u(x) =M Mg (x)e! e = U 1) (X)U (1),

whereU (1) satisfiesU (1)U (1) = 1 andU (1)U (1p) = U(t, 10). U1, to)
has already appeared in Section 2 as the evolution operator between ir
states (wher& (1) = UT(r)).

It is now possible to transform an interactingfunction into a free
t-function. Consider the:-point function (Q|T{¢y (x1) ... du (x,)}|2).
Using (3.4), the Heisenberg fields can be replaced with interaction fiel
yielding,

(3.5) (AU T{p1(x1) ... d1(xy)
x exp(—i [*_dtV;(1))}U (—1)|K).

The interacting ground staf@) can be written in terms of the free ground
state|0) via:

(3.6) Q) = lim (e7E0=(Q|0) U (19, —1)|0)

(for details see, e.g., Peskin and Schroeder 1995, 86). After a bit
algebra one obtains the Gell-Mann/Low “magic” formula for covariar
perturbation theory:

(B.7) (QUT{¢n(x1)...on(xn)}SR2)

— i (OIT {1 (x1) . .. ¢y (x) XP(—i [, drV;(1))}]0)
T (OIT {exp(—i [7_ drV;(1))}10) '

The calculation of interacting-functions has now been reduced to the
calculation of freer-functions. The latter are easily calculated using th
form (3.1). (Wick's Theorem relating time-ordered products to norma
ordered products and contractions of fields, is employed at this stage
simplify the calculations.)
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3.3. Haag's Theorem

I now consider the ramifications Haag's theorem has for the perturba
expansion (3.7). After Arageorgis (1995, 119), the former amounts to t
results?

1. If two pure ground states are not equal, then they generate unit:
inequivalent irreducible representations.

2. If two local quantum fields are unitarily equivalent at any given tim
then both fields are free if one of them is free.

Result (1) indicates that the overlé@p2) of the free ground state and the
interacting ground state is incompatible with the existence of the unit
operatorU (z, tp). If we allow that (0|2) # O, then, by Result (1), the
interaction picture defined by (3.4) does not in fact exist. On the otl
hand, if we allow (3.4), then by the contrapositive of (1), the ground sta
must be equal, hence there is no overl@p2) = 0. This entails that the
Gell-Mann/Low magic formula (3.7) contains cancellations of infinity.
There is another place where infinities occur in the magic formula c
to Haag’s theorem. Note that the interacting fieds(x) in (3.7) should
be replaced with renormalized fields(x) = %quH(x), as indicated in

Section 3.1. However, by Haag'’s theorefh= |(Q|¢x (0)|p)|?> = 0, since
the overlap(2|¢ 4 (0)|p) must be zero (being the overlap of two element
(2|¢y (0) and |p), of different Hilbert spaces). Hence the renormalize
fields¢, (x) = %% (x) are singular.

Haag'’s theorem presents us with two types of problem. One focu
on concerns over mathematical consistency in dealing with infinities. T
other involves concerns over conceptual coherence and can be identifi
particular with the apparent incoherence of using the interaction pict
in a situation in which its use dictates its non-existence. The first ty
of problem | believe is not too interesting. Renormalization techniqu
are a dime a dozen. In particular, the infinite phase factor reldfg
to |0) in (3.6) was canceled at the expense of introducing the diverg
term in the denominator of (3.7). This latter represents vacuum-to-vact
transitions, or bubble graphs, in the language of Feynman diagrams;
these “cancel” similar bubble graphs generated in the numerator. The
shot is that, heuristically, in the perturbative expansion, only non-bub
graphs need to be calculated. Also, the infinities associated with the in
rals defining the mass and field strength renormalization constarasd
sm?, can be handled by imposing an ultraviolet cut-off, or by using one
several other regularization techniques (such as Pauli-Villars, dimensic
regularization, etc.). | submit therefore that if Haag’s theorem is indee
foundational problem for interacting QFT, it must be in the second conc
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tual sense. | shall now demonstrate that it is this second type of concey
problem that the LSZ formalism explicitly addresses.

4. LSZ FORMALISM

The LSZ formalism allowsS-matrix elements to be calculated from in
teracting r-functions. It is based on a weak convergence condition t
relates the free dynamics to the interacting dynamics asymptotically,
stead of perturbatively. In Section 4.1, | describe this condition and ho
avoids Haag's theorem. In Section 4.2, | indicate the nature of the resul
asymptotic particle states and how they may be considered free fo
practical purposes. Finally, in Section 4.3, | describe the LSZ reduction:
mula which provides the means by which thienatrix can be effectively
calculated and indicates the function of interpolating fields.

4.1. The LSZ Asymptotic Condition and Haag’s Theorem

The LSZ formalism replaces the interaction fielflgx) of Section 3.2

with asymptotic fieldsp,s(x). The latter are assumed to be free field
hence can be decomposed into the Fourier form (3.1) with asympt
raising/lowering operatora,«(p), al{(p) replacinga(p), a'(p). These are

given explicitly by inverting (3.1):

4.1) a;s(p) = _i/d?’xe_ip.x (god’as(x)»
aas(p) =i / dsxeip'x B)O(ﬁas(x),

where A SOB = AdyB — BdpA. The associated Hilbert spaces will b
denoted #;, and J,; with Lorentz-invariant vacuum statds2);, and
1€2) out-

The problem posed by Haag’s theorem is how to relate the asympt
fields¢ag(x) to the interacting Heisenberg fielgg (x) in a way consistent
with the assumption that the former are governed by the free dynamic
turns out that a strong convergence requirement of the form,

(42) ¢n() < Z¢n() = Poulx),

will not work (see below); this essentially reiterates the relation (3.4). T
LSZ weak convergence asymptotic condition modifies this by requiri
simply that matrix elements converge in the limit:
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43) lim i f dPxf*(0) Do(Bl 56 (¥)le) = (Blaownl fle),

Jim i / d*xf () Jo(Bl L ¢n (Dlat) = (Blaguyinl f1ler),
where|a), |8) are arbitrary elements of the Hilbert spageof interact-
ing states? Equation (4.3) can be taken as a definition of the asymptc
raising/lowering operatorgad f1, alJ f1, in terms of the limits of interact-
ing raising/lowering operators that act g6.'* Rigorous proofs exist that
show that the limits in (4.3) are well-defined. These assume the existe
of a mass gap and asymptotic completengés= Ho = Hin.*? For
the purposes of this essay, | shall be more concerned with (a) how (
avoids Haag's theorem and (b) how the particle states arising from
fields defined in (4.3) are free for all practical purposes.
To see how (a) comes about, the following theorem is useful.

