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WEINBERG ON QFT: DEMONSTRATIVE INDUCTION AND
UNDERDETERMINATION*

ABSTRACT. In this essay | examine a recent argument by Steven Weinberg that see
establish local quantum field theory as the only type of quantum theory in accord with
relevent evidence and satisfying two basic physical principles. | reconstruct the argume
a demonstrative induction and indicate it’s role as a foil to the underdetermination argur
in the debate over scientific realism.

INTRODUCTION!

Much ink has been spilt on the underdetermination thesis in the del
over scientific realism. In general, anti-realists argue that the theoret
claims of any given theory are underdetermined by evidence, hence t
are no grounds for belief in them. Recently, Norton (1993; 1994)
claimed that underdetermination in practice rarely occurs, and exple
this by observing that grounds for belief in a theory can be establisl
by means other than simple hypothetico-deductive inference. In partict
he describes how demonstrative induction was used to establish belit
Planck’s quantum hypothesidn this essay, | look at another example c
demonstrative induction; namely, Weinberg’s (1995; 1997) argument t
seeks to establish local quantum field theory as the only type of quan
theory that is in accord with the relevant evidence and satisfies the ger
principles of Lorentz Invariance and Cluster Decomposition.

The essay is divided into two parts. In Part I, | present a version of
underdetermination argument and indicate how demonstrative induc
can serve as a foil. | then present Weinberg’s argument schematically
consider the extent to which it can be considered a demonstrative inc
tion. In Part Il, | present an exposition of the technical details involved
the argument.
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PART |

1. Underdetermination and Scientific Realism

Following Earman (1993) (see, also, Horwich 1982b), | take scientific re
ism to be composed of two parts: a semantic component and an episte
component. The semantic component characterizes the realist's desit
read scientific theories literally. It maintains that the theoretical claims
certain theories have referential status. The epistemic component cha
terizes the realist’s contention that there can be good reason to believe
theoretical claims of certain theories. The underdetermination argument
tempts to demonstrate that semantic realism undermines epistemic real
In general, it takes the following form, where (ER) and (SR) are Epistern
Realism and Semantic Realism respectively and (El) denotes what | s
refer to as the Epistemic Indistinguishability thesis:

(ER) Belief in some clasg of theories is justified.
(El)  For any theonf € C, there is a theory”’ € C such that,
(i) Any reason to believd" is a reason to believ&’ and vice
versa;

@iy If T" and T are read literally, they make contradictory
claims.

(SR) ForallT € C, T is to be read literally.

((SR)A (El)) = ~(ER).

(The assumption driving the conditional in the conclusion evidently is th
if belief in T entails belief in~T, then we should refrain from belief in
T.) The options for the epistemic realist are then:

(a) Reject (SR).
(b) Reject (El). There are two ways to do this.
(i) Reject (Elii) by claiming that a literal construal @f and7’ need
not entail a contradiction.

(i) Reject (Eli) by claiming that, for two theorieg and7’, there are
always reasons to prefer one theory over the other.

In this essay, | consider how demonstrative induction can serve a
basis for Option (bii} To do so, it is first necessary to make a furthe



DEMONSTRATIVE INDUCTION AND UNDERDETERMINATION 3

disticntion between two variants of Option (bii), a non-empirical versic
and an empirical version. The former looks to such non-empirical tre
as simplicity, explanatory power, unifying power, etc., as ways of ch
acterizing the epistemically privileged claésof theories appearing in
(ER). Fine (1986) and Kukla (1994b) have charged that forms of inf
ence based on such traits beg the question for the realist insofar as
is no justification for such forms that will satisfy a die-hard anti-reali
who licenses warrant only for inferences based on empirical data.

such an anti-realist, the epistemic indistinguishability thesis becomes
empirical indistinguishability thesis and a distinction between empiric
claims and theoretical claims must be médene way to effectively en-

gage the anti-realist then is to adopt her criterion of warrant and tt
demonstrate that inferences based on this criterion, in some cases,

unique theories. Specifically, | shall take the view that the underdeter
nation argument in its empirical indistinguishability guise is motivated b
hypothetico-deductive approach to confirmation wherein belief in a the
is conditioned solely by its empirical consequences. The claim then ist
in actual practice, other forms of inference based on empirical data |
roles in determining theory from evidengdn this essay, | look at a par-
ticular example of one such form; namely, a demonstrative induction t
seeks to establish local quantum field theory as the unique theory infe
from evidence obtained from scattering experiments in conjunction w
two basic physical principles.

2. Weinberg's Demonstrative Induction

Weinberg claims the following:

... quantum field theory is the way it is because (aside from theories like string theory
have an infinite number of particle types) it is the only way to reconcile the principles
quantum mechanics (including the cluster decomposition property) with those of spe
relativity. (1995, xxi)

To see how this can be construed as a demonstrative induction, conside
general form of the latter (referred to hereafter as DI) as given in Nor
(1994, 11):

(1) Premises of lesser generality.
(2) Premises of greater generality.

(3) Conclusion of intermediate generality.

The distinguishing characteristics of this form are (a) contrary to
name, it is a deductive argument: The conclusion is meant to follow
ductively from the premises, and (b) as a consequence, the inductive
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involved in making the inference is placed squarely in the premises. T
latter characteristic should be compared with hypothetico-deductive foi
of inference in which the inductive risk is placed on the rule of inferen
itself. (In other words, the risk of using a demonstrative induction lies
accepting the premises; whereas the risk of using a hypothetico-dedut
inference lies in the form of the inference itsélf.)

Weinberg’s argument is based on three general physical principles
govern the way descriptions of physical processes are constructed. T
are associated in turn with quantum mechanics, special relativity and
locality constraint referred to as cluster decomposition.

I. (Quantum MechanigsFirst recall that the state of a physical systel
as described by quantum mechanics is completely (up to arbitrary ph
specified by a vector in a Hilbert spagé. Physically measurable quanti-
ties are probabilities for experimental outcomes and are represented b
squared amplitudes of the overlap of state vectaks.a result of the com-
plex/linear properties of Hilbert spaces, such amplitudes can be line
superposed and transform under probability-preserving unitary trans
mations.

Il. (Special RelativitySecond, special relativity requires that descriptiot
of physical processes satisfy Lorentz invariance; i.e., they remain inv
ant under transformations of the inhomogeneous Lorentz (alternativ
Poincaré) group 10(3, 1). This in turn is based on the assumptions
spacetime is isotropic and homogeneous and its symmetries, at the |
level, are generated by 10(3, 1).

lll. (Cluster DecompositignFinally, a description of a physical proces:
isolated in a laboratory setting should be independent of the complete
of the world outside the laboratory.

Since the empirical evidence for QFT comes in the form of scatter
experiments, the above principles can be collapsed into 2 conditions
the quantum mechanical characterization of scattering given bysthe
matrix. Following the DI schema above, Weinberg’s argument then ta
the general form:

(1) Empirical evidence for QFT.
(2) A physically satisfactorys-matrix satisfies the principles
of Lorentz Invariance (LI) and Cluster Decomposition (CD).

(3) Local Quantum Field Theory.
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Three clarificatory remarks are in order concerning this reconstruction.

