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ABSTRACT. In this essay I examine a recent argument by Steven Weinberg that seeks to
establish local quantum field theory as the only type of quantum theory in accord with the
relevent evidence and satisfying two basic physical principles. I reconstruct the argument as
a demonstrative induction and indicate it’s role as a foil to the underdetermination argument
in the debate over scientific realism.

INTRODUCTION1

Much ink has been spilt on the underdetermination thesis in the debate
over scientific realism. In general, anti-realists argue that the theoretical
claims of any given theory are underdetermined by evidence, hence there
are no grounds for belief in them. Recently, Norton (1993; 1994) has
claimed that underdetermination in practice rarely occurs, and explains
this by observing that grounds for belief in a theory can be established
by means other than simple hypothetico-deductive inference. In particular,
he describes how demonstrative induction was used to establish belief in
Planck’s quantum hypothesis.2 In this essay, I look at another example of
demonstrative induction; namely, Weinberg’s (1995; 1997) argument that
seeks to establish local quantum field theory as the only type of quantum
theory that is in accord with the relevant evidence and satisfies the general
principles of Lorentz Invariance and Cluster Decomposition.

The essay is divided into two parts. In Part I, I present a version of the
underdetermination argument and indicate how demonstrative induction
can serve as a foil. I then present Weinberg’s argument schematically and
consider the extent to which it can be considered a demonstrative induc-
tion. In Part II, I present an exposition of the technical details involved in
the argument.
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PART I

1. Underdetermination and Scientific Realism

Following Earman (1993) (see, also, Horwich 1982b), I take scientific real-
ism to be composed of two parts: a semantic component and an epistemic
component. The semantic component characterizes the realist’s desire to
read scientific theories literally. It maintains that the theoretical claims of
certain theories have referential status. The epistemic component charac-
terizes the realist’s contention that there can be good reason to believe the
theoretical claims of certain theories. The underdetermination argument at-
tempts to demonstrate that semantic realism undermines epistemic realism.
In general, it takes the following form, where (ER) and (SR) are Epistemic
Realism and Semantic Realism respectively and (EI) denotes what I shall
refer to as the Epistemic Indistinguishability thesis:

Belief in some classC of theories is justified.(ER)

For any theoryT ∈ C, there is a theoryT ′ ∈ C such that,

(i) Any reason to believeT is a reason to believeT ′ and vice
versa;

(ii) If T ′ and T are read literally, they make contradictory
claims.

(EI)

For allT ∈ C, T is to be read literally.(SR)

—————————————————–
∴ ((SR)∧ (EI))⇒∼(ER).

(The assumption driving the conditional in the conclusion evidently is that
if belief in T entails belief in∼T , then we should refrain from belief in
T .) The options for the epistemic realist are then:

(a) Reject (SR).
(b) Reject (EI). There are two ways to do this.

(i) Reject (EIii) by claiming that a literal construal ofT andT ′ need
not entail a contradiction.

(ii) Reject (Eli) by claiming that, for two theoriesT andT ′, there are
always reasons to prefer one theory over the other.

In this essay, I consider how demonstrative induction can serve as a
basis for Option (bii).3 To do so, it is first necessary to make a further
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disticntion between two variants of Option (bii), a non-empirical version
and an empirical version. The former looks to such non-empirical traits
as simplicity, explanatory power, unifying power, etc., as ways of char-
acterizing the epistemically privileged classC of theories appearing in
(ER). Fine (1986) and Kukla (1994b) have charged that forms of infer-
ence based on such traits beg the question for the realist insofar as there
is no justification for such forms that will satisfy a die-hard anti-realist
who licenses warrant only for inferences based on empirical data. For
such an anti-realist, the epistemic indistinguishability thesis becomes an
empirical indistinguishability thesis and a distinction between empirical
claims and theoretical claims must be made.4 One way to effectively en-
gage the anti-realist then is to adopt her criterion of warrant and then
demonstrate that inferences based on this criterion, in some cases, yield
unique theories. Specifically, I shall take the view that the underdetermi-
nation argument in its empirical indistinguishability guise is motivated by a
hypothetico-deductive approach to confirmation wherein belief in a theory
is conditioned solely by its empirical consequences. The claim then is that,
in actual practice, other forms of inference based on empirical data play
roles in determining theory from evidence.5 In this essay, I look at a par-
ticular example of one such form; namely, a demonstrative induction that
seeks to establish local quantum field theory as the unique theory inferred
from evidence obtained from scattering experiments in conjunction with
two basic physical principles.

2. Weinberg’s Demonstrative Induction

Weinberg claims the following:

. . . quantum field theory is the way it is because (aside from theories like string theory that
have an infinite number of particle types) it is the only way to reconcile the principles of
quantum mechanics (including the cluster decomposition property) with those of special
relativity. (1995, xxi)

To see how this can be construed as a demonstrative induction, consider the
general form of the latter (referred to hereafter as DI) as given in Norton
(1994, 11):

(1) Premises of lesser generality.
(2) Premises of greater generality.
————————————————–
(3) Conclusion of intermediate generality.

The distinguishing characteristics of this form are (a) contrary to its
name, it is a deductive argument: The conclusion is meant to follow de-
ductively from the premises, and (b) as a consequence, the inductive risk
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involved in making the inference is placed squarely in the premises. This
latter characteristic should be compared with hypothetico-deductive forms
of inference in which the inductive risk is placed on the rule of inference
itself. (In other words, the risk of using a demonstrative induction lies in
accepting the premises; whereas the risk of using a hypothetico-deductive
inference lies in the form of the inference itself.)6

Weinberg’s argument is based on three general physical principles that
govern the way descriptions of physical processes are constructed. These
are associated in turn with quantum mechanics, special relativity and the
locality constraint referred to as cluster decomposition.

I. (Quantum Mechanics) First recall that the state of a physical system
as described by quantum mechanics is completely (up to arbitrary phase)
specified by a vector in a Hilbert spaceH . Physically measurable quanti-
ties are probabilities for experimental outcomes and are represented by the
squared amplitudes of the overlap of state vectors.7 As a result of the com-
plex/linear properties of Hilbert spaces, such amplitudes can be linearly
superposed and transform under probability-preserving unitary transfor-
mations.

II. (Special Relativity) Second, special relativity requires that descriptions
of physical processes satisfy Lorentz invariance; i.e., they remain invari-
ant under transformations of the inhomogeneous Lorentz (alternatively,
Poincaré) group IO(3, 1). This in turn is based on the assumptions that
spacetime is isotropic and homogeneous and its symmetries, at the local
level, are generated by IO(3, 1).

III. (Cluster Decomposition) Finally, a description of a physical process
isolated in a laboratory setting should be independent of the complete state
of the world outside the laboratory.

Since the empirical evidence for QFT comes in the form of scattering
experiments, the above principles can be collapsed into 2 conditions on
the quantum mechanical characterization of scattering given by theS-
matrix. Following the DI schema above, Weinberg’s argument then takes
the general form:

(1) Empirical evidence for QFT.
(2) A physically satisfactoryS-matrix satisfies the principles
of Lorentz Invariance (LI) and Cluster Decomposition (CD).
—————————————————————
(3) Local Quantum Field Theory.
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Three clarificatory remarks are in order concerning this reconstruction.
First, by field theory, Weinberg means the Fock space representation

built from Wigner’s analysis of single-particle states as irreducible rep-
resentations of the Poincaré group. Specifically, for the purposes of Wein-
berg’s argument, the distinguishing characteristic of the application of such
a theory to descriptions of physical processes is the presence of a Hamil-
tonian density constructed out of local field operators. In slightly more
detail, in most expositions one is presented with two equivalent ways of
constructing a local quantum field theory in Minkowski spacetime.8 The
first starts with Wigner’s definition of single-particle states as irreducible
representations of the Poincaré group. A Fock spaceF is then constructed,
raising and lowering operatorsa†(q), a(q) are introduced, and position-
dependent local field operatorŝψ(x) are obtained as their Fourier trans-
forms (where the hat is used here solely to distinguish the quantum case
from the classical case). The alternative is to start with the theory of a clas-
sical field, postulate the standard canonical commutation relations (ccr)
for the field variables and their conjugate momenta, and then identify the
Fourier expansion coefficients of the fields as raising and lowering opera-
tors on a Fock space. Schematically,9

IO(3, 1)→ “particles”→ F → a†(q), a(q) →
F.T.