THEOREM 1.|Q)in = |2) = |Q)out (Up to phase). The ground states ¢
H, Hin, Hout are identical up to phase.

Proof. Use (4.3) and asymptotic completeness to show tl
(Blaad f11€2) = 0, for all (8] in F.

Thus the antecedent condition of Result (1) of Section 3.3 is avoided.

Condition (4.3) avoids Result (2) of Section 3.3 in the fo
lowing sense. Strong convergence (4.2) implies the equa
Iimt—>:|:oo %(QWH ()P ()R2) = as{RPas(x)Pas(y)|2)as and this indic-
ates thatpy (x) is free (footnote 9), which contradicts the assumption tf
it is an interacting field. This equality does not hold for weak converger
(4.3). For a complete set of stat@$ and the weak convergence conditio
lim; - 200 %(Qlcbﬂ(x)ln) = (Q¢as(x)|n), we have,

(€2|@as(x) Pas(y) [£2)

. 1
=Z lim —(Qeu (x)n)(nlgy (y)I2)
- t—>Foo 7

) 1
# tll>r:|rz100 > 7 (Qen (X)|n)(nldn (y)]€2)

n

1
(Qpn (x)@n (y)]€2).

lim —
t—>Foo 7/

Hence no contradiction arises. The crucial observation here is thal
general, the sum of a limit is not equal to the limit of the sum.
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The right-hand side of the magic formula (3.7) can now be ref
mulated, replacing the free fieldg (x) and the free vacuunfO) with
asymptotic fieldg,s(x) and the interacting vacuuft). The calculation of
scattering amplitudes still involves expanding (3.7) in a possibly diverg
power series; however | argued above that these are calculational prob
that can be handled by renormalization techniques. The conceptual [
lem indicated by Haag’s theorem, on the other hand, is no longer pres
having been addressed by the introduction of asymptotic fields define
the LSZ weak convergence condition (4.3).

4.2. Asymptotic Particle States

In this subsection, | demonstrate that the ever-present contribution f
the multiparticle continuum can be neglected for asymptotic particle sta
Hence they are, for all practical purposes, free states.

DEFINITION 1. A localized asymptotic single-particle stédfe,is given
by,

(4.4)  |P)as= ald fo112),
wherea/] f,] is defined by (4.3).

THEOREM 2. The asymptotic single-particle stgie,sis free for physic-
ally meaningful time scales.

Proof. For the “out” case, operating on the left of (4.4) wit
(Q|%Z¢H(x/), one obtains the asymptotic single-particle plane-wa
function}

1 i e
@5) (@—=gutlphou= Im i [ e (el

1
X E¢H(x/)¢H(x)|Q>
=e P 4 Jim f du’o(u?)

E (p)+p0 —E,L(p)(t t') —le+lpot
2E,(p)

This should be compared with the free theory ciley, (x)|p) = e~ixp
(see below (3.1)). The second term on the right of (4.5) is the multiparti
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contribution. By the Riemann-Lebesque Lemth, vanishes if the in-
tegrand is a smooth function @f2. In general, however, it will not be
smooth at the pointg? = M?, where M? is the threshold at which the
n-particle state contribution begins. It turns out that the contributions fro
such multiparticle states in fact are washed out for physically meaning
time scales. It can be shown that, in the vicinity of the threshold m&ss
the multiparticle contribution to (4.5) goes as,

(46) (M|t _ t/|)—3/2(n—l)e—iEMn(p/)(t—l‘/)

whereM is some characteristic particle mass scalEor time differences

It —t'| > M™%, (4.6) is negligible, decreasing as an inverse power. F
example, a typical mass i® ~ 1 GeV, whenceM ! ~ 10722 sec (in
“natural” units with#i = 1). Then for|t — | ~ 1071 sec>>» M1,
the 2-particle contribution from (4.6) is on the order of4%) and the
contributions fromn-particle statesy > 2, will be even smaller. Hence,
for such time differences, the asymptotic stgig, is, for all practical
purposes, free and satisfies the same normalization conditions as the
single-particle stateu(p’|p)out = (27)32Ep83(p’ — p). A similar analysis
holds for the in-stat¢p);, as well1®

4.3. The LSZ Reduction Formula and the Role of Interpolating Fields

I now indicate how the LSZ weak convergence condition (4.3) allow
S-matrix elements to be expressed in terms of interactiffgnctions.
Consider theS-matrix elementy(Bla)in = out{P1---Pul1...0n)in fOr

m in-coming localized particles witith momentumg; and» out-going
localized particles witlith momentunp;. We want to express this in terms
of the (n + m) t-function (Q|T{py (x1) . .. ¢u (x,1m)}2). The strategy is
to extract, out of the infout multiparticle states, individual particle state
Pi, G;, one at a time, using the asymptotic raising/lowering operators (foc
note 10, smeared versions) and then use (4.3) to replace these oper:
with interacting fieldspy (x). This is repeated until the infout multiparticle
states have been reduced to the vacuum and we are left wiflraction.
The end result is the LSZ reduction formula, given here for scalar fields

(47) out(f)l ... f)nlql . qm>in
= (i) Z)" f dxr e d fa 3D o fo O By — K,

X(QUT{pu(x1) ... ¢ ()P (Y1) - - - du (ym)}2)
XKy oo Ko fE (D) - i (),



388 JONATHAN BAIN

where K, = 82 + m? is the Klein—Gordon (KG) operator (for details
consult Kaku 1993, 141-5).