First, by field theory, Weinberg means the Fock space representa
built from Wigner’s analysis of single-particle states as irreducible re
resentations of the Poincaré group. Specifically, for the purposes of W
berg’s argument, the distinguishing characteristic of the application of s
a theory to descriptions of physical processes is the presence of a He
tonian density constructed out of local field operators. In slightly mc
detail, in most expositions one is presented with two equivalent ways
constructing a local quantum field theory in Minkowski spacetinTde
first starts with Wigner's definition of single-particle states as irreducik
representations of the Poincaré group. A Fock sgadethen constructed,
raising and lowering operatots (¢), a(g) are introduced, and position-
dependent local field operatofs(x) are obtained as their Fourier trans
forms (where the hat is used here solely to distinguish the quantum
from the classical case). The alternative is to start with the theory ofa c
sical field, postulate the standard canonical commutation relations (
for the field variables and their conjugate momenta, and then identify
Fourier expansion coefficients of the fields as raising and lowering op
tors on a Fock space. Schematicdlly,

(1 10(3, 1) — “particles” > F — a'(¢), a(q) = ¥ (x) (local
quantum field) -

(N @) (classical field)— U (x) = at(q), alg) - F —
“particles” -

The second clarificatory remark concerns the basic source of Prer
(1) in the above reconstruction of Weinberg’s argument. This comes fr
scattering processes in which some number of particles, traveling fre
a short time in the past (effectively at= —oco for elementary patrticle
time scales) collide with each other and then separate. According to
principles of quantum mechanics, a short time after the collision (eff
tively att = +o00), the system is in a superposition of free states, ez
of which describes a possible end result of the collision. The probabi
amplitudes for these results are given by fhenatrix. In effect, then, to
describe scattering events in terms of the physical principles of quan
mechanics requires introduction of tRematrix.

The third clarificatory remark concerns the two general principles
serted in Premise (2). First, an operat@ron a Hilbert space is Lorentz
invariant® just when it commutes with the unitary operator represen
tions U(A, a) of the Poincaré groupt/ (A, a) QU (A, a) = Q. Second,
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Cluster Decomposition in brief requires that scattering experiments in
gions of spacetime separated by great spatial distances do not inter
This imposes a factorization condition on tematrix describing such
processes.

Weinberg’s strong claim then is that the local field theory formalism ©
tained via Approach | in general, and in particular, the presence of a Hal
tonian density constructed out of local field operators, is the only w
to guarantee that th&-matrix satisfies the general principles of Lorent
Invariance and Cluster Decomposition. To reiterate, local quantum fi
theory is the only way to reconcile the principles of quantum mechan
with special relativity and Cluster Decomposition. In slightly more tec
nical detail, he demonstrates the following: Given the Dyson expansiol
the S-matrix,

(A) The following conditions are sufficient for thg-matrix to be Lorentz
invariant:

(i) The interaction Hamiltonian density#i,(x) of the theory is a
Lorentz scalar;
@ii) [Hint(x), Hint(x")] = 0, for spacelikgx — x’).

(B) The following condition is sufficient for th&- matrix to satisfy Cluster
Decomposition:

() The full HamiltonianH is a sum of products of raising and lower
ing operators:'(¢), a(g) with coefficients that are smooth func-
tions of the momenta apart from a single 3-momentum delta fu
tion factor.

(C) A sufficient condition for the compatibility of (A) and (B) is the fol-
lowing:

(i) Hint(x) is a sum of products of local quantum fielggx); i.e.,
fields that satisfyyr (x), ¥ (x")] = O, for spacelikéx —x"), and are
linear ina'(q), a(g), with coefficients that are smooth function:
of momenta.

In Part I, | flesh out the technical details involved in Approach | ar
how the inference is made from Premises (1) and (2) to local QFT
means of the claims (A), (B) and (C). In the next section, | consider f
extent to which the argument can be considered a valid demonstre
induction.
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3. QFT and Underdetermination

In this section, | first consider the feasibility of the premises in the rec
struction of Weinberg’s argument in Section 2. Next | consider the ext
to which the argument can be considered a demonstrative induction.

(1) Ademonstrative induction is only as good as its premises. | take the
ture of Premise (1) to be uncontroversial. For inductive skeptics who th
otherwise, | offer little solace beyond the qualification that demonstrat
inductions of this type are meant to be effective against the anti-realist \
employs the empirical indistinguishability version of the underdetermir
tion argument as reconstructed in Section 1. Such an anti-realist is wil
to concede belief in empirical claims but balks when it comes to theoret
claims. | refer to footnote 4 for skeptics who claim that the distinctic
between empirical and theoretical claims on which this response is bas
problematic. (I claim, at the least, that anti-realists who wish to employ
underdetermination argument must at some point make such a distinct

| claim further that the principles of quantum mechanics given in Se
tion 2 are unavoidable insofar as (i) they are fundamental to the mar
in which quantum mechanical descriptions of physical phenomena
constructed, and (ii) such descriptions are highly confirmed. (By “higt
confirmed” | mean they satisfy whatever criteria are judged necessary
sufficient to warrant belief by the anti-realist who adopts the empiric
indistinguishability thesis.) The same holds for the principle of Lorer
Invariance. This is a basic tenet of special relativity and, insofar as
latter is highly confirmed, LI is unavoidable in descriptions of physic
phenomena.

Finally, | have two comments to make concerning Cluster Decom|
sition (CD) that aim at clarifying its relation to special relativity and it
relation to the similar locality constraint of micro-causality (4.1.11 b
low) for fields. First, note that special relativity is usually associated w
two principles: LI (Lorentz Invariance) and NSC (“no superluminal ca
sation”). CD is independent of LI insofar as interaction Hamiltonians ¢
be constructed that are unitary and LI, but do not satisfy!ERloreover,
CD is weaker than NSC insofar as CD is applicable to classical as wel
relativistic settings. It is only in the latter context that CD translates ir
NSC. In this setting, | take it to be uncontroversial in the same sense a
is above!? In this setting, CD serves the same purpose forsimeatrix as
micro-causality does for fields: both are locality constraints that prohi
causal influences from propagating between space-like separated re
of spacetime. Moreover, micro-causality of fields is a sufficient conditi
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for the S-matrix to satisfy CD. The following proof is given in Brown
(1992, 313).

An N-point time-ordered correlation function, e+function, is a time-
ordered vacuum expectation valueflocal fields(T{¢ (x1) - - - ¢ (xn)})
(I consider only the neutral scalar field case for simplicity). The sign
icance oft-functions for the purposes of this proof is that they can |
used to calculat§-matrix elements by means of the Lehmann—-Symanzi
Zimmermann (LSZ) reduction formuld.Hence, ifr-functions satisfy CD,
so does theS-matrix. Consider now anN + M)-point t-function
(T{p(x1) - p(xn)P(y1) - - ¢ (ym)}) Where the coordinates, - - - xy and
y1--- yy are separated by a large spacelike inte®#4) R?> > 0. Define
new coordinates; by y,' = R* + y,° (so they," are close to the;). By
micro-causality[¢ (x,), ¢ (y,)] = 0, since(x, — y;)*> > 0, Va, b. Hence
the time-ordering factors, and we have:

(3.1) (T{op(x1)...¢(xNP(D) ... ¢(m)})
=(T{p(x1) ... ¢(xn)IT{P (YD) - .. & (Ym)})
(T{p(x1) ... pxn)} € ET{B() ... o (Ta)}),

where in the second ling(y;) = e 7k ¢ (3,) €7+X", corresponding to a
translation of the fieldg (y,) by R* (recalling that translations leave the
vacuum invariant). Inserting a complete set of stgtég:)(n| = 1, one
then obtains,

(3.2) =(T{¢(x1) ... nINT{P(D) ... ¢ (I}
+ 2,2 (OIT{p(x1) ... P (xn)}In) e F"
(n|T{p(31) ... (m)}O).