ψ̂ (x) (local

quantum field)

(I)

ϕ(x) (classical field)→
ccr

ψ̂(x) →
F.T.

a†(q), a(q) → F →
“particles”

(II)

The second clarificatory remark concerns the basic source of Premise
(1) in the above reconstruction of Weinberg’s argument. This comes from
scattering processes in which some number of particles, traveling freely
a short time in the past (effectively att = −∞ for elementary particle
time scales) collide with each other and then separate. According to the
principles of quantum mechanics, a short time after the collision (effec-
tively at t = +∞), the system is in a superposition of free states, each
of which describes a possible end result of the collision. The probability
amplitudes for these results are given by theS-matrix. In effect, then, to
describe scattering events in terms of the physical principles of quantum
mechanics requires introduction of theS-matrix.

The third clarificatory remark concerns the two general principles as-
serted in Premise (2). First, an operatorQ on a Hilbert space is Lorentz
invariant10 just when it commutes with the unitary operator representa-
tionsU (3, a) of the Poincaré group:U(3, a)QU†(3, a) = Q. Second,



6 JONATHAN BAIN

Cluster Decomposition in brief requires that scattering experiments in re-
gions of spacetime separated by great spatial distances do not interfere.
This imposes a factorization condition on theS-matrix describing such
processes.

Weinberg’s strong claim then is that the local field theory formalism ob-
tained via Approach I in general, and in particular, the presence of a Hamil-
tonian density constructed out of local field operators, is the only way
to guarantee that theS-matrix satisfies the general principles of Lorentz
Invariance and Cluster Decomposition. To reiterate, local quantum field
theory is the only way to reconcile the principles of quantum mechanics
with special relativity and Cluster Decomposition. In slightly more tech-
nical detail, he demonstrates the following: Given the Dyson expansion of
theS-matrix,

(A) The following conditions are sufficient for theS-matrix to be Lorentz
invariant:

(i) The interaction Hamiltonian densityHint(x) of the theory is a
Lorentz scalar;

(ii) [Hint(x), Hint(x
′)] = 0, for spacelike(x − x′).

(B) The following condition is sufficient for theS- matrix to satisfy Cluster
Decomposition:

(i) The full HamiltonianH is a sum of products of raising and lower-
ing operatorsa†(q), a(q) with coefficients that are smooth func-
tions of the momenta apart from a single 3-momentum delta func-
tion factor.

(C) A sufficient condition for the compatibility of (A) and (B) is the fol-
lowing:

(i) Hint(x) is a sum of products of local quantum fieldsψ(x); i.e.,
fields that satisfy[ψ(x),ψ(x′)] = 0, for spacelike(x−x′), and are
linear ina†(q), a(q), with coefficients that are smooth functions
of momenta.

In Part II, I flesh out the technical details involved in Approach I and
how the inference is made from Premises (1) and (2) to local QFT by
means of the claims (A), (B) and (C). In the next section, I consider the
extent to which the argument can be considered a valid demonstrative
induction.
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3. QFT and Underdetermination

In this section, I first consider the feasibility of the premises in the recon-
struction of Weinberg’s argument in Section 2. Next I consider the extent
to which the argument can be considered a demonstrative induction.

(1) A demonstrative induction is only as good as its premises. I take the na-
ture of Premise (1) to be uncontroversial. For inductive skeptics who think
otherwise, I offer little solace beyond the qualification that demonstrative
inductions of this type are meant to be effective against the anti-realist who
employs the empirical indistinguishability version of the underdetermina-
tion argument as reconstructed in Section 1. Such an anti-realist is willing
to concede belief in empirical claims but balks when it comes to theoretical
claims. I refer to footnote 4 for skeptics who claim that the distinction
between empirical and theoretical claims on which this response is based is
problematic. (I claim, at the least, that anti-realists who wish to employ the
underdetermination argument must at some point make such a distinction.)

I claim further that the principles of quantum mechanics given in Sec-
tion 2 are unavoidable insofar as (i) they are fundamental to the manner
in which quantum mechanical descriptions of physical phenomena are
constructed, and (ii) such descriptions are highly confirmed. (By “highly
confirmed” I mean they satisfy whatever criteria are judged necessary and
sufficient to warrant belief by the anti-realist who adopts the empirical
indistinguishability thesis.) The same holds for the principle of Lorentz
Invariance. This is a basic tenet of special relativity and, insofar as the
latter is highly confirmed, LI is unavoidable in descriptions of physical
phenomena.

Finally, I have two comments to make concerning Cluster Decompo-
sition (CD) that aim at clarifying its relation to special relativity and its
relation to the similar locality constraint of micro-causality (4.1.11 be-
low) for fields. First, note that special relativity is usually associated with
two principles: LI (Lorentz Invariance) and NSC (“no superluminal cau-
sation”). CD is independent of LI insofar as interaction Hamiltonians can
be constructed that are unitary and LI, but do not satisfy CD.11 Moreover,
CD is weaker than NSC insofar as CD is applicable to classical as well as
relativistic settings. It is only in the latter context that CD translates into
NSC. In this setting, I take it to be uncontroversial in the same sense as LI
is above.12 In this setting, CD serves the same purpose for theS-matrix as
micro-causality does for fields: both are locality constraints that prohibit
causal influences from propagating between space-like separated regions
of spacetime. Moreover, micro-causality of fields is a sufficient condition
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for the S-matrix to satisfy CD. The following proof is given in Brown
(1992, 313).

An N-point time-ordered correlation function, orτ -function, is a time-
ordered vacuum expectation value ofN local fields〈T {φ(x1) · · · φ(xN)}〉
(I consider only the neutral scalar field case for simplicity). The signif-
icance ofτ -functions for the purposes of this proof is that they can be
used to calculateS-matrix elements by means of the Lehmann–Symanzik–
Zimmermann (LSZ) reduction formula.13 Hence, ifτ -functions satisfy CD,
so does theS-matrix. Consider now an (N + M)-point τ -function
〈T {φ(x1) · · ·φ(xN)φ(y1) · · ·φ(yM)}〉 where the coordinatesx1 · · · xN and
y1 · · · yM are separated by a large spacelike intervalRµ, R2 > 0. Define
new coordinates̄yµb by yµb = Rµ + ȳµb (so theȳµb are close to thexb). By
micro-causality,[φ(xa), φ(yb)] = 0, since(xa − yb)2 > 0, ∀a, b. Hence
the time-ordering factors, and we have:

〈T {φ(x1) . . . φ(xN)φ(ȳ1) . . . φ(ȳM)}〉
= 〈T {φ(x1) . . . φ(xN)}T {φ(ȳ1) . . . φ(ȳM)}〉
= 〈T {φ(x1) . . . φ(xN)} e−iPµRµT {φ(ȳ1) . . . φ(ȳM)}〉,

(3.1)

where in the second lineφ(yb) = e−iPµRµφ(ȳb) eiPµRµ , corresponding to a
translation of the fieldsφ(yb) by Rµ (recalling that translations leave the
vacuum invariant). Inserting a complete set of states

∑ |n〉〈n| = 1, one
then obtains,

= 〈T {φ(x1) . . . φ(xN)}〉〈T {φ(ȳ1) . . . φ(ȳM)}〉
+∑n6=VAC 〈0|T {φ(x1) . . . φ(xN)}|n〉e−ipnRµ

〈n|T {φ(ȳ1) . . . φ(ȳM)}|0〉.