To put (4.7) into a more suggestive form, one can take the Fou
transform of both sides. This turns the KG operatg&tsinto factors of
the form(p? — m? +ie). It also introduces a momentum-conserving del
function §4(p; — ¢;) due to the translation-invariance of thefunction.
This serves to force all momenta on-sheif (= m?), and one obtains the
form,t’

(4.7) oulP1.--PalQ1---Gu)in = (i//2Z)" T (21)*
5t (zq . zp) [ia? =2 +ie
m n J
XT(P1.+ Pn>q1---Gm) l_[(plz - mii +ig),

wheret(p1...p,, q1...q,) IS the momentum-spaaefunction. Isolating
it then leads to the behavior,

n . Z
4.8) t(p1...pwq1..-Gn) — (Hl—f)

2 2 ;
22 —
=1 Pi My, TLE

Pi—=Mp;

1
<11 # out(P1 - - Puldi- - Auin.

o1 qj —mg, +1¢

Thus theS-matrix elementy(ps . .. P.141 - - - Ou)in IS the coefficient of the
multipole term of the on-shell limit (vizp?, g> — m?) of its associated
(momentum-space)-function. This form of the reduction formula is in-
structive insofar as it indicates the role of the interacting fielggx).
These are referred to as interpolating fields insofar as they may be
to interpolate between asymptotic particle states. According to (4.8), €
interpolating fieldgy (x;) serves to produce a pole pf = mf,l_ in the
Fourier transform of the-function. The position of this pole is the mass ¢
the particle associated with the field. Intuitively, since the form of the p
is just the form of a propagator, an interpolating field serves to produc
propagator for its associated asymptotic particle.
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5. NON-UNIQUENESS OF INTERPOLATING FIELDSPARTICLES WITH
NO UNIQUE FIELDS

In this section | indicate how the Duality Thesis fails insofar as the partic
content of an interacting theory underdetermines the field content: To ¢
stable particle there corresponds an infinite number of interpolating fiel

In the LSZ reduction formula (4.8), the interpolating fielgdg (x)
explicitly appear in the Lagrangiant = 3(0,.¢n)? — 3m?¢? + L.
Furthermore, they satisfy the conditid®|¢y (x)|g)as # 0O, for each
asymptotic particle statig),s It turns out that this is a sufficient condition
for any local fieldO(x) to be an interpolating field folq),s, regardless
of whetherO(x) appears in the original Lagrangian, provided only the
O (x) transform appropriately under 10(1, 3). This motivates the followin
definition:

DEFINITION 2. An interpolating field associated with an asymptoti
single-particle statéq),s is a local quantum field (x) that transforms
irreducibly under 10(1, 3) and satisfi¢€| O (x)|q)as # O.

The following theorem establishes this definition:

THEOREM 3. LetO(x) be any local field operator transforming irre-
ducibly under 10(1, 3) with(Q2|O (x)|0)as # 0, where|q)s is a stable
asymptotic single-particle state. Théxx) can be used as an interpolating
field for |q)asin the LSZ reduction formula; i.e@ (x) contributes a pole
at p? = m7 to then + 1-pointz-function (QIT{O(x)A(y1) . .. A(ya)}IR2),
whereA(y;) local field operators.

Proof. See Appendix for a brief outline. Detailed proofs are given i
Weinberg (1995, 428-39), and Nishijima (1969, 332-5).

(Theorem 3 can be qualified even further. It can be shown that the fie
O (x) for which (2|0 (x)|q)as # 0 form an equivalence class under loca
relativity, whereO (x) is local relative to0’(y) just when[O(x), O'(y)] =

0, for spacelike(x — y) (see Emch 1972, 293; Haag 1992, 103 and re
erences therein). Such equivalence classes are called Borcher’s cla:
Hence, to every asymptotic single-particle stagsthere corresponds a
Borcher's class of interpolating fields.)

As an example of a well-defined asymptotic particle state with r
unique field associated with it, take the pion. It is stable, has well-defin
g-numbers, and is given by an irreducible representation of IO(1, 3). Her
the state$p, )asare well-defined. By Theorem 3, any local irreducible fiel
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IT(x) that satisfiegQ2|TT(x)|p,)as #Z O serves as a pion field insofar as i
can be used to interpolate between in/out asymptotic pion states.

It is tempting to object at this point by claiming that the duality thes
does not apply to pions since they are composite particles, reducible, u
the auspices of QCD, to bound states of quark/anti-quark doublets.
reply is two-fold. First, pion fields have as much right to elementary sta
as quark fields insofar as pion fields appear in effective Lagrangians
low-energy pion scattering. (One might object here that quark fields
“more elementary” insofar as QCD applies over a much wider range
energies than effective pion theories. However, there is growing conset
that QCD and the Standard Model in general are themselves effective
ories that approximate a more “elementary”, at present unknown, the
that applies at even larger energy scales. The duality thesis, phrase
terms of elementary particles/fields, is then either vacuously true or n
be contextualized to a given theory.) Second, it is problematic to desci
pion scattering via QCD, for quark fields(x) are not interpolating fields.
There are no particle stat@®) s such that{Q2|y (x)|q)as % 0. | now show
how this comes about.

6. QUARK CONFINEMENT. FIELDS WITH NO PARTICLES

In this section | indicate how the Duality Thesis fails insofar as there
good reason to believe that there are fields that have no correspon
particle states. These are the quark fields that appear in the Lagrangic
quantum chromodynamics (QCD). To a good approximation, the poter
between two quarks grows linearly with increasing distance. The effec
that quarks cannot exist in asymptotic free single-particle states. This
non-perturbative prediction of the lattice approximation to QCD.

In brief the amplitude for a quark/anti-quark creation/annihilation eve
can be identified as the continuum limit of a lattice Wilson loop observal
W(C). The latter obeys the Area Law for Wilson loops on a lattice:

(6.1) W(C) =e K4,
whereA is the area enclosed by the lo6@ndK is a constant® This Area
Law can then be used to determine the form of the interaction potdftial
between the quark/anti-quark pair. It turns out that the potential is linea

the separation distanae

(6.2) Eo(R)=KR
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U(n+afi+ad, n+ad)

A A
n+ad < n+aji+ad
U(n+a6, n)y )TU(n+aﬁ, n+a'h+ai\>)
A
n >— n+ap
U(n, n+ap)

Figure 1. Elementary plaquettg.

Hence confinement results and asymptotic particle states for quarks ca
exist. In the remainder of this section, | shall briefly run through the ce
ral ideas. Readers willing to accept the above statements without fur
comment may skip ahead to Section 7.

Wilson loops are gauge-invariant observables that appear in Ya
Mills theories. In non-Abelian theories like QCD, for which the gauc
fields A,(x) do not commute, Wilson loops are given BY(C) =
P{explig §. dx" A, (x))} (whereP is the path-order operator). Intuitively,
W(C) can be viewed as a phase shift experienced by a source due to
tion around a loog in a background gauge field. When Yang—Mills theor
is put on a lattice, Wilson loops are given by the expectation VA(E) =
(Tr ], Un), where the loogC has been divided inte discrete linksU,,.X°
This expectation value can be calculated using functional integration te
niques (Creutz 1983, 36). The resulti&dp) = z=* [(dU)Tr{U,}e~5,
for an elementary loo@p (such loops enclose elementary plaqueftes
(footnote 19)). HereU, is the product of the links iMp, Z is a nor-
malization constant, an8l is the lattice Yang—Mills actio? To calculate
W(C) for an arbitrary loopC, it turns out that the only contributions to
the integral come from plaquettes that fill the area enclose@.ByThus
to first order we haveV(C) = W(3dP)A/%*, where A/a? is the number
of plaquettes filling the ared enclosed byC (a? being the area of each
plaquette). The Area Law (6.1) then follows after a bit of algebra.