For R? — oo, the second term in (3.2) vanishes by the Riemann—Lebes
Lemmat* One then has

(T{p(x1) ... ¢ (xn)P (YD) ... & (ym)})
= (T{p(x1) ... ¢ x)N(T{P(yD) ... o (ym)}),

which is the desired CD result (where use has been made of the transl;
invariance ofr-functions to replace thg, coordinates withy,).

Schematically, the above demonstrates: (micro-causality for fields)
(CD of S-matrix). Recall that Weinberg’s argument runs in the oppos
direction. According to his strong claim, we have,

(A) (LI of S-matrix) = (micro-causality for#ini(x));

(B) (CD of S-matrix) = (a'(g), a(¢) decomposition of#;n(x));
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and hence,

(C) (LI&CD of S-matrix) = (field decomposition of#j,:(x) with
micro-causality for fields).

It appears that whether one prioritizes micro-causality for fields or cl
ter decomposition for th&-matrix depends on what one takes to be tf
fundamental observables of the theory. For Weinberg, the fundame
observable is th&-matrix. Indeed, here is Weinberg’s take on the priori
of micro-causality for fields:

Such considerations of causality are plausible for the electromagnetic field, any onr
whose components may be measured at a given spacetime. paitidowever, we will
be dealing here with fields like the Dirac field of the electron that do not seem in
sense measurable. The point of view taken here is that [the micro-causality conditio

needed for the Lorentz invariance of thenatrix, without any ancillary assumptions abou
measurability or causality. (1995, 198)

(Note that, technically, a field at a point is not an observable. Fields
operator-valued distributions defined as smeared averages over arbitr
small regions of spacetime. The only modification to the micro-causa
constraint is that it should take the fori! [ 1, ¥, [A1l+ = [Wn[f], ¥,
[A]]+ = 0, when the supports of the test functiofisnd’ are spacelike
separated.)

This emphasis on the fundamentality of thematrix also influences
Weinberg’s attitude toward other approaches to quantization. Considel
canonical field approach (Approach Il of Section 2) which begins with t
theory of a classical field given either by a Lagrangian or a Hamiltoni:
Given that fields are the primary observables of the theory, this appro
seems sensible. However, it's not clear how such an approach guarau
a physically satisfactong-matrix. There are Hamiltonians that are man
festly non-Lorentz covariant, yet yield perfectly acceptable Lorentz inve
ant S-matrices. On the other hand, given a scalar Lagrangian, Noeth
theorem guarantees Lorentz Invariance offhmatrix. However, unitarity
of the S-matrix is now obscure. (The unitarity constraint on $ienatrix
was glossed over in the above. Generally, in a scattering process, st
thing has to happen; i.e., the squares of the amplitudes of all the scatte
probabilities (the elements of tlfematrix) must sum to one. This requires
that theS-matrix operator be unitary. This is guaranteed by the hermitic
of the Hamiltonian in the Dyson expansion.)

(2) To what extent can Weinberg’s argument be considered a demon:
tive induction? What he demonstrates, Claims (A)—(C) of Section 2, «
be represented schematically by,

(local QFT)= (LI and CD of S-matrix),
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where, for “local QFT”, read i (x) is a sum of products of local fields
¥ (x) which are linear ina'(¢), a(q) with coefficients that are smooth
functions of momenta”. In various places, however, he makes the stror
claim,

(LI and CD of S-matrix) = (local QFT).

Indeed, this is what is needed for the reconstructed demonstrative in
tion of Section 2 to be valid. That he is not ultimately making this strong
claim is evident in Weinberg (1997, 7-8) where he lists four objections
it:

() The argument assumes perturbation theory and it is generally thot
that power expansions such as (4.2.7) diverge at high orders for tf
ries like QED and QCD (see, e.g., Kaku 1993, 451, for a discussiol

(i) The requirement that the Hamiltonian density be a local Lorentz sce
is not necessary for Lorentz invariance of thenatrix. For instance,
in Coulomb gauge, the QED Hamiltonian density contains a non-loc
non-Lorentz covariant Coulomb interaction term which serves to c:
cel a similar non-covariant term in the photon propagator. In gene
non-covariant terms in the propagator arise for any interaction inve
ing a vector field (see, e.g., Weinberg 1995, 278). Gauge theories
of this type and canonical quantization becomes problematic as &
sult, especially in the non-Abelian case (quantization via the functio
integral approach is the standard procedure in these cases).

(iii) String theory is a counterexample to the strong claim. String the
ries are conformally invariant field theories in 4 or more spacetir
dimensions for whichs-matrices that satisfy LI and CD can be cor
structed. They differ from local QFT’s insofar as, when formulate
via functional integration in phase space, the “paths” integrated o
are 2 dimensional world sheets as opposed to 1 dimensional par
trajectories. For local QFT’s, a method exists to second quantize
purely classical sum over paths, resulting in a quantum theory.
string theories, no such method of second quantization at present
ists. This, however, does not reflect on the ability of such theories
produceS-matrices that are LI and CD.

(iv) Finally, as indicated above, the argument assumes the fundament
of the S-matrix. This assumes 3 types of idealization. First, it requir
that spacetime is sufficiently flat. Second, it requires that asympic
particle states are well-defined; i.e., it assumes no interactions o
effectively for all times before and after the scattering event. Third
ignores possible effects due to quantum gravity at sufficiently srr
spacetime scales.
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To get around these objections, Weinberg (1997, 8) essentially weaken
strong claim by replacing “local QFT” with “effective field theory (EFT)”
The amended argument now is, schematically,

(LI and CD of S-matrix at low energies} (local QFT at low
energies).

In words, any theory that looks Lorentz invariant and satisfies Clus
Decomposition at low energies and large distances will look like a lo
quantum field theory at low energies and large distances. Or, in of
words,

(LI and CD of S-matrix) = (EFT).

The idea behind effective field theory is to write down the most gene
Lagrangian consistent with the symmetries of the physical system tc
described and treat the resulting field theory as valid only within a giv
energy range. The most blatant consequence of this is that it avoids the
straint of renormalizability: By writing down the most general Lagrangiz
for the system, an infinite number of counterterms from the infinite num
of interactions allowed by symmetries becomes available to cancel all
vergences in the perturbative expansion. Restriction to the low energy/l:
distance sector of the theory then allows terms of higher orders to
disregarded. Hence, Lagrangians that are not renormalizable (in the L
power-counting sense) can now be considered viable. (Note that the
non-trivial content to the effective field theory programme insofar as
does have predictive power; it is not just an ad hoc heuristic that avoids
problems of renormalization. For instance, it provides useful perturbat
expansions for low-energy pions and low-energy gravitons. For the forn
see Weinberg (1996, Chapter 19.5); for the latter, Donoghue (1995).