(3.2)

ForR2→∞, the second term in (3.2) vanishes by the Riemann–Lebesque
Lemma.14 One then has

〈T {φ(x1) . . . φ(xN)φ(y1) . . . φ(yM)}〉
= 〈T {φ(x1) . . . φ(xN)}〉〈T {φ(y1) . . . φ(yM)}〉,

which is the desired CD result (where use has been made of the translation
invariance ofτ -functions to replace thēyb coordinates withyb).

Schematically, the above demonstrates: (micro-causality for fields)⇒
(CD of S-matrix). Recall that Weinberg’s argument runs in the opposite
direction. According to his strong claim, we have,

(LI of S-matrix)⇒ (micro-causality forHint(x));(A)

(CD of S-matrix)⇒ (a†(q), a(q) decomposition ofHint(x));(B)
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and hence,

(LI & CD of S-matrix)⇒ (field decomposition ofHint(x) with
micro-causality for fields).

(C)

It appears that whether one prioritizes micro-causality for fields or clus-
ter decomposition for theS-matrix depends on what one takes to be the
fundamental observables of the theory. For Weinberg, the fundamental
observable is theS-matrix. Indeed, here is Weinberg’s take on the priority
of micro-causality for fields:

Such considerations of causality are plausible for the electromagnetic field, any one of
whose components may be measured at a given spacetime point. . . . However, we will
be dealing here with fields like the Dirac field of the electron that do not seem in any
sense measurable. The point of view taken here is that [the micro-causality condition] is
needed for the Lorentz invariance of theS-matrix, without any ancillary assumptions about
measurability or causality. (1995, 198)

(Note that, technically, a field at a point is not an observable. Fields are
operator-valued distributions defined as smeared averages over arbitrarily
small regions of spacetime. The only modification to the micro-causality
constraint is that it should take the form[ψ†

m[f ], ψn[h]]± = [ψm[f ], ψ†
n[h]]± = 0, when the supports of the test functionsf andh are spacelike

separated.)
This emphasis on the fundamentality of theS-matrix also influences

Weinberg’s attitude toward other approaches to quantization. Consider the
canonical field approach (Approach II of Section 2) which begins with the
theory of a classical field given either by a Lagrangian or a Hamiltonian.
Given that fields are the primary observables of the theory, this approach
seems sensible. However, it’s not clear how such an approach guarantees
a physically satisfactoryS-matrix. There are Hamiltonians that are mani-
festly non-Lorentz covariant, yet yield perfectly acceptable Lorentz invari-
ant S-matrices. On the other hand, given a scalar Lagrangian, Noether’s
theorem guarantees Lorentz Invariance of theS-matrix. However, unitarity
of theS-matrix is now obscure. (The unitarity constraint on theS-matrix
was glossed over in the above. Generally, in a scattering process, some-
thing has to happen; i.e., the squares of the amplitudes of all the scattering
probabilities (the elements of theS-matrix) must sum to one. This requires
that theS-matrix operator be unitary. This is guaranteed by the hermiticity
of the Hamiltonian in the Dyson expansion.)

(2) To what extent can Weinberg’s argument be considered a demonstra-
tive induction? What he demonstrates, Claims (A)–(C) of Section 2, can
be represented schematically by,

(local QFT)⇒ (LI and CD ofS-matrix),
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where, for “local QFT”, read “Hint(x) is a sum of products of local fields
ψ(x) which are linear ina†(q), a(q) with coefficients that are smooth
functions of momenta”. In various places, however, he makes the stronger
claim,

(LI and CD ofS-matrix)⇒ (local QFT).

Indeed, this is what is needed for the reconstructed demonstrative induc-
tion of Section 2 to be valid. That he is not ultimately making this stronger
claim is evident in Weinberg (1997, 7–8) where he lists four objections to
it:

(i) The argument assumes perturbation theory and it is generally thought
that power expansions such as (4.2.7) diverge at high orders for theo-
ries like QED and QCD (see, e.g., Kaku 1993, 451, for a discussion).

(ii) The requirement that the Hamiltonian density be a local Lorentz scalar
is not necessary for Lorentz invariance of theS-matrix. For instance,
in Coulomb gauge, the QED Hamiltonian density contains a non-local,
non-Lorentz covariant Coulomb interaction term which serves to can-
cel a similar non-covariant term in the photon propagator. In general,
non-covariant terms in the propagator arise for any interaction involv-
ing a vector field (see, e.g., Weinberg 1995, 278). Gauge theories are
of this type and canonical quantization becomes problematic as a re-
sult, especially in the non-Abelian case (quantization via the functional
integral approach is the standard procedure in these cases).

(iii) String theory is a counterexample to the strong claim. String theo-
ries are conformally invariant field theories in 4 or more spacetime
dimensions for whichS-matrices that satisfy LI and CD can be con-
structed. They differ from local QFT’s insofar as, when formulated
via functional integration in phase space, the “paths” integrated over
are 2 dimensional world sheets as opposed to 1 dimensional particle
trajectories. For local QFT’s, a method exists to second quantize the
purely classical sum over paths, resulting in a quantum theory. For
string theories, no such method of second quantization at present ex-
ists. This, however, does not reflect on the ability of such theories to
produceS-matrices that are LI and CD.

(iv) Finally, as indicated above, the argument assumes the fundamentality
of theS-matrix. This assumes 3 types of idealization. First, it requires
that spacetime is sufficiently flat. Second, it requires that asymptotic
particle states are well-defined; i.e., it assumes no interactions occur
effectively for all times before and after the scattering event. Third, it
ignores possible effects due to quantum gravity at sufficiently small
spacetime scales.
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To get around these objections, Weinberg (1997, 8) essentially weakens the
strong claim by replacing “local QFT” with “effective field theory (EFT)”.
The amended argument now is, schematically,

(LI and CD ofS-matrix at low energies)⇒ (local QFT at low
energies).

In words, any theory that looks Lorentz invariant and satisfies Cluster
Decomposition at low energies and large distances will look like a local
quantum field theory at low energies and large distances. Or, in other
words,

(LI and CD ofS-matrix)⇒ (EFT).

The idea behind effective field theory is to write down the most general
Lagrangian consistent with the symmetries of the physical system to be
described and treat the resulting field theory as valid only within a given
energy range. The most blatant consequence of this is that it avoids the con-
straint of renormalizability: By writing down the most general Lagrangian
for the system, an infinite number of counterterms from the infinite number
of interactions allowed by symmetries becomes available to cancel all di-
vergences in the perturbative expansion. Restriction to the low energy/large
distance sector of the theory then allows terms of higher orders to be
disregarded. Hence, Lagrangians that are not renormalizable (in the usual
power-counting sense) can now be considered viable. (Note that there is
non-trivial content to the effective field theory programme insofar as it
does have predictive power; it is not just an ad hoc heuristic that avoids the
problems of renormalization. For instance, it provides useful perturbation
expansions for low-energy pions and low-energy gravitons. For the former,
see Weinberg (1996, Chapter 19.5); for the latter, Donoghue (1995).

This move does indeed counter Objections (i), and (iv) by definition.
Objection (iii) is also avoided, as string theory produces local QFT at low
energies and large distances. Furthermore, at present, there are no other
counterexamples in the running. What still remains slightly problematic
is Objection (ii). Perhaps it can be addressed simply by translating “local
QFT” as,

local QFT′: The Lagrangian densityL[ψi] is a Lorentz scalar
functional of local fieldsψi which are linear ina†(q), a(q) with
coefficients that are smooth functions of momenta.15

As indicated in 1) above, this is sufficient for Lorentz invariance of the
S-matrix. It is also necessary and sufficient for Cluster Decomposition. If
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the Lagrangian density is a sum of products of local fields obeying micro-
causality, then theS-matrix will satisfy CD, as indicated by the proof in
1) above. Conversely, if theS-matrix satisfies CD, then the interpolating
fields that appear in the LSZτ -function formulation will satisfy micro-
causality;16 and one such particular set of interpolating fields are those that
appear in the Lagrangian density. What remains to be shown is that local
QFT′ is necessary for Lorentz invariance of theS-matrix, and it is this
condition to which objection (iii) applies. Schematically, we now have, in
the first instance,

(LI and CD ofS-matrix)⇒ (local QFT′),

with Objections (i), (iii) and (iv) still in force. In the amended second
instance,

(LI and CD ofS-matrix)⇒ (EFT),

where the low-energy, large-distance sector is taken to be local QFT′. This
takes care of Objection (ii), and Weinberg’s demonstrative induction suc-
ceeds for effective field theory.17 Note, however, that using local QFT′ in
the argument spoils Weinberg’s desire to avoid assumptions concerning
causality and measurability for fields insofar as micro-causality for fields
now cannot be seen to follow from the LI constraint on theS-matrix.