To make the connection with quarks, consider the loop in Figure 2, «
it (R, T). It can be interpreted as representing two static color charge:
g’ (a quark/anti-quark pair) created at time 0 a distancer apart, and
subsequently annihilated at time= T'. It can be shown that the amplitude
for the g¢’ event just described is the continuum limit of the expectatic
value given by the lattice Wilson loof (R, T). The interaction potential
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'

(O,T)=Dq < q(R,T):C

Y A

0,00=A > (R,0)=B
q q
Figure 2. Quark/anti-quark loop.

between theyg’ pair can then be determined by means of the Area Lau
(6.1).

Let W(r) = ¥(0, £) Peis o &Axny (R 1) be theqq' pair operatof?
Then the amplitude for thgq’' event is given by(O|¥ ™ (T)W¥ (0)|0) =
Q(T, R). One now contracts the quark/anti-quark fields to produce tw
propagators of the forns-(y — y’) (via Wick’s Theorem). It can be
shown that these propagators are proportional to exponential terms
volving the time componentdy(x, ¢) of the gauge fields in the large
mass (viz. static) approximatidi.The amplitude2 (7, R) then takes the
form <O|Peigf0R dxAl(x,t)PeingT drAg(x.1) p p—ig flgdxAl(x,t)Pe—ig fTOtho(x,t)|0>,
and this is identifiable as the continuum limit of the lattice expectatio
value (Tr{UapUscU} UL )} = W(R, T).

The Area Law forW (R, T) can now be used to determine the behaviol
of the interaction potential betwegrandq’ (see, e.g., Kaku 1993, 513-4).
Inserting a complete set of states if2¢7’, R), one obtains,

Y O (D)) (n ¥ (0)|0) = D O[T (O)]n)[Pe .

n

SinceE, > Egfor all n, in the limit T — oo (i.e., for large loopsg, T)),
the ground state enerdyp dominates. Hence,

(6.3) Tlim Q(T, R) ~ e Eo®T

Comparing (6.3) with the Area Law (6.1), one obtains (6.2).

7. DISCUSSION THE REHABILITATION OF PARTICLES

Given that the patrticle/field duality thesis should be abandoned, are we |
with anything more to say about what interacting QFT is describing, oth
than the rather bland statement that it describeth asymptotic particle
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statesand interpolating fields? | believe that any stronger statement
simply not well-motivated. In particular, | believe that fundamentalism,
either the field or particle type, is not forth-coming. | have claimed that t
notion of a particle as a localized asymptotic LSZ state is well-motivat
insofar as it addresses the problem at the heart of the interacting the
manifested by Haag’s theorem. In this section | suggest that such a na
also addresses a recent critique of the particle interpretation based ot
Reeh-Schlieder theorem. This is discussed in Section 7.2 below. Sec
7.1 offers brief commentary on the problems raised by Teller and Redh
against a particle interpretation of the LSZ formalism.

7.1. The Redhead/Teller Objection

Teller (1995, 123) charges that the LSZ formalism restricts what we ¢
identify as particles to asymptotic times,. thereby significantly limit-
ing the interpretation of the [interacting] theory in terms of [particles]
(his “guanta”). (See, also, Redhead 1988, 21, for a similar assessme
This charge is based on the fact that, while an occupation number
erator can be constructed for the asymptotic in/out particle states,
such operator can be constructed for the interacting states. This is dt
the fact that the un-renormalized interacting fieli}s(x) do not satisfy
the canonical commutation relations. To see this, note that the inter:
ing Feynman propagator in position space is givendy(x — y) =
—i{Q|[¢y (x), p (¥)]I2), and the time derivative of the free propagatc
is ;i Ap(x — y) = i83(x — y). Taking the time derivative of the Fourier
transform of (3.3) then yields,

(7.1) [ra(x), du (] =i83x —y) (Z +/ d,l,LZ,O(pLZ)) ,
M?

where ny(x) = 09,9y (x). For the free field caseZ = 1, and the
multiparticle contribution is zero. As indicated in Section 3.1, the inte
acting fieldsgy (x) should be replaced with renormalized fieltigx) =
\/iquH (x). However, as (7.1) explicitly shows, this absorptiorZahto the
interacting field only reproduces the correct single-particle contribution
the commutator. It is the existence of multiparticle contributions that pi
vents (7.1) from having the canonical form. This consequently prevents
renormalized interacting fields from commuting with the free Hamiltonia
Thus an occupation number operator cannot be constructed fogihe,
which leads Redhead and Teller to conclude that they cannot be give
particle interpretation
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| suggest that a particle interpretation should not be dependent on
existence of a (free field) occupation number operator. To require ott
wise seems to me to be placing undue emphasis on the free theory. D
the persistence of interactions, any notion of particle derived from the f
theory will be hard to extend to the interacting theory. Instead, | propc
using the definition (4.4), that was motivated directly by how the inte
acting theory is formulated, as the basis for a particle interpretation.
particular, | suggest that a “particle” be considered a system that minim.
possesses an asymptotic state (i.e., a system that is free for all prac
purposes at asymptotic times). Whether or not such a system has a cc
ponding number occupation operator, | would claim, is irrelevant. Unde
literal construal of the LSZ description of scattering experiments, there
two types of system that we might consider to be particles: “asymptof
particles defined directly by (4.4), and “interacting” particles. These lat
may be defined in analogy with (4.4) by,

(7.2) 1PVt = ap [ fo, 1112),

whereai’[n[ fp, t1 is an “interacting” raising operator (see footnote 11).
suggest that both types of system can legitimately be called particles i
far as both types have well-defined asymptotic states ((4.4) is by defini
an asymptotic state; (7.2) has (4.4) as an asymptotic state). It turns out
“asymptotic” particles so-defined also possess number occupation op
ors whereas “interacting” particles do not. My point is that this deficien
should not prevent us from interpreting the latter as particles. Furtherm
| suggest viewing both types of system not as distinct types of partic
but rather, as different states in which a particle can be found; viz.
asymptotic (free for all practical purposes) state, and an interacting st
To avoid confusion, | shall use the term “LSZ patrticle” to refer to such
system capable of possessing both an asymptotic state (given by (4.4)
an interacting state (given, schematically, by (7.2)). The main claim of t
subsection, then, is that a viable particle interpretation of interacting C
can be had, based on the notion of an LSZ particle (by this | do not m
to say that only LSZ particles appear in the ontology of QFT; | also cla
that fields appear as well).