This move does indeed counter Objections (i), and (iv) by definitic
Obijection (iii) is also avoided, as string theory produces local QFT at |
energies and large distances. Furthermore, at present, there are no
counterexamples in the running. What still remains slightly problema
is Objection (ii). Perhaps it can be addressed simply by translating “lc
QFT” as,

local QFT: The Lagrangian density[;] is a Lorentz scalar
functional of local fieldsy; which are linear i (q), a(q) with
coefficients that are smooth functions of mome'ita.

As indicated in 1) above, this is sufficient for Lorentz invariance of tl
S-matrix. It is also necessary and sufficient for Cluster Decomposition
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the Lagrangian density is a sum of products of local fields obeying mic
causality, then the-matrix will satisfy CD, as indicated by the proof in
1) above. Conversely, if th§-matrix satisfies CD, then the interpolating
fields that appear in the LSZ-function formulation will satisfy micro-
causality*® and one such particular set of interpolating fields are those ti
appear in the Lagrangian density. What remains to be shown is that Ic
QFT is necessary for Lorentz invariance of tNematrix, and it is this
condition to which objection (iii) applies. Schematically, we now have,
the first instance,

(LI and CD of S-matrix) = (local QFT),

with Objections (i), (iii) and (iv) still in force. In the amended secon
instance,

(LI and CD of S-matrix) = (EFT),

where the low-energy, large-distance sector is taken to be local QR
takes care of Objection (ii), and Weinberg’s demonstrative induction si
ceeds for effective field theofy. Note, however, that using local QFifi
the argument spoils Weinberg’s desire to avoid assumptions concerr
causality and measurability for fields insofar as micro-causality for fiel
now cannot be seen to follow from the LI constraint on Shmatrix.

What, then, is the upshot of Weinberg’'s demonstrative induction?
the first instance, it demonstrates that emphasis onStheatrix as the
fundamental observable describing the behavior of matter at very st
distance scales places severe constraints on the form of any theory
attempts to describe such phenomena. We've seen that these constt
are not so severe as to pick local quantum field theory as the only po
ble description. But they come close. Furthermore, if the programme
effective field theory is adopted, the range of possibilities is restricted e\
further. Given the fundamentality of local fields along with thenatrix,

a full-fledged demonstrative induction for effective field theory can t
constructed. It should finally be noted that these observations certainly
not contribute to a realist interpretation of field thedfyhowever, they do
mitigate against an anti-realist interpretation by at least foiling the und
determination argument: They make it clear that coming up with a thec
as descriptively accurate as local quantum field theory is not as eas
matter as the underdetermination argument would have us believe.
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PART Il

4. Weinberg’s Demonstrative Induction: Technical Details

In this last section, | provide the technical details behind Weinberg'’s art
ment. To set the terminology, in Sections 4.1 and 4.2, | recall some fe
governing the standard method of constructing a Fock space of free n
tiparticle states and the derivation of the Dyson expansion of thmatrix

in terms of transitions between asymptotic multiparticle states. This s
the stage for Weinberg’s argument which is presented in Sections 4.3—
The following is based for the most part on Weinberg’s own treatment
Chapters 2—4 of his (1995) which may be consulted for further details.

4.1. Local Field Theory from Poincaré Invariant Quantum Theory
Wigner's Theorem tells us that proper orthochronous Poincaré trans
mations are given by unitary operatdigA, a) on a Hilbert spacé? The
initial task in constructing a local field theory is to determine the states
which these operators act and the transformation rules they obey under
action. Given these states, one can then construct a Fock space, whi
the appropriate Hilbert space for field theory.

Recall that single particle states are uniquely labeled by irreducil
representations of the Poincaré group 1SO(3, 1). Specifically, each sta
uniquely labeled by the eigenvalues of the Casimir operators
ISO(3, 1), of which there are twa,, P* with eigenvalues-m?, andw, w#
whereW,, = —1/2¢,,,,J"* P°, with eigenvalues-m?o (o +1) (where the
JvP are the generators of homogeneous Lorentz transformations). Tt
serve to label a given irreducible representation by means of its mas
and its spino (or helicity for the casen = 0). A single particle state may
thus be represented by the Hilbert space veptow ), where p and o
denote its momentum and spin, respectively. Under finite translations
homogeneous Lorentz transformations, these states transform accor
to,

(4.1.1) UL a)|p,o) =€ P4 p, o) =e'"p, o).

(4.1.2) U(N)|p, o) =V (Ap)°/p° ) Do (W(A, P))|Ap, o),

respectively, where the Wigner rotation matrif¥¥ (A, p) =
L~Y(Ap)AL(p) belongs to the subgroup of the homogeneous Lorer
group that consists of transformatioWd' that leavep invariant: W/ pv =
p*. This defines the so-called "“little group” @f* with matrix representa-
tions given by the matriceB, .
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Multiparticle states can be constructed by taking the tensor produc
the appropriate number of 1-particle states. A multiparticle state in wh
the number of particles varies is then obtained as an element of a F
spacef, constructed by taking the direct sum of the tensor products
the appropriate 1-particle Hilbert spacgs F =C @ H & (H ® H)
B (HQH Q FH) D ---, where the tensor producd is totally anti-
symmetric/symmetric, depending on whether the 1-particle states desc
fermions/bosons. The states # are desirable in describing scatterin
processes in which the number of particles of various types changes.
general transformation rule for such states is obtained from (4.1.1)
(4.1.2):

(4.13)U(A,a)|p1,oy; -+ ) =

= e—iau(P'IJr"')\/(Apl)O /P2

X Z D((Ijﬁ‘)l(W(A’ p1)) - |Apa, o']/-; co)
aim

(This is actually the transformation rule for massive particles where
DY-matrices are unitary spip-representations of SO(3). A slightly dif-
ferent rule obtains for the massless case.)

The raising and lowering operatar$(¢), a(g) are defined as usual by
their actions onvV-particle states:

(4.1.4)d"(@lg1---qn) =

=l|gq1---qn).a(q)|q1- - qn)

N
=Y @EDM8(g = 4)1gr - Groadrsr - Ga),
r=1

where thet1 sign depends on whether the states are fermionic or bosc
andgqg labels momentunp and spino. In particular, acting on the vacuum
state|0),

(4.1.5)a"(q1)a"(g2) - --a'(gn)I0) = Iq1g2- - - qn). a(q)|0) = O.

The standard (anti-)commutation relations then result:

(4.1.6) [a"(¢"), a"(@))x = [a(q"), a(@)]+ =0,
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la(g), a"(@)]s = (g’ — q),

where the+ indicates an anti-commutator/commutator, depending
whether the states are fermionic/bosonic. The transformation rules
a'(g), a(q) are obtained from (4.1.3), (4.1.5) and the condition that t
vacuum state be Lorentz invariant:

417 UA, a)a'(p, o) UT(A, a) =

= e AP [Apo/po Y DUL (WA, p)a'(pa. o),

U(A, a)a(p,o)UT (A, a) =

=@ /Apo/po Y | DYL(W(A, p)a(pa. o),

wherep, is the 3-vector part of\ p.

At this point, standard treatments introduce field operators as Fou
transforms of:'(¢), a(g). Weinberg does not do this, moving on instead 1
a discussion of scattering theory before further developing the formali
Again, his strong claim amounts to the contention that the LI and CD c
straints on theS-matrix force the introduction of local field operators. Fc
completeness sake, however, | shall continue with the standard treatr
and indicate how local quantum field operators are introduced within
This can then be compared to Weinberg’s treatment in Section 4.5.