What, then, is the upshot of Weinberg’s demonstrative induction? In
the first instance, it demonstrates that emphasis on theS-matrix as the
fundamental observable describing the behavior of matter at very short
distance scales places severe constraints on the form of any theory that
attempts to describe such phenomena. We’ve seen that these constraints
are not so severe as to pick local quantum field theory as the only possi-
ble description. But they come close. Furthermore, if the programme of
effective field theory is adopted, the range of possibilities is restricted even
further. Given the fundamentality of local fields along with theS-matrix,
a full-fledged demonstrative induction for effective field theory can be
constructed. It should finally be noted that these observations certainly do
not contribute to a realist interpretation of field theory;18 however, they do
mitigate against an anti-realist interpretation by at least foiling the under-
determination argument: They make it clear that coming up with a theory
as descriptively accurate as local quantum field theory is not as easy a
matter as the underdetermination argument would have us believe.
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PART II

4. Weinberg’s Demonstrative Induction: Technical Details

In this last section, I provide the technical details behind Weinberg’s argu-
ment. To set the terminology, in Sections 4.1 and 4.2, I recall some facts
governing the standard method of constructing a Fock space of free mul-
tiparticle states and the derivation of the Dyson expansion of theS-matrix
in terms of transitions between asymptotic multiparticle states. This sets
the stage for Weinberg’s argument which is presented in Sections 4.3–4.5.
The following is based for the most part on Weinberg’s own treatment in
Chapters 2–4 of his (1995) which may be consulted for further details.

4.1. Local Field Theory from Poincaré Invariant Quantum Theory
Wigner’s Theorem tells us that proper orthochronous Poincaré transfor-
mations are given by unitary operatorsU(3, a) on a Hilbert space.19 The
initial task in constructing a local field theory is to determine the states on
which these operators act and the transformation rules they obey under this
action. Given these states, one can then construct a Fock space, which is
the appropriate Hilbert space for field theory.

Recall that single particle states are uniquely labeled by irreducible
representations of the Poincaré group ISO(3, 1). Specifically, each state is
uniquely labeled by the eigenvalues of the Casimir operators of
ISO(3, 1), of which there are two:PµPµ with eigenvalues−m2, andWµW

µ

whereWµ = −1/2εµυρσ J υρP σ , with eigenvalues−m2σ (σ+1) (where the
J υρ are the generators of homogeneous Lorentz transformations). These
serve to label a given irreducible representation by means of its massm

and its spinσ (or helicity for the casem = 0). A single particle state may
thus be represented by the Hilbert space vector|p, σ 〉, wherep and σ
denote its momentum and spin, respectively. Under finite translations and
homogeneous Lorentz transformations, these states transform according
to,

U(1, a)|p, σ 〉 = e−iP ·a|p, σ 〉 = e−ip·a|p, σ 〉.(4.1.1)

U(3)|p, σ 〉 =
√
(3p)0/p0

∑
σ ′
Dσσ ′(W(3,P ))|3p, σ ′〉,(4.1.2)

respectively, where the Wigner rotation matrixW(3,p) =
L−1(3p)3L(p) belongs to the subgroup of the homogeneous Lorentz
group that consists of transformationsWµ

υ that leavepµ invariant:Wµ
υ p

υ =
pµ. This defines the so-called “little group” ofpµ with matrix representa-
tions given by the matricesDσ ′σ .
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Multiparticle states can be constructed by taking the tensor product of
the appropriate number of 1-particle states. A multiparticle state in which
the number of particles varies is then obtained as an element of a Fock
spaceF , constructed by taking the direct sum of the tensor products of
the appropriate 1-particle Hilbert spacesH : F = C ⊕ H ⊕ (H ⊗ H)

⊕ (H ⊗ H ⊗ H) ⊕ · · ·, where the tensor product⊗ is totally anti-
symmetric/symmetric, depending on whether the 1-particle states describe
fermions/bosons. The states inF are desirable in describing scattering
processes in which the number of particles of various types changes. The
general transformation rule for such states is obtained from (4.1.1) and
(4.1.2):

U(3, a)|p1, σ1; · · · 〉 =(4.1.3)

= e−iaµ(p
µ
1+···)

√
(3p1)0 · · · /p0

1 · · ·

×
∑
σ ′1···

D
(j1)

σ ′1σ1
(W(3,p1)) · · · |3p1, σ

′
1; · · · 〉.

(This is actually the transformation rule for massive particles where the
D(j)-matrices are unitary spin-j representations of SO(3). A slightly dif-
ferent rule obtains for the massless case.)

The raising and lowering operatorsa†(q), a(q) are defined as usual by
their actions onN-particle states:

a†(q)|q1 · · · qN 〉 ≡(4.1.4)

≡ |qq1 · · · qN 〉, a(q)|q1 · · · qN 〉

≡
N∑
r=1

(±1)r+1δ(q − qr)|q1 · · · qr−1qr+1 · · · qn〉,

where the±1 sign depends on whether the states are fermionic or bosonic
andq labels momentump and spinσ . In particular, acting on the vacuum
state|0〉,

a†(q1)a
†(q2) · · · a†(qN)|0〉 = |q1q2 · · · qN 〉. a(q)|0〉 = 0.(4.1.5)

The standard (anti-)commutation relations then result:

[a†(q ′), a†(q)]± = [a(q ′), a(q)]± = 0,(4.1.6)
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[a(q ′), a†(q)]± = δ(q ′ − q),
where the± indicates an anti-commutator/commutator, depending on
whether the states are fermionic/bosonic. The transformation rules for
a†(q), a(q) are obtained from (4.1.3), (4.1.5) and the condition that the
vacuum state be Lorentz invariant:

U(3, a)a†(p, σ )U†(3, a) =(4.1.7)

= e−i(3p)·a√3p0/p0

∑
σ ′
D
(j)∗
σ ′σ (W(3,p))a

†(p3, σ ′),

U(3, a)a(p, σ )U†(3, a) =

= ei(3p)·a√3p0/p0

∑
σ ′
D
(j)

σ ′σ (W(3,p))a(p3, σ
′),

wherep3 is the 3-vector part of3p.
At this point, standard treatments introduce field operators as Fourier

transforms ofa†(q), a(q). Weinberg does not do this, moving on instead to
a discussion of scattering theory before further developing the formalism.
Again, his strong claim amounts to the contention that the LI and CD con-
straints on theS-matrix force the introduction of local field operators. For
completeness sake, however, I shall continue with the standard treatment
and indicate how local quantum field operators are introduced within it.
This can then be compared to Weinberg’s treatment in Section 4.5.

The position basis forF is constructed by taking Fourier transforms of
a†(q), a(q):

ψ+m (x) =
∑
σ

(2π)−3/2
∫

d3pum(p, σ )eip·xa(p, σ ),(4.1.8)

ψ−m (x) =
∑
σ

(2π)−3/2
∫

d3pvm(p, σ )e−ip·xa†(p, σ ),

wherem labels the components of the fieldsψ+m (x) andψ−m (x). In general,
they are required to satisfy the the transformation rules,

U(3, a)ψ±m (x)U
†(3, a) = Mmn(3

−1)ψ±n (3x + a),(4.1.9)

where the matricesMmn(3) are representations of the homogeneous
Lorentz group.
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The fields (4.1.8) satisfy the (anti-) commutation relations,

[ψ+m (x), ψ−n (y)]± = (2π)−3
∫

d3pum(p, σ )vn(p, σ )eip·(x−y).(4.1.10)

To construct alocal field, i.e., one whose (anti-) commutator vanishes at
spacelike distances, the linear combinationψm(x) = κmψ+m (x) + λmψ−m (x)
is taken, which then can be made to satisfy,

[ψ†
m(x), ψn(y)]± = [ψm(x), ψ†

n (y)]± = 0,
for (x − y) spacelike.