7.2. The Reeh—Schlieder Objection: Localizability and the Vacuum

Recently Redhead (1995), Malament (1996), and Arageorgis (1995) |
developed an argument against the notion of particle in interacting fi
theory. In brief, they represent a particle by a projection operBtonto

the appropriate single-particle subspace®f(Think of P as the outcome
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of a particle detection measurement.) After Arageorgis (1995, 384),
must satisfy the following constraints:

(1)  (QIP|Q) =0,
2) (V| P|¥) =1, forsome¥ € J.

These are interpreted as stating that the vacuum is empty and the pa
exists in some statd, respectively. By the Reeh—Schlieder Theorérif,
P is a local observable (viz. an element of a von Neumann algeljra)
for O a bounded open region of spacetime), then (1) imghes 0, hence
(1) and (2) are inconsistent. Moreover, the assumption Ehét a local
observable can be relaxed, and we can require only that,

) [A, P] = O, for all local observablest € R(0O’) and some
bounded open regio@’.?®

It can then be shown that (3) is inconsistent with (1) and (2). Tt
is taken to imply that the notion of particle given by (1) and (2) com:
with it a radical holism, given by the denial of (3), for the regi@h may
be spacelike related to the region in whiéhfinds support. Malament
concludes,

To whatever extent we have evidence that [Nature] does not allow such correlati

we have evidence that quantum mechanical phenomena must ultimately be giv
field-theoretic interpretation. (1996, 2)

The moral that Redhead draws is slightly stronger:

[Particle states] are an idealization which leads to a plethora of misunderstandings &
what is going on in quantum field theory. The theory is about fields and their lo
excitations. That is all there is to it. (1995, 135)

| want to suggest that this moral is a bit excessive insofar as an L
particle is localizable for all practical purposes (FAPP-localizable, he
after) in the asymptotic regime; i.e., an LSZ particle satisfies conditic
(1)—(3) above in the asymptotic regime, for all practical purposes.
discussed in Section 4.2, for time scales on the order of316ec, the
asymptotic localized single-particle stafe,s satisfies,

(l/) (Qm)as = 0,
) aslPIP)as= (27)%2Ep8°(p" — ).
Furthermore,

(3)  [pad f1, Padgll — 0, as the distance between the supportg of
andg goes to infinity.
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For a proof of (3 see Haag (1992, 85). Strictly speaking) (¢quires that
the asymptotic smeared fielggd /] be “almost local” operators; i.e., the
functions f andg decrease rapidly at infinity. But this is what was assum
in the construction of the asymptotic staip,s

| submit that anything more than FAPP-localizability in the asymptot
regime is too much to expect for the interacting theory. There are t
possible objections to this:

D) FAPP-localizability is not good enough for the notion of .
particle;

2) Evenifitis good enough, the interacting states of LSZ particl
do not possess it.

(1) objects to treating LSZ particles as localized in the asymptotic regi
in so far as they still possess finite exponential “tails”, regardless of hc
ever fast these tend to zero, that may span spacelike separated region
this possibility should not be countenanced under any reasonable de
tion of localizability. My response is that such tails are a consequence
the persistence of interactions. To require no tails is in essence to rec
no interactions. This seems to me to hold the free theory as a parac
from which to draw interpretive conclusions. It certainly is possible

claim that, by definition, the notion of particle only makes sense in t
free theory. What seems to me to be a more interesting project is to
how much of the particle concept can be retained in the interacting the
while minimizing damage to intuitions about localizability. This respon:
holds as well for objection (2) above. The intuition that localizability |
something we would expect of a particle regardless of the state it mi
find itself in just fails for the interacting theory. This does not mean tf
we have to give up the notion of particle completely. | suggest that L
particles provide a half-way house that effectively bridges the concepit
gap between the free theory and the interacting theory.

It might further be objected that FAPP-localizability is a property th
philosophers of physics should shy away from. FAPP-localized partic
may be justified for the practicing physicist, but their application
foundational issues may be questionable. In particular, the notion of FA
localized particles runs the risk of being labeled ad hoc, appealed to sin
to avoid the consequences of the Reeh—Schlieder Theorem. But this ct
is easily defused. Specifically, to the extent that we are concerned with
conceptual difficulty posed by Haag's Theorem, we should be willing
adopt the notion particle as defined by the LSZ weak convergence |i
(which, itself, is certainly not ad hoc: it has been rigorously proven
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exist). It then turns out that in doing so we are able to avoid a furtl
conceptual difficulty posed by the Reeh—Schlieder Theorem. (One m
argue that both difficulties stem from the same source; namely, the

sistence of interactions in interacting QFT; hence, they are not comple
independent of one another. My hunch is that they are independent en
on whatever criterion of independence one might adopt to explicate
notion of ad hocness.)

8. SUMMARY AND FURTHER DISCUSSION

In this essay, | have argued first and foremost that the particle/field duz
thesis cannot be applied to interacting quantum field theory: any atte
to give it a precise formulation in the interacting context fails. | took tt
thesis to be the general claim that to every field there corresponds a ur
particle, and vice versa; and then considered various ways by which
notions of field and particle could be cashed out. | argued that a literal re
ing of fields as those objects appearing in the Lagrangian of one’s the
is problematic. | further argued that the standard Wigner group-theor
definition of particle is problematic in the interacting theory context.
then considered a notion of particle obtained from the LSZ formulation
interacting QFT; namely, that based on the notion of an asymptotic part
state. | argued that there is a very good reason for adopting this formal
namely, that by adopting it, one is able to avoid the conceptual difficL
posed by Haag'’s Theorem. | then demonstrated that, given such a nt
of particle, and the corresponding notion of interpolating field, the dua
thesis is wrong in so far as,

(a) to every asymptotic particle state there corresponds an inde
ite number of interpolating fields;

and

(b) there are fields with no corresponding asymptotic partic
states.