The position basis faf is constructed by taking Fourier transforms c
a'(q), a(g):

(4.1.8) ) (x) = 2(271)_3/2/d3pum(p,0)ép'xa(p, o),

0y ) = 2@ [ o, (p. sl p. o),

wherem labels the components of the fielglg (x) andy/, (x). In general,
they are required to satisfy the the transformation rules,
4.1.9) UA, @)Y, () UT(A, a) = My (A™DY; (Ax + a),

where the matrices\,,,(A) are representations of the homogeneo
Lorentz group.
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The fields (4.1.8) satisfy the (anti-) commutation relations,

(4.1.10) [y,f (x), ¥y (D] = (2n)‘3/d3pum(p, o)v,(p, o) &P,

To construct docal field, i.e., one whose (anti-) commutator vanishes
spacelike distances, the linear combination(x) = «,, ¥,/ (x) + A, ¥, (x)
is taken, which then can be made to satisfy,

(4.1.11) [W,I,(X), V(W ]x = [V (x), WJ(y)]i =0,
for (x — y) spacelike.

This condition for field operators is normally referred to as micro-causal
If the spacelike (anti-) commutator of two fields did not vanish, this wol
imply that measurements of spacelike separated fields could interf
violating causality.

For any local quantum field, the coefficiert@ind and the expansion
coefficientsu,,(p, o) andv,,(p, o) are completely determined by the rep
resentation of the homogeneous Lorentz group under which it transfo
and by the micro-causality condition. | now turn to a brief discussion
scattering processes and the Dyson perturbative expansion$xtiarix.

4.2. Multiparticle Interactions and Perturbativ8-matrix Theory
Consider a scattering process involviiM in-coming particles with ith
momentump; andN out-going particles with ith momentupyj. The state
of the system at = —o0, before the scattering event has occurred, is rep
sented by a localized “in” multiparticle stafe);, = |p1, o1; . . . Pms Om)in-
At = 400, this state has evolved into a localized “out” multiparticle sta
given by|a)ou = |p1, 01; ... Py 05 )our- ThEse infout states are considere
asymptotically free, transforming under the rule (4.1.3), and can thus
expanded in a superposition by means of a time-evolving HamiltaHian
Schematically,

(4.2.1) e‘iH’/dag(oc)Ioc)in/outz /da e g (@)]@)injout

where, for instance,ad= d®p; - - - d®py, (for in states) ang («) represents
a product of Gaussian functioggp;), i = 1--- M, each of which serves
to localize the corresponding single-particle state as a wave packet pe
atp;. To describe the scattering interactidi is split into a “free” partH,
and an interaction pa#ft in such a way that the eigenstates$ of Hy have
the same eigenvalues as the in/out states:

(422) Hla)in/out: E(xla)in/out, H0|a> = E()l|a>
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The requirement that the localized in/out states are asymptotically free
then be written, using (4.2.1), as,

@23 e [ dag@layan, > e [ deg@ia

or schematically agy) i, out = 2(F00)|er), WhereQ (1) = ! e~1Hor,
Elements of theS-matrix Sz, are probability amplitudes for transitions
between in- and out-states:

(4.2.4) gy =out (Blain = (BIR"(+00)Q2(—00)]a)

where the evolution operatorU(t,t) is given by U@, ) =
gHot g-1H(1=10) g=1Ho'o The task now is to obtain an explicit form fok(z, 1o),
and hence a form for th&-matrix. This is done by solving the differential
equation,

(4.2.5) (3/00)U (1, t0) = €M (iHy —iH) e H~10 giHoo
= —iVin@®U (2, 1),
where Vi (r) = o'y e iHo! For small interactions, solutions to (4.2.5)

with initial condition U (1y, o) = 1 may be expanded in powers B
yielding,

(4.2.6)U(t,10) = Z(-i"/m)/ dt1/ dtz---/
n=0 fo Io fo
xdt,, T { Vint(t1) Vint(t2) - - - Vint(#2)}

where the time-ordered produ@{Vini(t1) - - - Vine(t,)} orders theVin ()
according tor; > t, > --- > t,. The S-matrix operatorS can now be
identified with U (400, —00). Substituting into (4.2.4), the Dyson series
expansion of theS-matrix is given by

(4.2.7) Spo = Z(—i"/n!)/Oo dry dp - - - dt,
n=0 —o0
X(BIT { Vint(t1) Vint(t2) - - - Vint(£,) Hex).

I now move on to Claims (A)—(C) of Section 2. In Sections 4.3 an
4.4, | explain Claims (A) and (B) which describe the conditions unde
which (4.2.7) satisfies the two constraints of Lorentz Invariance and Clt
ter Decomposition separately. In Section 4.5, | explain Claim (C) whic
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describes the conditions under which (4.2.7) satisfies the two constre
jointly.

4.3. Lorentz Invariance of thé-matrix

Weinberg’s first constraint is that tkifematrix be invariant under inhomo-
geneous Lorentz transformations. Formally, for thenatrix operators,
U(A,a)SUN (A, a) = S.

Claim (A) (Weinberg 1995, 144): Th&matrix is Lorentz invariant if the
interaction can be written as,

(4.3.1) Vin(t) = / B FHm (X, 1),

whereJnt(x) is a Lorentz scalar,

(4.3.2) U(A, a)Hini()UT((A, @) = Hii(Ax + a),
satisfying,

(4.3.3) [Hint(x), Hint(x)] =0, for (x — x") spacelike

Proof. Substituting (4.3.1) into the form (4.2.6) for tieperator yields,

[e.e]

S = Z(—i"/n!)/ d*x; - - d*x, T

n=0
X {Hint(x1) Hint(x2) + - - Hint(xn)},

which is manifestly Lorentz invariant except for the time-ordering tert
However, since the time-ordering of two poinig x, is Lorentz invariant
unless(x; — xp) is spacelike I {Hjni(x1) - - - Hint(x,)} Will be Lorentz in-
variant if (4.3.3) holds (i.e., (4.3.3) guarantees that time-ordering does
matter for spacelike fields). QED

Lorentz invariance ofSgz, also requires that it be proportional tc
an overall 4-momentum conserving delta functiéf(ps — p,) =
8(Eg — Ea)83(p,3 — Po) (Where pg(p,) is the sum of all 4-momenta in
the multiparticle statgg(«)). To see this, note that, from (4.1.1) and th
fact that Lorentz transformations are unitary, we have, for translatio
Spa =out (BIU XL, @)U (L, a)|a)i, = €4 PP S, . Since there is na*-
dependence on the left-hand side, tifedependence on the right mus
vanish; i.e.,Sg, must conserve 4-momentum. In the next section, a mt
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stronger constraint ofig, is enforced that requires itnnecteccompo-
nents to be proportional tosingle3-momentum delta-function. I turn now
to this constraint.