(4.1.11)

This condition for field operators is normally referred to as micro-causality.
If the spacelike (anti-) commutator of two fields did not vanish, this would
imply that measurements of spacelike separated fields could interfere,
violating causality.

For any local quantum field, the coefficientsκ andλ and the expansion
coefficientsum(p, σ ) andvm(p, σ ) are completely determined by the rep-
resentation of the homogeneous Lorentz group under which it transforms
and by the micro-causality condition. I now turn to a brief discussion of
scattering processes and the Dyson perturbative expansion of theS-matrix.

4.2. Multiparticle Interactions and PerturbativeS-matrix Theory
Consider a scattering process involvingM in-coming particles with ith
momentumpi andN out-going particles with ith momentump′i. The state
of the system att = −∞, before the scattering event has occurred, is repre-
sented by a localized “in” multiparticle state|α〉in ≡ |p1, σ1; . . .pM, σM〉in.
At t = +∞, this state has evolved into a localized “out” multiparticle state
given by|α〉out≡ |p′1, σ ′1; . . .p′N , σ ′N 〉out. These in/out states are considered
asymptotically free, transforming under the rule (4.1.3), and can thus be
expanded in a superposition by means of a time-evolving HamiltonianH .
Schematically,

e−iHt
∫

dαg(α)|α〉in/out=
∫

dα e−iEαtg(α)|α〉in/out.(4.2.1)

where, for instance, dα = d3p1 · · · d3pM (for in states) andg(α) represents
a product of Gaussian functionsg(pi), i = 1 · · ·M, each of which serves
to localize the corresponding single-particle state as a wave packet peaked
atpi. To describe the scattering interaction,H is split into a “free” partH0

and an interaction partV in such a way that the eigenstates|α〉 of H0 have
the same eigenvalues as the in/out states:

H |α〉in/out= Eα |α〉in/out, H0|α〉 = Eα|α〉.(4.2.2)
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The requirement that the localized in/out states are asymptotically free can
then be written, using (4.2.1), as,

e−iHt
∫

dαg(α)|α〉in/out →
t→∓∞e−iH0t

∫
dαg(α)|α〉,(4.2.3)

or schematically as|α〉in/out =�(∓∞)|α〉, where�(t) ≡ eiHt e−iH0t .
Elements of theS-matrixSβα are probability amplitudes for transitions

between in- and out-states:

Sβα ≡out 〈β|α〉in = 〈β|�†(+∞)�(−∞)|α〉(4.2.4)

= 〈β|U(+∞,−∞)|α〉,
where the evolution operatorU(t, t0) is given by U(t, t0) =
eiH0t e−iH(t−t0) e−iH0t0. The task now is to obtain an explicit form forU(t, t0),
and hence a form for theS-matrix. This is done by solving the differential
equation,

(∂/∂t)U(t, t0) = eiH0t (iH0− iH)e−iH(t−t0) e−iH0t0(4.2.5)

= −iVint(t)U(t, t0),

whereVint(t) ≡ eiH0tV e−iH0t . For small interactions, solutions to (4.2.5)
with initial condition U(t0, t0) = 1 may be expanded in powers ofVint

yielding,

U(t, t0) =
∞∑
n=0

(−in/n!)
∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

(4.2.6)

×dtnT {Vint(t1)Vint(t2) · · ·Vint(tn)}.
where the time-ordered productT {Vint(t1) · · · Vint(tn)} orders theVint(t)

according tot1 > t2 > · · · > tn. The S-matrix operatorS can now be
identified withU(+∞,−∞). Substituting into (4.2.4), the Dyson series
expansion of theS-matrix is given by

Sβα =
∞∑
n=0

(−in/n!)
∫ ∞
−∞

dt1 dt2 · · · dtn(4.2.7)

×〈β|T {Vint(t1)Vint(t2) · · ·Vint(tn)}|α〉.
I now move on to Claims (A)–(C) of Section 2. In Sections 4.3 and

4.4, I explain Claims (A) and (B) which describe the conditions under
which (4.2.7) satisfies the two constraints of Lorentz Invariance and Clus-
ter Decomposition separately. In Section 4.5, I explain Claim (C) which
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describes the conditions under which (4.2.7) satisfies the two constraints
jointly.

4.3. Lorentz Invariance of theS-matrix
Weinberg’s first constraint is that theS-matrix be invariant under inhomo-
geneous Lorentz transformations. Formally, for theS-matrix operatorS,
U(3, a)SU†(3, a) = S.

Claim (A) (Weinberg 1995, 144): TheS-matrix is Lorentz invariant if the
interaction can be written as,

Vint(t) =
∫

d3xHint(x, t),(4.3.1)

whereHint(x) is a Lorentz scalar,

U(3, a)Hint(x)U
†((3, a) = Hint(3x + a),(4.3.2)

satisfying,

[Hint(x),Hint(x
′)] = 0, for (x − x′) spacelike.(4.3.3)

Proof.Substituting (4.3.1) into the form (4.2.6) for theS operator yields,

S =
∞∑
n=0

(−in/n!)
∫ ∞
−∞

d4x1 · · · d4xnT

× {Hint(x1)Hint(x2) · · ·Hint(xn)},
which is manifestly Lorentz invariant except for the time-ordering term.
However, since the time-ordering of two pointsx1, x2 is Lorentz invariant
unless(x1 − x2) is spacelike,T {Hint(x1) · · ·Hint(xn)} will be Lorentz in-
variant if (4.3.3) holds (i.e., (4.3.3) guarantees that time-ordering does not
matter for spacelike fields). QED

Lorentz invariance ofSβα also requires that it be proportional to
an overall 4-momentum conserving delta functionδ4(pβ − pα) =
δ(Eβ − Eα)δ3(pβ − pα) (wherepβ(pα) is the sum of all 4-momenta in
the multiparticle stateβ(α)). To see this, note that, from (4.1.1) and the
fact that Lorentz transformations are unitary, we have, for translations,
Sβα =out 〈β|U−1(1, a)U(1, a)|α〉in = eia·(pβ−pα)Sβα. Since there is noaµ-
dependence on the left-hand side, theaµ-dependence on the right must
vanish; i.e.,Sβα must conserve 4-momentum. In the next section, a much
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stronger constraint onSβα is enforced that requires itsconnectedcompo-
nents to be proportional to asingle3-momentum delta-function. I turn now
to this constraint.