Finally, 1 argued that the LSZ notion of asymptotic particle state he
to address the locality problem raised by the Reeh—Schlieder Thec
for particle interpretations of interacting QFT. In particular, if we allo
“particles” to be “LSZ particles” which may exist in asymptotic states a
interacting states, then locality can be retained in FAPP-form for asyi
totic states, and this is the best one can expect given the nature o
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interacting theory. In this last section, | shall consider a few potential
jections to claims (a) and (b) (I thank an anonymous referee for rais
these concerns).

8.1. Objections to (a)

One might wish to read “field” in the duality thesis as “physical field”, ar
then reject claim (a) in so far as interpolating fields are not physical fiel
rather, they are formal artifacts; surplus structure of the formalism. Perh
the duality thesis survives in some form in which a unique set of “fie
facts”, which underlie the indefinite number of possible interpolating fiel
of a given asymptotic particle state, are uniquely correlated to that s
(in particular, one might associate the essential structure underlying
notion of a field with a Borscher’s equivalence class of interpolating fiel
(see Section 5)). | would agree that this is one way of making object
(a) to the duality thesis disappear. However, | would add that it assum
particular interpretational stance with respect to interacting QFT, one 1
I shall now attempt to make explicit.

Certainly part of being a realist with respect to QFT is to read the tt
ory literally.?® A realist takes the theoretical claims that QFT makes abc
fields and particles at their face value: “[Theoretical claims] are not to
understood either as mere assertions of verifiability, as covert, comy
reports on observation, or as meaningless devices for the systematiz
of data” (Horwich 1982, 182). Part of the task facing the realist then is
decide just how to read QFT literally. In particular, how should a semar
realist approach the duality thesis? It seems to me that a semantic
realist will claim that the thesis just contends that “field facts” are unique
correlated with “particle facts” and be content with leaving it at that. Tl
semantic realist, on the other hand, wants to know just what a “field fact
the theory amounts to. My concern with the duality thesis is a concern v
how to read it through semantic realist’s eyes. | argued above in Sectic
that a literal construal of a field as a particular mathematical object app
ing in the Lagrangian of one’s theory is problematic for use in the dual
thesis. Moreover, even if we grant that such objections are not worrisc
for a semantic realist, and that by “physical field” we mean “mathemati
field appearing in a theory's Lagrangian”, there is still a problem. Nc
that interpolating fields may occur in the Lagrangian of one’s theory. T
electron fieldy (x) that occurs in the Dirac—-Maxwell Lagrangian (Sectio
1) is a perfectly acceptable interpolating field in so far as it can be use
interpolate between asymptotic electron states in the LSZ formalism. W
Theorem 3 of Section 5 demonstrates is that it is not unique in this abil
The point here is that, if one is motivated to consider the fields that apf
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in Lagrangians as “physical” fields to which the duality thesis applie
then one should also allow that the duality thesis applies to interpolat
fields as well. Objection (a) then shows that a duality thesis, so-inform
is incorrect. (Again, this is not to say that some form of duality thes
under which “field facts” are uniquely correlated with “particle facts” i
unobtainable. My specific claim is just that the duality thesis fails, r
only for standard semantic realist construals of “field” and “particle”, b
also for, what I consider to be, more well-informed construals (viz., thc
informed by the LSZ formalism).)

8.2. Objections to (b)

An epistemic realist might question claim (b). One might argue that ev
ence for quark confinement (and thus evidence for treating quarks as fi
with no corresponding particles) is not on par with evidence for treati
guarks as particles. Evidence of this latter type arguably comes from ex
iments involving deep inelastic scattering in which high energy partic
scatter off of the constituents of nucleons in a manner that implies t
these constituents behave like free point-like particles. Such experim
originally contributed to the acceptance of the QCD theory of quark int
actions. They also established that QCD is characterized by asymp
freedom. This is a property unique to non-Abelian gauge theories |
QCD, which entails that, at high energies and short distances, the couy
constant of the theory goes to zero. In the QCD context, this means
the strong color force experienced by quarks weakens as the distanc
guark separation decreases. In the limit when two quarks, considere
point-particles, coincide in spacetime, the coupling they experience
to the strong color force is zero, and they can effectively be treatec
free point-particles. Conversely, at low energies and large distances,
coupling grows linearly and confinement results. Hence perhaps the nc
of an LSZ particle is not adequate, since it does not allow us to treat qu:
as particleg! In particular, the property of possessing an asymptotic st
may be inadequate to the particle concept.

| have two responses to this objection. First, it is not that apparent t
to flesh out the intuition that quarks are particles if it is motivated by de
inelastic scattering experiments. Asymptotic freedom dictates that que
behave as free point particles in the limit of large energies/small distan
In effect, to treat two quarks as free particles, they have to coincide
the same point in spacetime. Such entities do not seem very much
particles. In any event, | would again stress that my primary claim
that, under standard semantic realist interpretations of interacting QFT,
duality thesis cannot be maintained. This is not to say that one car
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treat quarks as particles. It is just to say that one cannot maintain a ¢
particle/field interpretation of interacting QFT that applies at once to fie
theories characterized by asymptotic freedom, like QCD, as well as to f
theories that are not so characterized (like quantum electrodynamics).
claim is that a non-dual particle/field interpretation of interacting QFT
viable based on the notions of LSZ particle and interpolating field. L
der this interpretation, quarks cannot be viewed as particles, but mus
viewed as fields.

9. CONCLUSION

The persistence of interactions indicates that particle states in the ir
acting theory will always possess non-vanishing exponential tails, eve
asymptotic times, and the Reeh—Schlieder theorem indicates that such
may span spacelike separated regions in spacetime. However, these
alone do not dictate against a coherent notion of particle, as | have
tempted to demonstrate. Such a coherent notion of particle may be det
from the asymptotic particle states that appear in the LSZ formalism
interacting field theory. | have argued that there is a very good reason
adopting this notion, in so far as the LSZ formalism solves the concept
problem generated by Haag’s theorem.

More generally, | have argued that particle/field duality is incohere
in interacting field theory in so far as, given notions of particle and fie
motivated by the interacting theory (as opposed to the free theory), (1)
every particle there exists an infinite number of corresponding fields, :
(2) there are fields with no corresponding particle states.

Finally, I conclude that, if we are to take interacting field theory se
iously (and not view it as a stop-gap temporary fix en route to a me
well-behaved theory), then we should look to it, as opposed to free fi
theory, to inform us as to what the world would be like if it were true.