4.4. Cluster Decomposition of th&matrix
The second constraint Weinberg imposes on$hwatrix is Cluster De-
composition (CD), which states the following:

For & multiparticle processea; — 1, az — B2, ..., ay — By In
N very distant laboratories, th&matrix element for the overall process
factorizes:

(4.4.1) SB1+Bot+Bu crtart-tay > SproaSpaas  Spyan

where, fori # j, all the particles in statag; andg; are at a great spatial
distance from all of the particles in statesandg;.?°

Claim (B) (Weinberg 1995, 182): Let stafebe comprised oV particles
with ith momentunp; and statex be comprised of\/ particles withith
momentunmp;. ThenSg, satisfies CD if

442)H= ) /dq/l---dq]’vdql---qu

N,M=0

xa'(qy)---a'(gy)algm) - alqhnm gy qm),

where the coefficientsy,, contain a single delta functiai?(>_ pi—> pi):
hnm(qy---qy-91- - qm) =53(p’1+---+p’N —P1—--—Pwm)

X fum(qy gy g1 qm),

where fy, are smooth functions of the momesta.

To prove this claim, a condition on the connected components d&f-the
matrix equivalent to CD is first demonstrated. The connected compone
of the S-matrix are defined by the decomposition:

C C
(4.4.3) Spu = Y ()50, S5 - -

part

where the sum is over all possible partitions of the particlesandg into
clustersxyas ... andpa1fz . . ., counting clusters; anda; the same if they
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differ only by a permutation of particles. (The:) depends on whether
the rearrangements — aja,..., 8 — Bi1f2... involve even/odd inter-
changes of fermion states.) Equation (4.4.3) defines the connected col
nents recursively. Give§, = 0 andSyo = 1, we have (assuming stable
particles that do not decay or interact with the vacuum),

(4.4.4) Syg = 8(q' — q) = S,

Seiap.a1a2 = ch qlsqczqz + chlqzsqcqu + chlqz 9192
Sq1aa 919205 = chlqlsqczqzschq =+ perm.+ Sq 1, qlqzschqs
Eperm.+ S0 g1q203
123 4 12" 3 4 1234 1.2 3 4
= tperm. | + * perm. |+ + perm.\ +
12 3 4 1234 k }

Figure 1. Graphical representation of tlfematrix for 4-4 scattering. The “C” denotes a
connected component.

Graphically, for 4-4 scattering, (4.4.3) can be represented by Figur:
The connected components are those matrix elements describing com
interactions between all particles involved. The role of the raising &
lowering operators is to make this connectedness property explicit. -
idea is to expand the basis stales, |8) appearing in thes-matrix (4.2.7)
in terms of raising/lowering operators acting on the vacuum, and rej
sent the operatov (¢) as a sum of products of raising/lowering operator
The resulting expression is evaluated by commuting all operators thro
each other, using the (anti-) commutation relations (4.1.6) to get all rais
operators on the left and all lowering operators on the right (since si
terms vanish). After integration, (4.2.7) is thus reduced to a sum of fact
from the operatord () and 3-momentum delta functions from the (anti-
commutation relations (4.1.6). The connected components df-thatrix
turn out to be those terms for which every initial and final particle and evi
operatorV (¢) is connected to the others by a sequence of raising/lower
operators.
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The factorization condition (4.4.1) now corresponds to the condition
(4.4.5) Sga — 0,

when the spatial distance between any pair of particles in stedesl/oro
goes to infinity. To see this for 2-2 scattering, for instance, supgpaad

/ H - ¢C c ;.
q; are spacelike separated. Théq?,lq, a2 = SqlaSaha = 0, andS;; 45 414
=S¢ 86 =S,

o Sasas = Stiar AP 8(q1 — q1)8(g5 — g2), which is the desired CD
result.

Weinberg now demonstrates that (4.4.2) is sufficient for (4.4.5) ¢
hence CD. The argument is given schematically by the following steps

1. A necessary and sufficient condition for (4.4.5) is th/%; contains a
single3-momentum delta function facté?(ps — p.), where,ps(p.)
is the sum of all particle momenta in the stgtg).

2. If the connected matrix componefif,, of the Hamiltonian (described
below) contains a single factor 6f(ps — p.), then so doe§§a.

3. To obtain Hﬂca, it is first demonstrated that any operatéir on ¥
can be expanded as a sum of products of raising and lowering op
tors. The connectet¥-M scattering component @ is then given by
(@1 - ayIHC g1+ - qu) = hym, Wherehyy, is the N Mth coefficient

function occurring in the expansion.

Claim (B) is thus established, since condition (4.4.2) implies ﬂiﬁ;
contains a singlé*(ps — p.). Proofs of Steps (1) and (3) are given i
the appendix. A rigorous proof of Step (2) is given in Weinberg (196
The connected components® of the HamiltonianH are those matrix
elements ofH that are given by the interaction partof H and describe
particle interactions in which all particles participate. (Those matrix e
ments of H that depend solely oy will involve free particles that do
not interact.) The relation betweeh® andS¢ is given by the differential
equation (4.2.5), taking the limits— +o0, g — —o0. Naively, this rela-
tion preserves connectedness and, moreover, does not affect delta fur
factors. A proof demonstrates thaMf () contains a single delta function,
then so does §i/01)UC (¢, ty). Consequently, it/ (¢, 1) contains a single
delta function at any given time, then it will contain a single delta functic
for all times; hence, specifically, for— +oo andty — —oo. The proof
is completed by observing thatmat to, U (1o, to) = 1, hencelp’|UC|p) =
83(p' - p)-
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4.5. Lorentz Invariance, Cluster Decomposition and Local Quantum
Fields

We now determine the conditions under which Lorentz invariance of |
S-matrix is compatible with Cluster Decomposition; i.e., the conditiol
under which (4.3.2) and (4.3.3) are compatible with (4.4.2). First, the
is a problem in reconciling (4.3.2) with (4.4.2). The raising and loweril
operatorsa'(q), a(g), transform under inhomogeneous Lorentz transfc
mations according to (4.1.7), in which thg"’-matrices depend on the
4-momentump. Hence to construct a Lorentz scalar out of linear cor
binations of raising and lowering operators is problematic. The solut
Weinberg proposes is to construi(x) out of fields,

@52) 400 = 3 [ &pun(x: p.o)a(p.o)

U, () = Z/d?’pvm(x; p.o)a’(p, o),

with coefficientsu,, (x; p, o) andv,,(x; p, o) chosen such that the fields
transformindependentlyf p:

(4.5.2) UA, a)YE(x)U(A, a) = My, (A" DY E(Ax + a).

As in (4.1.9), the matriced/,,,(A) are representations of the homoge
neous Lorentz group. In general, (4.5.2) is satisfied by absorbing-the
dependency of th&®’)-matrices into the expansion coefficiemts(x; p,
o) and v, (x: p, o). Hn(x) is now guaranteed to be a Lorentz scale
by expressing it as a sum of fields contracted with appropriate Lore
invariant tensor coefficients:

(4.5.3) Hint(¥) = Dty impomy
NM

X Yo (X) - Y (OY () -t (x),
where the constants,,,,... transform according to
tmlmzvvamlnl(A_l)Mmznz(A_l) = tn]_nzm'

(This guarantees that #¢,:(x) is a local scalar field since the latter forn
a ring under addition and multiplication.) It turns out that a necessary
sufficient condition for the fields to satisfy (4.5.2), given (4.5.1), is for the
to take the form (4.1.8). Note however that the Fourier transform fo
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(4.1.8) is now a consequence of the LI constraint (4.3.2) orftheatrix;
namely, that#(x) transform as a scalar.