4.4. Cluster Decomposition of theS-matrix
The second constraint Weinberg imposes on theS-matrix is Cluster De-
composition (CD), which states the following:

For N multiparticle processesα1 → β1, α2 → β2, . . . , αN → βN in
N very distant laboratories, theS-matrix element for the overall process
factorizes:

Sβ1+β2+···+βN ,α1+α2+···+αN → Sβ1α1Sβ2α2 · · · SβN αN ,(4.4.1)

where, fori 6= j , all the particles in statesαi andβi are at a great spatial
distance from all of the particles in statesαj andβj .20

Claim (B) (Weinberg 1995, 182): Let stateβ be comprised ofN particles
with ith momentump′i and stateα be comprised ofM particles withith
momentumpi. ThenSβα satisfies CD if

H =
∞∑

N,M=0

∫
dq ′1 · · · dq ′N dq1 · · · dqM(4.4.2)

× a†(q ′1) · · · a†(q ′N)a(qM) · · · a(q1)hNM(q
′
1 · · · qm),

where the coefficientshNM contain a single delta functionδ3(
∑

p′i−
∑

pi):

hNM(q
′
1 · · · q ′N, q1 · · · qM) = δ3(p′1+ · · · + p′N − p1− · · · − pM)

×fNM(q ′1 · · · q ′N, q1 · · · qM),
wherefNM are smooth functions of the momenta.21

To prove this claim, a condition on the connected components of theS-
matrix equivalent to CD is first demonstrated. The connected components
of theS-matrix are defined by the decomposition:

Sβα =
∑
part

(±)SCβ1α1
SCβ2α2

. . .,(4.4.3)

where the sum is over all possible partitions of the particles inα andβ into
clustersα1α2 . . . andβ1β2 . . ., counting clustersαi andαj the same if they
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differ only by a permutation of particles. (The (±) depends on whether
the rearrangementsα → α1α2 . . ., β → β1β2 . . . involve even/odd inter-
changes of fermion states.) Equation (4.4.3) defines the connected compo-
nents recursively. GivenSC00 = 0 andS00 = 1, we have (assuming stable
particles that do not decay or interact with the vacuum),

Sq ′q = δ(q ′ − q) ≡ SCq ′q(4.4.4)

Sq ′1q ′2,q1q2 = SCq ′1q1
SC
q ′2q2
± SC

q ′1q2
SC
q ′2q1
+ SC

q ′1q ′2,q1q2

Sq ′1q ′2q ′3,q1q2q3 = SCq ′1q1
SC
q ′2q2
SC
q ′3q3
± perm.+ SC

q ′1q ′2,q1q2
SC
q ′3q3

±perm.+ Sq ′1q ′2q ′3,q1q2q3

...

Figure 1. Graphical representation of theS-matrix for 4-4 scattering. The “C” denotes a
connected component.

Graphically, for 4-4 scattering, (4.4.3) can be represented by Figure 1.
The connected components are those matrix elements describing complete
interactions between all particles involved. The role of the raising and
lowering operators is to make this connectedness property explicit. The
idea is to expand the basis states|α〉, |β〉 appearing in theS-matrix (4.2.7)
in terms of raising/lowering operators acting on the vacuum, and repre-
sent the operatorV (t) as a sum of products of raising/lowering operators.
The resulting expression is evaluated by commuting all operators through
each other, using the (anti-) commutation relations (4.1.6) to get all raising
operators on the left and all lowering operators on the right (since such
terms vanish). After integration, (4.2.7) is thus reduced to a sum of factors
from the operatorsV (t) and 3-momentum delta functions from the (anti-)
commutation relations (4.1.6). The connected components of theS-matrix
turn out to be those terms for which every initial and final particle and every
operatorV (t) is connected to the others by a sequence of raising/lowering
operators.
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The factorization condition (4.4.1) now corresponds to the condition,

SCβα → 0,(4.4.5)

when the spatial distance between any pair of particles in statesβ and/orα
goes to infinity. To see this for 2-2 scattering, for instance, supposeq1 and
q ′1 are spacelike separated. ThenSC

q ′1q ′2,q1q2
= SC

q ′1q1
SC
q ′2q2
= 0, andSq ′1q ′2,q1q2

= SC
q ′1q1
SC
q ′2q2

= Sq ′1q1Sq ′2q2 = δ(q ′1 − q1)δ(q
′
2 − q2), which is the desired CD

result.
Weinberg now demonstrates that (4.4.2) is sufficient for (4.4.5) and

hence CD. The argument is given schematically by the following steps:

1. A necessary and sufficient condition for (4.4.5) is thatSCβα contains a
single3-momentum delta function factorδ3(pβ − pα), where,pβ(pα)
is the sum of all particle momenta in the stateβ(α).

2. If the connected matrix componentHc
βα of the Hamiltonian (described

below) contains a single factor ofδ3(pβ − pα), then so doesSCβα.

3. To obtainHC
βα, it is first demonstrated that any operatorH on F

can be expanded as a sum of products of raising and lowering opera-
tors. The connectedN-M scattering component ofH is then given by
〈q ′1 · · · q ′N |HC|q1 · · · qM〉 = hNM , wherehNM is theNMth coefficient
function occurring in the expansion.

Claim (B) is thus established, since condition (4.4.2) implies thatHC
βα

contains a singleδ3(pβ − pα). Proofs of Steps (1) and (3) are given in
the appendix. A rigorous proof of Step (2) is given in Weinberg (1964).
The connected componentsHC of the HamiltonianH are those matrix
elements ofH that are given by the interaction partV of H and describe
particle interactions in which all particles participate. (Those matrix ele-
ments ofH that depend solely onH0 will involve free particles that do
not interact.) The relation betweenHC andSC is given by the differential
equation (4.2.5), taking the limitst →+∞, t0→−∞. Naively, this rela-
tion preserves connectedness and, moreover, does not affect delta function
factors. A proof demonstrates that ifV C(t) contains a single delta function,
then so does (i∂/∂t)UC(t, t0). Consequently, ifUC(t, t0) contains a single
delta function at any given time, then it will contain a single delta function
for all times; hence, specifically, fort → +∞ andt0 → −∞. The proof
is completed by observing that att = t0, U(t0, t0) = 1, hence〈p′|UC|p〉 =
δ3(p′ − p).



22 JONATHAN BAIN

4.5. Lorentz Invariance, Cluster Decomposition and Local Quantum
Fields
We now determine the conditions under which Lorentz invariance of the
S-matrix is compatible with Cluster Decomposition; i.e., the conditions
under which (4.3.2) and (4.3.3) are compatible with (4.4.2). First, there
is a problem in reconciling (4.3.2) with (4.4.2). The raising and lowering
operators,a†(q), a(q), transform under inhomogeneous Lorentz transfor-
mations according to (4.1.7), in which theD(j)-matrices depend on the
4-momentump. Hence to construct a Lorentz scalar out of linear com-
binations of raising and lowering operators is problematic. The solution
Weinberg proposes is to constructHint(x) out of fields,

ψ+m (x) =
∑
σ

∫
d3pum(x;p, σ )a(p, σ ),(4.5.1)

ψ−m (x) =
∑
σ

∫
d3pvm(x;p, σ )a†(p, σ ),

with coefficientsum(x; p, σ ) andvm(x; p, σ ) chosen such that the fields
transformindependentlyof p:

U(3, a)ψ±m (x)U(3, a) = Mmn(3
−1)ψ±m (3x + a).(4.5.2)

As in (4.1.9), the matricesMmn(3) are representations of the homoge-
neous Lorentz group. In general, (4.5.2) is satisfied by absorbing thep-
dependency of theD(j)-matrices into the expansion coefficientsum(x; p,
σ ) and vm(x: p, σ ). Hint(x) is now guaranteed to be a Lorentz scalar
by expressing it as a sum of fields contracted with appropriate Lorentz
invariant tensor coefficients:

Hint(x) =
∑
NM

tn1···nN ,m1···mM(4.5.3)

× ψ−n1
(x) · · ·ψ−nN (x)ψ+m1

(x) · · ·ψ+mM(x),
where the constantstm1m2··· transform according to

tm1m2···Mm1n1(3
−1)Mm2n2(3

−1) · · · = tn1n2···.

(This guarantees that ifHint(x) is a local scalar field since the latter form
a ring under addition and multiplication.) It turns out that a necessary and
sufficient condition for the fields to satisfy (4.5.2), given (4.5.1), is for them
to take the form (4.1.8). Note however that the Fourier transform form
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(4.1.8) is now a consequence of the LI constraint (4.3.2) on theS-matrix;
namely, thatHint(x) transform as a scalar.