APPENDIX

Theorem 3, Section 5. LeD(x) be any local Heisenberg field op-
erator transforming irreducibly under 10(1, 3) witf2|O(x)|Q)as #
0, where|q),s is a stable asymptotic single-particle state. Th@(x)
contributes a pole ap? = m5 to the n + 1-point z-function
(QUT{O(x)A(y1) ... A(y)}IR), where A(y;) are local Heisenberg field
operators.
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Proof. In momentum spacet(pi,qi...q,) = [d*xd*y;...
d*y, el P a4y (QIT{O(x)A(y1) . .. A(y,)}|R2). Now insert a
complete set of states £ |Q2)(Q2| + [ dz,|Q)as addl + > (Multiparticle
states) and consider the single-particle overlap term with the time ordel
x0 > max(yl)

(A l) /d4 y e (P X—qry1——qn- yn)e(x maX(y, ))

X / dry (RO () [A)as adAIT{A(y1) - .. A(yn)}I$2).

The term (2|0 (x)|q)as can be written ag2|e’”* 0 (0)e™ 7 ¥|q)as =
e 1 (Q]0(0)|q)as and the O-function is given by O(x) =
[ dwe'®* Equation (A.1) then becomes,

2ni(w—ie) "

(AZ) /d4y1 e d4ynei(q1'y1_“‘_4n'}’n) / dfq

1 4 i(p—q)x jio(xO—max(y?))
X/dem'(a)—ig) /d xe e
X ([0 (x)|Aas adAIT{A(Y1) - .. A(Yn) }E2).

The [ d“x integral can now be done, yielding a factor @r)*s3(p —
DS(po — Eq + w), whereEq = ¢° = /q + m2. Hence we have,

(A.3) / d*yy...d*y, ey = manyn) / dr, (27)%5%(p — @)

/d 8(po E, + w) p—ioma?)
i(w—1ig)

X (|0 (x)[Q)as adQIT{A(y1) - .. A(a)}[$2)

Qe Er=po) max(y?)

— d4)’1 . ‘d4ynei(t11-y1 _"'_qn‘)’n)(ZE y~1a :
/ " i(E, — po—ie)

X (210 (x)|Qas(AIT{A(Y1) - - - A(Yu) }$2).
Now note that

1 _ Ep+p0
Ep_PO—i8 Elz,—p(z)—ié‘ po—Ep
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2E, —2E,

2 2 2 _; 2 24 jg°
p*+mg — py—ie  pc—mgtie
Hence

[
T(P1 1 dn) > ——5(R10(0)[0)as
pc—mg P —mq

Xfd4y1---d4ynei(‘“'yl_"'_q”'y”) as(AI T{A(y1) ... A(yn)}I2).

The proof is complete since this is the behavior advertised by the theor

the field O(x) has been “extracted” from thefunction_ and, in doing

so, produces a momentum space Feynman propaggfeg; i.e., O(x)
ml

produces a pole gi* = m?.

NOTES

1 In this essay, 4-vectors are given by(x?, —x), bold-face denotes 3-vectors, and the
Lorentz covariant measure is denoted by, d= (27)~3d3p/2E,, where Ep = p0 =
VvpZ+m? and po > 0. Single-particle states are thus normalized according[{w) =
(2m)32Eps3(p — p').

2 An irreducible representation of the Poincaré group may appear too abstract a nc
to define a particle. The intuition motivating such a definition is based on two esser
properties such irreducible representations possess that we minimally associate wit
notion of a particle. First, they are uniquely labeled by 2 parameters associated with r
and spin (or helicity for the massless case). Second, they are invariant under 10(:
transformations, hence they conform to our intuitions concerning the continuity of parti
identity through spacetime.

3 Developed originally in H. Lehmann, K Symanzik and W. Zimmermann: 1957, ‘On t
Formulation of Quantized Field Theories INuovo Ciment®, 319.

4 In general, an interaction will shift the mass, so the spectrum& ahd Hg will not

be identical. To mask this effect, a modified split = Hé + V' can be made where
V' =V —A, Hj= Ho+A, andA is the energy difference corresponding to the mass shi
For instance, if the mass H is m% (the bare mass) and the mass shift due to interaction
3m?, then, under the modified split, the mass occurringijis m% +8m? = m%hy. This

is the physical mass that is actually measured. Note, too Hhateed not be identical to
the free Hamiltonian. The split is made so that the interactias weak compared télg,
allowing Hy to be treated as the zeroth-order approximatioH to

5 Here and below free fields(x) are distinguished from interacting fielggx). In what
follows, fields are defined at a point. When it becomes crucial to the exposition, they
appear properly smeared with appropriate test functions. Findllydenotes the (truly)
free Hamiltonian, whichHg, in general, denotes the zeroth-order approximation to tt
interacting Hamiltoniarf .
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6 This is the Kallén-Lehmann spectral representation (for details see Peskin
Schroeder 1995, 211-6). The derivation is non-perturbative, requiring only Lorentz
variance and unitarity of the @¢ function. The particular form (3.3) also assumes th
existence of a mass gap between the vacuum and the lowest energy state. The sf
function p (11?) is given byp (11?) = ¥, (21)8(1? — m2)1(Q¢ g (0)|)|?, where the sum
is over all states. The lower bound of integratit#f is the threshold mass at which the
n-particle contribution begins, far > 2.

7 The physical vacuun®?) is the state of lowest energy; the bare vacuQjris the “no-
particle” state.

8 Given originally in Gell-Mann and Low (1951), ‘Bound States in Quantum Fiel
Theory’, Physical Reviev84, 350. For further discussion consult Haag (1992, 67-71).

9 This follows the account given in Emch (1972, 247-53). See also Haag (1992, 55
and Streater and Wightman (1979, 165-6). In rough outline, the proof of (2) in the la
is based on two subsidiary results. First, given two irreducible figds), ¢1(x) defined
on Hilbert spaces#;, #¢» and transforming under irreducible representatiohsA, a),
Us(A, a), of 10(1, 3) with unique invariant vacuum stat@q, |0)2, and related by a
unitary transformatiorV at some time according to®, (¢, x) = Ve1(t, x)V‘l, one
can prove that the ground states are related'|By, = V|0)1, wherec is a complex
constant with modulus 1. This implies that the vacuum expectation values of the fie
at a given timer are equaly (0|¢1(x1) ... d1(xn)|0)1 =2 (Olp2(x1) ... d2(xn)|0)2. The
second result shows that, gf(x) is a scalar field for which the vacuum is cyclic, anc
Olp(xX)p(MI0) = iAT(x — y; m?), m > 0, theng (x) is a free field of mass:. Result
(2) then follows: If¢1(x) is a free field of mass: > O related to another field>(x) by

a unitary transformatiogo (x) = V¢1(x)V_l, and if g1 (x) and ¢y (x) transform under
irreducible representations of 10(1, 3), thgs(x) is a free field of mass:.