To see that (4.5.3) also satisfies CD, substitute (4.1.8) into it and ir
grate overx:

(4.5.4) / Bx Hip(x) = V

= %W:d:ap& . .d3p/Nd3p1. . .d3pM Z Z

!’ !’ .
010y O1°0OM

xa'(pyoy) - -~ a' (Pyor)aPuon) - - - a(pro1)
X VNM(p/lai - PMom),
where,

Vum(P101- - Pyoy. P101- - Puom)

=6° (Z p; — Z pi) fnm(PLo1 - Puowm),
and,

Sum(Pioy - Puom) =
= (27[)3_3N/2_3M/2tn1~-n1\/,ml---mM Unl (pa_ai) cc Umy (pMUM)-

It is clear that thefy, are smooth functions of the momenta, as (4.4.
requires.

To be compatible with condition (4.3.3), however, not any combinati
of fields in (4.5.3) will do. This is apparent from the (anti-) commutatic
relations (4.1.10). Again, the solution is to use the linear combination,

(4.5.5) Y (x) = ¥y (x) + A, (1),
which then satisfies,
(4.5.6) [, (1), Y (M = [P (0), ¥ (] =0,
for spacelike(x — y),

for judicious choice of constantsanda. This is the same micro-causality
condition as (4.1.11), but where the latter was motivated by concerns «
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causality for the fields, (4.5.6) stems solely from the LI constraint (4.3.
on theS-matrix.

Hence we havéini(x) = Tuymy Yimy ¥, - - -, Where the constants,, ...
transform as Lorentz tensors. To reiterate,$hmatrix is Lorentz invariant
and satisfies Cluster Decomposition given that the Hamiltonian density
a sum of products of local quantum fields (4.5.5); i.e., fields that satis
the micro-causality condition (4.5.6) and are lineamwirig), a(q) with
coefficients that are smooth functions of momenta. Weinberg conclude:

Thus the whole formalism of fields, particles, and antiparticles seems to be an inevite
consequence of Lorentz invariance, quantum mechanics, and cluster decomposition, \
out any ancillary assumptions about locality or causality. (1997, 6)

APPENDIX

THEOREM 1. The connected compone?ﬁa of the S-matrix vanishes
when the spatial distance between any pair of particles in stedesl/oro
goes to infinityif and only inga = 83(pg — P«)C,p, WhereC, is a smooth
function of momenta angg(p,) is the sum of all 3-momenta in the state
B).

Proof. (A) “ <. Let stateg be comprised ofi particles withith mo-
mentump;, and statex be comprised ofz particles withith momentum
p;. By assumption,

C 3
(A-1) Spy--pp1pu = 0 (Z Pi = Z pi) Cpyp; PP
i=1 i=1

where the functiorCy, . 1, ., does not contain additional 3-momenturr
delta functions. The Fourier transform of (A.1) is,

(A.2) SS =

Y1 ¥Yn:Yn+1Yn+m
_ 3,/ 3.7 3 3 | K g
= /d py---d°p, d°p1- - A°Pu-1Cp;py pyop, o € 77

whereg; = (y; —y;41) andK; = Y/, p;, for j <n,or—>/"'p, for

Jj > n.f Cy oy p,.p, Vanishes attoo, then by the Riemann-Lebesque
Lemma, the integral in the last line of (A.2) vanishes as any of the coor
nate intervals; go to+oo
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(B) “=". In momentum space,

c _ 3 3 c
(A-3) Sop-pprpu = /d Vi EYnim Sy,

Xe_ipa_‘YI e e_ipjl‘)’n eipl‘YrH—l e eipm'y/1+/11
— 53 /
= (X0 = P) Copopene

Wheref d3y1 e d3yn+m—l = f dS%-l e d3$n+m—lv S)i...y,1+,11 = Sgl...gn+m711
and the functiorCy; ..y p,..p, IS given by

j yontm K .£;
(A4) Cp&“‘pﬁ,,pl“‘pm = / d3%-1 e d3$n+m_1S§C]‘-Aw§n+l11_l el Z_/:l IR, X

This is a smooth function of the momenta since, by assumpﬂg)_ngmﬂ
vanishes as any of the coordinate intenglgo to +oo.

THEOREM 222 Any operatorH acting on¥ may be expressed as a sum
of products of raising and lowering operatarsq), a(g):

(A5) H= Z/dQ1---dqfv dgy - - - dgua’(qy) -+ a'(q))
N.M

Xa(qM) .. a(ql)hNM(Cli . 'ql/\l’ql' . qM)

Proof. The proof proceeds by induction. First determing from the
matrix elements oH between two single particle states:

(A6) (¢'|Hlg) = /dCAdqlhu(qi,ql)(él’laT(qi)a(ql)lq)

/ dg1dg1h11(q1, 91)8(q1 — ¢")8(q1 — q)
= hu(q', q)

where|g) = a'(¢)]0), (¢’| = (Ola(g’) and use has been made of the com-
mutation relations (4.1.6). Next determihg from the matrix elements of
H between four single particle stateg;gs|H1q1q2) = h22(q1. 45, 91, q2)

+ (terms involvingi,1). Now continue in a similar manner for higher-order
terms. QED

THEOREM 3. The connecte’ — M’ scattering component of the Hamil-
tonian H is given by(g; -+ g\ |H g1 -+ qu) = hve (@1 -+ qhyis @1
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-+ gy) Wherehy: is the N'M'th coefficient function occurring in the
expansion (A.5).

Proof. Consider a genera¥ M matrix element off . It will decompose
into a sum of disconnected elements and a fully connected element
Figure 1). For elements with- < N’ and/orM < M’, there are not
enougha™, a operators to affect aliv particles in the initial state and/o
all M particles in the final state. Such elements thus contribute only tc
disconnected components. For elements with- N’ and/orM > M’,
there are too many', a operators; some will eventually end up annir
lating the vacuum. Hence the only part &f to contribute to the fully
connected matrix element sy, . QED

NOTES

* Thanks to Tony Duncan, John Norton and John Earman for comments and sugge:
1 Inthis essay, the spacetime metric has signature (1,-11)land 3-vectors are indicatec
in bold type.

2 Hudson (1997) claims that underdetermination can be resurrected for the case of P!
hypothesis. However, this appears to be based on a spurious distinction between “pa
and “degree of freedom” interpretations of the equipartition theorem.

3 Option (a) is adopted by Horwich’s (1982a, 1986) global conventionalism. Elsewt
| argue that option (bi) in the form of a weakened version of semantic realism is vi
under the name structural realism.

4 Horwich (1982a) and Laudan and Leplin (1991) maintain that such a distinction ca
be made. Kukla (1994a) claims that it can (although adopting it, he maintains, is ju
question-begging for the anti-realist as adopting a non-empirical virtue is for the rea
For the purposes of this essay, | shall assume the distinction is unproblematic. It ca
does not have to be, based on an observable/unobservable split in the vocabulary
language in which the theory is expressed. In general, it suffices to allow that theor
claims are expressed in a language that out-strips the language in which evidence
ments are made. If such a syntactic distinction is objectionable, allow a distinction in
between unobserved observables and in-principle-unobservable unobservables, th
being the subject of theoretical claims. The basis of the anti-realist's underdetermin
argument is simply that inferences to the former are warranted whereas inferences
latter are not.