To see that (4.5.3) also satisfies CD, substitute (4.1.8) into it and inte-
grate overx:∫

d3xHint(x) = V(4.5.4)

=
∑
NM

d3p′1 · · · d3p′Nd3p1 · · · d3pM
∑
σ ′1···σ ′N

∑
σ1···σM

×a†(p′1σ
′
1) · · · a†(p′Nσ

′
N)a(pMσM) · · · a(p1σ1)

×VNM(p′1σ
′
1 · · · pMσM),

where,

VNM(p′1σ
′
1 · · · p′Nσ ′N,p1σ1 · · · pMσM)

= δ3
(∑

p′i −
∑

pi
)
fNM(p′1σ

′
1 · · · pMσM),

and,

fNM(p′1σ
′
1 · · · pMσM) =

= (2π)3−3N/2−3M/2tn1···nN ,m1···mMvn1(p
′
1σ
′
1) · · · umM (pMσM).

It is clear that thefNM are smooth functions of the momenta, as (4.4.2)
requires.

To be compatible with condition (4.3.3), however, not any combination
of fields in (4.5.3) will do. This is apparent from the (anti-) commutation
relations (4.1.10). Again, the solution is to use the linear combination,

ψm(x) = κmψ+m(x)+ λmψ−m(x),(4.5.5)

which then satisfies,

[ψ†
m(x), ψn(y)]± = [ψm(x), ψ†

n (y)]± = 0,(4.5.6)

for spacelike(x − y),
for judicious choice of constantsκ andλ. This is the same micro-causality
condition as (4.1.11), but where the latter was motivated by concerns over
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causality for the fields, (4.5.6) stems solely from the LI constraint (4.3.3)
on theS-matrix.

Hence we haveHint(x) = Tm1m2···ψm1ψm2 . . . , where the constantsTm1m2···
transform as Lorentz tensors. To reiterate, theS-matrix is Lorentz invariant
and satisfies Cluster Decomposition given that the Hamiltonian density is
a sum of products of local quantum fields (4.5.5); i.e., fields that satisfy
the micro-causality condition (4.5.6) and are linear ina†(q), a(q) with
coefficients that are smooth functions of momenta. Weinberg concludes:

Thus the whole formalism of fields, particles, and antiparticles seems to be an inevitable
consequence of Lorentz invariance, quantum mechanics, and cluster decomposition, with-
out any ancillary assumptions about locality or causality. (1997, 6)

APPENDIX

THEOREM 1. The connected componentSCβα of the S-matrix vanishes
when the spatial distance between any pair of particles in statesβ and/orα
goes to infinityif and only ifSCβα = δ3(pβ − pα)Cp, whereCp is a smooth
function of momenta andpβ(pα) is the sum of all 3-momenta in the state
β(α).

Proof. (A) “⇐”. Let stateβ be comprised ofn particles withith mo-
mentump′i, and stateα be comprised ofm particles withith momentum
pi. By assumption,

SCp′1···p′n,p1···pm = δ3

(
n∑
i=1

p′i −
m∑
i=1

pi

)
Cp′1···p′n,p1···pm(A.1)

where the functionCp′1···p′n,p1···pm does not contain additional 3-momentum
delta functions. The Fourier transform of (A.1) is,

SCy1···yn,yn+1···yn+m =(A.2)

=
∫

d3p′1 · · · d3p′n d3p1 · · · d3pm−1Cp′1···p′n,p1···pm−1
ei
∑n+m
j=1 K j ·ξj

whereξj = (yj − yj+1) andK j = ∑j

l=1 p′l, for j ≤ n, or−∑j−n
l=1 pl, for

j > n. If Cp′1···p′n,p1···pm vanishes at±∞, then by the Riemann–Lebesque
Lemma, the integral in the last line of (A.2) vanishes as any of the coordi-
nate intervalsξj go to+∞
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(B) “⇒”. In momentum space,

SCp′1···p′n,p1···pm =
∫

d3y1 · · · d3yn+mSCy1···yn+m(A.3)

×e−ip′1·y1 · · · e−ip′n·yn eip1·yn+1 · · · eipm·yn+m

= δ3
(∑

p′i −
∑

pi
)
Cp′1···p′n,p1···pm

where
∫

d3y1 · · · d3yn+m−1 =
∫

d3ξ1 · · · d3ξn+m−1, SCy1···yn+m = SCξ1···ξn+m−1
,

and the functionCp′1···p′n,p1···pm is given by

Cp′1···p′n,p1···pm =
∫

d3ξ1 · · · d3ξn+m−1S
C
ξ1···ξn+m−1

ei
∑n+m
j=1 K j ·ξj .(A.4)

This is a smooth function of the momenta since, by assumption,SCξ1···ξn+m−1

vanishes as any of the coordinate intervalsξj go to +∞. QED

THEOREM 2.22 Any operatorH acting onF may be expressed as a sum
of products of raising and lowering operatorsa†(q), a(q):

H =
∑
N,M

∫
dq ′1 · · · dq ′N dq1 · · · dqMa†(q ′1) · · · a†(q ′N)(A.5)

×a(qM) · · · a(q1)hNM(q
′
1 · · · q ′N, q1 · · · qM)

Proof. The proof proceeds by induction. First determineh11 from the
matrix elements ofH between two single particle states:

〈q ′|H |q〉 =
∫

dq ′1 dq1h11(q
′
1, q1)〈q ′|a†(q ′1)a(q1)|q〉(A.6)

=
∫

dq ′1dq1h11(q
′
1, q1)δ(q

′
1− q ′)δ(q1 − q)

= h11(q
′, q)

where|q〉 = a†(q)|0〉, 〈q ′| = 〈0|a(q ′) and use has been made of the com-
mutation relations (4.1.6). Next determineh22 from the matrix elements of
H between four single particle states:〈q ′1q ′2|H |q1q2〉 = h22(q

′
1, q
′
2, q1, q2)

+ (terms involvingh11). Now continue in a similar manner for higher-order
terms. QED

THEOREM 3. The connectedN ′−M ′ scattering component of the Hamil-
tonianH is given by〈q ′1 · · · q ′N ′ |HC|q1 · · · qM ′ 〉 = hN ′M ‘ (q

′
1 · · · q ′N ′ , q1
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· · · qM ′) wherehN ′M ′ is theN ′M ′th coefficient function occurring in the
expansion (A.5).

Proof.Consider a generalNM matrix element ofH . It will decompose
into a sum of disconnected elements and a fully connected element (see
Figure 1). For elements withN < N ′ and/orM < M ′, there are not
enougha+, a operators to affect allN particles in the initial state and/or
all M particles in the final state. Such elements thus contribute only to the
disconnected components. For elements withN > N ′ and/orM > M ′,
there are too manya†, a operators; some will eventually end up annihi-
lating the vacuum. Hence the only part ofH to contribute to the fully
connected matrix element ishN ′M ′ . QED

NOTES

∗ Thanks to Tony Duncan, John Norton and John Earman for comments and suggestions.
1 In this essay, the spacetime metric has signature (1, 1, 1,−1) and 3-vectors are indicated
in bold type.
2 Hudson (1997) claims that underdetermination can be resurrected for the case of Planck’s
hypothesis. However, this appears to be based on a spurious distinction between “particle”
and “degree of freedom” interpretations of the equipartition theorem.
3 Option (a) is adopted by Horwich’s (1982a, 1986) global conventionalism. Elsewhere,
I argue that option (bi) in the form of a weakened version of semantic realism is viable
under the name structural realism.
4 Horwich (1982a) and Laudan and Leplin (1991) maintain that such a distinction cannot
be made. Kukla (1994a) claims that it can (although adopting it, he maintains, is just as
question-begging for the anti-realist as adopting a non-empirical virtue is for the realist).
For the purposes of this essay, I shall assume the distinction is unproblematic. It can, but
does not have to be, based on an observable/unobservable split in the vocabulary of the
language in which the theory is expressed. In general, it suffices to allow that theoretical
claims are expressed in a language that out-strips the language in which evidence state-
ments are made. If such a syntactic distinction is objectionable, allow a distinction in kind
between unobserved observables and in-principle-unobservable unobservables, the latter
being the subject of theoretical claims. The basis of the anti-realist’s underdetermination
argument is simply that inferences to the former are warranted whereas inferences to the
latter are not.
5 Bayesian updating, arguably, fits this category (while the selection of priors is no-
toriously subjective, Gaifman/Snir-type convergence theorems provide some measure of
objectivity). Inferences based on eliminative induction also fit.
6 For comparison, hypothetico-deductive inferences take the following general form:

(1) If hypothesish is true, then predictionsa, b, c, . . . , etc. are true.
(2) Predictionsa, b, c, . . . , etc. are true.
——————————————————–
(3) Hypothesish is true.
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The implicit rule of inference here is that evidence supports a theory just when the evidence
is entailed by the theory.
7 More precisely, for the record, a measurable quantityQ corresponds to a self-adjoint
operatorQ̂ onH . The possible valuesqi ofQ one obtains upon measuring forQ are given
by the spectrum of̂Q. To obtain the probability that a given state|α〉 ∈ H exhibits a value
q for the quantityQ, one expands|α〉 in the eigenbasis|qi 〉 of Q̂ and takes the squared
norm of the overlap〈q|α〉.
8 Both approaches fall under what is generally referred to as canonical quantization. By
no means does this exhaust methods of quantization that result in local quantum field the-
ories. Kaku (1993, 62) lists the following: Canonical quantization, Gupta–Bleuler (covari-
ant) quantization, the functional integral method, Becchi–Rouet–Stora–Tyupin (BRST),
Batalin–Vilkovisky (BV), and stochastic quantization.
9 Some expositions construe the equivalence of the two approaches as indicating the dual
natures of the “particle” picture (I) and the field picture (II). This should be discouraged
for a number of reasons. First, the elementary states Wigner identifies with the irreducible
representations of ISO(3, 1) are not necessarily elementary partides; the ground state of
the hydrogen atom, for instance, counts as an elementary state. Second, Wigner’s approach
works only in spacetimes that are static; in nonstatic spacetimes, it is notoriously difficult to
maintain a consistent particle interpretation. Furthermore, even in interacting field theory in
well-behaved spacetimes the duality between particles and fields breaks down if the duality
thesis rests on the claim that, to every particle there is a corresponding field, and vice versa.
On the one hand, for any asymptotically well-defined particle state, there exists an infinite
number of interpolating fields, any one of which can be used to construct the appropriateS-
matrix. On the other hand, there are fields that admit no asymptotic particle states; namely,
quark fields. With these caveats in mind, I shall continue to use the appellation “particle”
in referring to Wignerian elementary states, for the sake of convenience.
10 By this I mean invariant underboth Lorentz rotationsand translations, viz. invariant
under IO(3, 1), as indicated above. Sometimes Lorentz invariance refers to invariance under
only the homogeneous Lorentz group O(3, 1).
11 For example, take

V =
∫ 4∏
i=1

d3pi√
2Ei

δ4(p1+ p2 − p3 − p4)h(p1, p2, p3, p4)|p1p2〉〈p3p4|

and require thath(pi) = h ∗ (pi) be a function of Lorentz invariant scalar products of
the momentapi . Then it is not too difficult to show thatV is unitary and satisfies LI.
However,V does not satisfy CD, since it projects only onto the 2-particle subspace. As a
consequence, interactions exist only when there are 2 particles in the universe and vanish
when a third is introduced,anywhere.(Technically, the 3-3 connected part ofV contains
more than one delta function, which is a violation of CD (see below Section 4.4).) This
example is discussed by T. Duncan, unpublished lecture notes 1996. See, also, Weinberg
1995, 187.
12 Note that the context in which CD, as a locality constraint, is enforced differs from
EPR/Bell- type experiments in which locality constraints are called into question. In the CD
context, one considers clusters of scattering events and CD enforces causal independence
of spacelike separated clusters. In the EPR context, one considers a single source emitting
two products and investigates the relation between these products when they become space-
like separated. It turns out that, under certain assumptions, locality conditions are violated.
However, insofar as the entire system of source and products is considered a single cluster,
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CD is not violated. If this gloss is objectionable, it is still the case that there are two types
of (logically independent) locality principle at play in the EPR/Bell setting, viz. what are
referred to in the philosophical literature as outcome independence (alternatively, “Jarrett
completeness”) and parameter independence (alternatively, “hidden locality”). Both are
required in order to derive a Bell inequality. Arguably, only a violation of the second
can be associated with a violation of NSC. Hence, NSC is compatible with violations
of Bell inequalities if one denies outcome independence. CD as a locality constraint is
thus reconcilable with Bell inequalities, given one associates it with a version of parameter
independence.
13 For instance, for scalar fields, the LSZ formula reads

out〈p′1 · · ·p′N | p1 · · ·pM 〉in = (i/
√
Z)N+M

×
∫
d4x1 · · · d4yMf

∗
p′1
(x1) · · · f ∗p′N (xn)(

−→
∂

2
µ +m2)x1 · · · (−→∂

2
µ +m2)xN

×〈� | T {φ(y1) · · ·φ(yM)φ(x1) · · ·φ(xN )}|�〉

×(←−∂ 2
µ +m2)y1 · · · (←−∂

2
µ +m2)yM fp1(y1) · · · fpM (yM)

where theS-matrix element occurs on the left and the corresponding (N + M)-point τ -
function occurs on the right with|�〉 the vacuum state of the full HamiltonianH , and

fpj (yj ) =
1

(2π)3/2(2E(pj ))1/2
e−ipj ·yj .

14 Briefly, if f (ω) is a smooth function which vanishes asω → ±∞, then its Fourier
transform vanishes in the limitt →∞:

∫ +∞
−∞ dωf (ω) e−iωt →t→∞0.

15 If L[ψi ] has no constriants, thenH(x) can be obtained via a Legendre transformation.
If L[ψi] possesses gauge symmetries, then the system is a constrained Hamiltonian system
and one must use Dirac’s procedure to obtain the corresponding Hamiltonian density. (See
Weinberg 1995, Chap. 7.6, for a discussion.)
16 For the 2-pointτ -function 〈T {AB}〉, CD stipulates that〈T {AB}〉 = 〈A〉〈B〉 when the
fieldsA andB are spacelike separated. In this case, we also have〈T {BA}〉 = 〈A〉〈B〉;
hence〈T {AB}〉 = 〈T {BA}〉; hence[A,B] = 0, whenA andB are spacelike separated.
Now extend this forn-point τ -functions.
17 Granted, this assumes that string theory is the only counter-example to the argument.
Here one might argue that it is the only currently viable counter-example. To avoid all
possiblecounter-examples, one must demonstrate that any alternative high-energy the-
ory reduces to a local QFT in the low- energy limit. Such a proof has yet to be con-
structed. Renormalisation group techniques would play a central role here (see Huggett
and Weingard 1995 for a discussion of such techniques).
18 Indeed, Cao and Sweber (1993) offer an interpretation of the effective field theory
programme that is anti-foundationalist in its epistemic claims and instrumentalist in its
ontological claims.
19 Cf. Weinberg (1995, 50–51) for a proof. Strictly speaking, the operatorsU(3, a) are
projective representations of the proper orthochronous Poincaré group (denoted
ISO(3, 1)↑); i.e., they are unique up to a phase. To obtain an ordinary representation, one
takes representations of the covering group ISL(2,C)↑ of ISO(3, 1)↑. This technical detail
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will be omitted in the following. Furthermore, the components of the Poincaré group not
connected with the identity (corresponding to the parity and time-inversion operators) must
be represented by anti- unitary operators. These, too, will be ignored for brevity’s sake.
20 Alternatively, in the special relativistic context, all the particles in statesαi , βi are
spacelike separated from all the particles in statesαj , βj , for i 6= j . Any spacelike interval

(x − x′)2 − (t − t ′)2 > 0 can be sent by a Lorentz transformation into a purely spatial
interval(x̄− x′)2 6= 0, (t̄ − t̄ ′) = 0.
21 Smoothness here requires only thatfNM does not depend on additional delta functions
of momenta. Note that

∫
dqi represents a sum over spinσi and an integration overd3pi .

22 T. Duncan, Univ. Pittsburgh lecture notes 1996, unpublished.
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