101n (4.3) the smeared versions of (4.1) have been used:

@1)  aldfy)=—i / 3 fo(x) 3 oastx).

aadfpl =1 [ dxf ) Tosadn),

where fp(x) is a normalized positive frequency wave packet solution of the Klein—Gord
equation.

11n analogy with (4.1), footnote 10, the objects appearing within the limits on the LH.
of (4.3) can be identified as interacting raising and lowering operatgls, 1, a;;t[f,

t]. They are not, however, operator-valued distributions insofar as they depend on 1
(¢ (x) is not a solution of the Klein—Gordon equation). This can be fixed by smeari
them with smooth functions of time.

12 See Haag (1992, 88-92) and references therein.

13 N Y 2 0 _ [2 2
Where E;, (p)) = /P’ + uns, Py = p’ +mphy and a form of the spectral

representation (footnote 6) has been used.
14 Briefly, if f(w) is a smooth function which vanishes @as— =oo, then its Fourier
transform vanishes in the limit— oo: ff;f dof (w)e™®* =2 0.

—

15 Here I rely on the proof in Brown (1992, 293). Neaf = M2, the spectral function
behaves likep (112) ~ (u? — M2)1/2(37=5) ExpandingE,, (p') aboutM? and substituting
into the multiparticle contribution to (4.5), one obtains, after integration, the behavior (4
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16 For localized asymptotic single-particle statpsas the same analysis holds since the
wave-packet functiongp (x) decrease rapidly outside the velocity cone (see Haag 19¢
89).

17 Technically, this requires taking the limit in which all wave-packet Gaussian functio
g(P;), g(g;), tend to delta functions. (4)7has a nice graphical representation. In mo
mentum space, a-function can be represented by a Feynman graph consisting of a B
with various legs attached to it, each leg representing a propag?ﬁe’;n% for a given

infout particle. In general, such particles will be off-shell. The correlsponﬂingatrix is
obtained by forcing all momenta on-shell and then amputating external legs via the fac
(pl.2 — m%i +ie).

18 g = —(1/a?) In W(3p), whereW (3p) is the Wilson loop observable for the boundary
loop dp surrounding the elementary plaquegtewith edges of length a (see below for
details).

19 For anSU (N) gauge theory, each link, is anN x N matrix representation U (N)
given explicitly byU,, = exp(iagA“A‘l"t (n + %)) Such links form the edges (of length
a) of a 4-dim Euclidean lattice that models spacetime. The 2-dim faces of cells in the lat
are referred to as plaquettes and denoteg yee Figure 1.

2Given bys = &3y (1 - %Tr{U,,}), where thep-sum is taken over all oriented

plaguettesp in the lattice. One can show that, in the continuum limit> 0, this form
produces the standard Yang—Mills action with coupling consgiasee, e.g., Creutz 1983,
35-6).

21 This “tiling” is due essentially to the propertiggdU)U;; = 0, and [ (dU)U;; U,:rl =
(1/N)8id;;, where the link indices label lattice vertices. These indicatelih@l) is non-
zero only when either a link it is paired with the same oppositely oriented link in &
plaquette in the terma—S, or when this occurs for plaquette links in the term’. Hence

in the sum over all plaquettgs in the lattice, only those that fill the area enclosedy
contribute.

22y (1) acts on the vacuum to producega’ pair a distanceR apart at timer. The

W /¥-terms are quark/anti-quark fields and the exponential factor is required for ga
invariance. Only 1 spatial dimension is considered.

23 Sr(y — y') is the Green's function for the QCD operaioy,, D,, — m). For largem,
(iyuDy —m) ~ (iy9Dg — m). The exponential form of the propagator is derived by
solving (iy%Dg — m)Sp(y — y') = 84y — ¥).

243ee, e.g., Haag (1992, 101), Streater and Wightman (1979, 138), Emch (1972, :
Briefly, it states that the vacuu is cyclic for the von Neumann algebt(0O) of any
bounded open regio® of spacetime; i.e., for alv € #, there ared,, € R(0) such
thatw = )", A,Q. Furthermore, if the spacelike complement®fis non emptyQ is
separating forR(0); i.e., forallA € R(0), if AQ =0, thenA =0.

25This is a necessary condition for the independence of the amplitudés afd A:
(AP) = (A)(P). Since the status of is being left open, we do not stipulate that

be spacelike to the regions of support for

26 After Earman (1993) and Horwich (1982), | take scientific realism to be composed
two components: a semantic component and an epistemic component. The semantic
ponent characterizes the realist's desire to read the theoretical claims of certain the
literally. The epistemic component characterizes the realist’s contention that there ca
good reasons to believe the theoretical claims of certain theories. (These definitions
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admittedly a bit vague. For instance, if some sub-set of the theoretical claims of a Thec
are of the form “Objects of typ& exist”, then epistemic realism with respect to T woulc
seem to entail semantic realism with respect'taThe distinction between the compon-
ents, as | see it, is meant to follow the distinction between the two separate enterpris
interpretation and confirmation. For any thedtythe former enterprise endeavors to giv
an account of what the world would be likeTifwere true. The latter enterprise endeavol
to give an account of the conditions under which we are justified in belieRisglaims.
The scientific realist must be able to give accounts of both endeavors.)

27| don't think that, if correct, this claim can be used as evidence that the LSZ formal
fails to successfully avoid the problem associated with Haag's Theorem. Haag'’s The
specifically demonstrates that the free dynamics cannot be connected to the interz
dynamics by means of the strong convergence criterion (4.2). The LSZ formalism all
the free dynamics to be connected to the interacting dynamics by means of the \
convergence criterion (4.3). The LSZ notion of asymptotic particle state (4.4) is define
terms of this weak convergence criterion but is independent of the latter’'s use in avoi
Haag's Theorem. One need not talk about asymptotic particles at all in the LSZ conte
one so desires; rather, one can talk only in terms of the convergence properties of n
elements of fields (4.3).
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