5 Bayesian updating, arguably, fits this category (while the selection of priors is
toriously subjective, Gaifman/Snir-type convergence theorems provide some meas|
objectivity). Inferences based on eliminative induction also fit.

6 For comparison, hypothetico-deductive inferences take the following general form:

(1) If hypothesis: is true, then predictions, b, c, ..., etc. are true.
(2) Predictions, b, c, ..., etc. are true.

(3) Hypothesig: is true.
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The implicit rule of inference here is that evidence supports a theory just when the evidt
is entailed by the theory.

7 More precisely, for the record, a measurable quartitgorresponds to a self-adjoint
operatorQ on J¢. The possible valueg of Q one obtains upon measuring f@rare given
by the spectrum o). To obtain the probability that a given state € J exhibits a value
g for the quantityQ, one expandsx) in the eigenbasigy;) of Q and takes the squared
norm of the overlafq|a).

8 Both approaches fall under what is generally referred to as canonical quantization
no means does this exhaust methods of quantization that result in local quantum fielc
ories. Kaku (1993, 62) lists the following: Canonical quantization, Gupta—Bleuler (covz
ant) quantization, the functional integral method, Becchi—Rouet—Stora—Tyupin (BR¢
Batalin—Vilkovisky (BV), and stochastic quantization.

9 Some expositions construe the equivalence of the two approaches as indicating the
natures of the “particle” picture (I) and the field picture (ll). This should be discourag
for a number of reasons. First, the elementary states Wigner identifies with the irredut
representations of ISO(3, 1) are not necessarily elementary partides; the ground st:
the hydrogen atom, for instance, counts as an elementary state. Second, Wigner'’s apy
works only in spacetimes that are static; in nonstatic spacetimes, it is notoriously difficu
maintain a consistent particle interpretation. Furthermore, even in interacting field theo
well-behaved spacetimes the duality between particles and fields breaks down if the dt
thesis rests on the claim that, to every particle there is a corresponding field, and vice v
On the one hand, for any asymptotically well-defined particle state, there exists an inf
number of interpolating fields, any one of which can be used to construct the apprdpria
matrix. On the other hand, there are fields that admit no asymptotic particle states; nat
quark fields. With these caveats in mind, | shall continue to use the appellation “parti
in referring to Wignerian elementary states, for the sake of convenience.

10 By this | mean invariant unddsoth Lorentz rotationsand translations, viz. invariant
under 10(3, 1), as indicated above. Sometimes Lorentz invariance refers to invariance
only the homogeneous Lorentz group O(3, 1).

11 For example, take

4 3.
V= flzl_[l %54@1 + p2 — p3 — Ph(p1. p2. p3. Pa)lp1p2){P3pal
and require that(p;) = h * (p;) be a function of Lorentz invariant scalar products o
the momentgp;. Then it is not too difficult to show tha¥ is unitary and satisfies LI.
However,V does not satisfy CD, since it projects only onto the 2-particle subspace. £
consequence, interactions exist only when there are 2 particles in the universe and v
when a third is introducedinywhere (Technically, the 3-3 connected part Bfcontains
more than one delta function, which is a violation of CD (see below Section 4.4).) T
example is discussed by T. Duncan, unpublished lecture notes 1996. See, also, Wei
1995, 187.

12 Note that the context in which CD, as a locality constraint, is enforced differs frc
EPR/Bell-type experiments in which locality constraints are called into question. In the
context, one considers clusters of scattering events and CD enforces causal indepen
of spacelike separated clusters. In the EPR context, one considers a single source er
two products and investigates the relation between these products when they become
like separated. It turns out that, under certain assumptions, locality conditions are viol:
However, insofar as the entire system of source and products is considered a single cl
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CD is not violated. If this gloss is objectionable, it is still the case that there are two ty
of (logically independent) locality principle at play in the EPR/Bell setting, viz. what
referred to in the philosophical literature as outcome independence (alternatively, “J:
completeness”) and parameter independence (alternatively, “hidden locality”). Botf
required in order to derive a Bell inequality. Arguably, only a violation of the secc
can be associated with a violation of NSC. Hence, NSC is compatible with violati
of Bell inequalities if one denies outcome independence. CD as a locality constrai
thus reconcilable with Bell inequalities, given one associates it with a version of paran
independence.

13For instance, for scalar fields, the LSZ formula reads

outPy - Py | P1-+ Padin = (/v Z)NTM
x / dvy e dhyy £y (n) o S o) (T o+ mP) sy o (T 2+ m2,y
X(Q| T - d P (D) - - (xn)}IR)

(T2t mPyy - (T +m2)y for 61 fou Oma)

where theS-matrix element occurs on the left and the correspondivigH( M )-point -
function occurs on the right witff2) the vacuum state of the full Hamiltoniat, and
(2132 (p)))1/?

—ipjy;

fpj(yj)

14 Briefly, if f(w) is a smooth function which vanishes as— oo, then its Fourier
transform vanishes in the limit— oo: f:j’f dof(w) €' —;_, 0.

15 L[v;] has no constriants, theff(x) can be obtained via a Legendre transformatio
If L[v;] possesses gauge symmetries, then the system is a constrained Hamiltonian
and one must use Dirac’s procedure to obtain the corresponding Hamiltonian density.
Weinberg 1995, Chap. 7.6, for a discussion.)

18 For the 2-pointz-function (T {AB}), CD stipulates thatT {AB}) = (A)(B) when the
fields A and B are spacelike separated. In this case, we also tB{BA}) = (A)(B);
hence(T{AB}) = (T{BA}); hence[A, B] = 0, whenA and B are spacelike separated
Now extend this for-point t-functions.

17 Granted, this assumes that string theory is the only counter-example to the argul
Here one might argue that it is the only currently viable counter-example. To avoic
possiblecounter-examples, one must demonstrate that any alternative high-energy
ory reduces to a local QFT in the low- energy limit. Such a proof has yet to be ¢
structed. Renormalisation group techniques would play a central role here (see Hu
and Weingard 1995 for a discussion of such technigues).

18|ndeed, Cao and Sweber (1993) offer an interpretation of the effective field the
programme that is anti-foundationalist in its epistemic claims and instrumentalist it
ontological claims.

19Cf. Weinberg (1995, 50-51) for a proof. Strictly speaking, the operatars, a) are
projective representations of the proper orthochronous Poincaré group (der
ISO(3, 1)t); i.e., they are unique up to a phase. To obtain an ordinary representation
takes representations of the covering group ISI)2; of ISO(3, 1)t. This technical detail
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will be omitted in the following. Furthermore, the components of the Poincaré group
connected with the identity (corresponding to the parity and time-inversion operators) r
be represented by anti- unitary operators. These, too, will be ignored for brevity’s sake
20 Alternatively, in the special relativistic context, all the particles in statgsp; are
spacelike separated from all the particles in states;, fori # j. Any spacelike interval
(x — X)2 — (t — /)2 > 0 can be sent by a Lorentz transformation into a purely spat
interval (X — x')2 # 0, (f — ') = 0.

21 Smoothness here requires only thfat,, does not depend on additional delta function
of momenta. Note thaf dg; represents a sum over sgipnand an integration ovet3p,-.

22T, Duncan, Univ. Pittsburgh lecture notes 1996, unpublished.
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