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Chapter 3

Spacetime Structuralism

Jonathan Bain

Humanities and Social Sciences, Polytechnic University, Brooklyn, NY 11201, USA

Abstract

In this essay, I consider the ontological status of spacetime from the points of view of
the standard tensor formalism and three alternatives: twistor theory, Einstein algebras,
and geometric algebra. I briefly review how classical field theories can be formulated in
each of these formalisms, and indicate how this suggests a structural realist interpre-
tation of spacetime.

1. Introduction

This essay is concerned with the following question: If it is possible to do
classical field theory without a 4-dimensional differentiable manifold, what does
this suggest about the ontological status of spacetime from the point of view of
a semantic realist? In Section 2, I indicate why a semantic realist would want to
do classical field theory without a manifold. In Sections 3–5, I indicate the
extent to which such a feat is possible. Finally, in Section 6, I indicate the type of
spacetime realism this feat suggests.

2. Manifolds and manifold substantivalism

In classical field theories presented in the standard tensor formalism, spacetime
is represented by a differentiable manifold M and physical fields are represented
by tensor fields that quantify over the points of M. To some authors, this has



suggested an ontological commitment to spacetime points (e.g., Field, 1989;
Earman, 1989). This inclination might be seen as being motivated by a general
semantic realist desire to take successful theories at their face value, a desire
for a literal interpretation of the claims such theories make (Earman, 1993;
Horwich, 1982). Arguably, the most literal interpretation of classical field the-
ories motivated in this way is manifold substantivalism. Manifold substanti-
valism consists of two claims.

(i) Substantivalism: Manifold points represent real spacetime points.
(ii) Denial of Leibniz Equivalence: Diffeomorphically related models of classical field

theories in the tensor formalism represent distinct physically possible worlds.

Both claims can be motivated by a literal interpretation of the manifold M

that appears in such theories. Claim (i) follows, as suggested above, from a
literal construal of tensor fields defined on M, and claim (ii) follows from a
literal construal of M as a set of distinct mathematical points. Unfortunately for
the semantic realist, however, manifold substantivalism succumbs to the hole
argument, and while spacetime realists have been prolific in constructing ver-
sions of spacetime realism that maneuver around the hole argument, all such
versions subvert in one form or another the semantic realist’s basic desire for a
literal interpretation1. But what about interpretations of classical field theories
formulated in formalisms in which the manifold does not appear? Perhaps
spacetime realism can be better motivated in such formalisms while at the same
time remaining true to its semantic component.
As a concrete example, consider classical electrodynamics (CED) in Mink-

owski spacetime. Tensor models of CED in Minkowski spacetime are given by
(M, Zab, @a, Fab, Ja), where M is a differentiable manifold, Zab is the Minkowski
metric, @a is the derivative operator associated with Zab, and Fab and Ja are
tensor fields that represent the Maxwell field and the current density and that
satisfy the Maxwell equations.

Zab@aFbc ¼ 4pJc; @½aFbc� ¼ 0 (1)

This suggests that M plays two roles in tensor formulations of classical field
theories.

(a) A kinematical role as the support structure on which tensor fields are de-
fined. In this role, M provides the mathematical wherewithal for represen-
tations of physical fields to be defined.

1For a quick review of the hole argument and positions staked out in the literature, see Bain

(2003). Spacetime realists who adopt (i) but deny (ii) (‘‘sophisticated substantivalists’’) give up the

semantic realist’s desire for a literal interpretation of manifold points and subsequently have to

engage in metaphysical excursions into the notions of identity and/or possibility.
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(b) A dynamical role as the support structure on which derivative operators are
defined. In this role, M provides the mathematical wherewithal for a
dynamical description of the evolution of physical fields in the form of field
equations.

To do away withM and still be able to do classical field theory, an alternative
formalism must address both of these roles. In particular, it must provide the
means of representing classical fields, and it must provide the means of rep-
resenting the dynamics of classical fields.

3. Manifolds vs. twistors

In this section, I indicate that for certain conformally invariant classical field
theories, the twistor formalism is expressively equivalent to the tensor formal-
ism. Standard examples of such theories include

(a) fields that describe geodesic, shear-free, null congruences;
(b) zero rest mass fields;
(c) anti-self-dual Yang-Mills fields; and
(d) vacuum solutions to the Einstein equations with anti-self-dual Weyl curva-

ture.

I indicate how these results follow from a general procedure known as
the Penrose Transformation, and discuss their extensions and limitations2. I
suggest that the concept of spacetime that arises for such field theories is very
different, under a literal interpretation, from the one that arises in the tensor
formalism.
The twistor formalism rests on a correspondence between complex, com-

pactified Minkowski spacetime CMc and a complex projective 3-space referred
to as projective twistor space PT. One way to initially understand this corre-
spondence is to first note that compactified Minkowski spacetime Mc is the
carrying space for matrix representations of the 4-dimensional conformal group

2The limitation to conformally-invariant field theories will be discussed below at the end of

Section 3.1. For some initial motivation, the conceptual significance of example (a), for instance,

is that spacetimes that admit geodesic, shear-free, null congruences are algebraically special

(technically, one or more of the four principle null directions of the Weyl curvature tensor of such

spacetimes coincide). Whether or not there is physical significance associated with this math-

ematical constraint, it does allow solutions to the Einstein equations to be more readily con-

structed. For instance, the Kerr solution that describes a charged, rotating black hole is

algebraically special.
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C(1, 3), comprised of conformal transformations on Minkowski spacetime3.
Next note that (non-projective) twistor space T is the carrying space for matrix
representations of SU(2, 2), which is the double-covering group of SO(2, 4),
which itself is the double-covering group of C(1, 3). Hence twistor space encodes
the conformal structure of Minkowski spacetime, and the twistor correspond-
ence will allow us to rewrite conformally invariant field theories in terms of
twistors. The precise correspondence requires the complexification of Mc and
the extension of T to projective twistor space PT. To get a feel for the latter,
note that T can be defined as the space of solutions ðoA; pA0 Þ � Zaða ¼ 0; 1; 2; 3Þ
of the twistor equation rB0

BoC(x) ¼ �ieB
CpA0, a general solution having the

form oA(x) ¼ o0
A
�ixAA

0

pA0, where o0
A and pA0 are constant 2-spinors4. So-de-

fined, T is a 4-dimensional complex vector space with a Hermitian 2-form
P

ab

(a ‘‘metric’’) of signature (++��), and one can then show that it carries a
matrix representation of SU(2, 2). PT is then the 3-complex-dimensional space
of 2-spinor pairs (oA, pA0), up to a complex constant, that satisfy the twistor
equation. Under this initial understanding, a twistor Za is nothing but a par-
ticular ‘‘spacetime-indexed’’ pair of 2-spinors. However, as will be noted below,
there are a number of other ways to interpret twistors.
To reiterate, the twistor correspondence allows solutions to certain confor-

mally invariant hyperbolic differential equations in Minkowski spacetime to be
encoded in complex-analytic, purely geometrical structures in an appropriate
twistor space. Hence, the dynamical information represented by the differential
equations in the tensor formalism gets encoded in geometric structures in the
twistor formalism. Advocates of the twistor formalism emphasize this result —
they observe that, in the twistor formalism, there are no dynamical equations;
there is just geometry. This suggests that a naive semantic realist may be faced
with a non-trivial task in providing a literal interpretation of classical field
theories in the twistor formalism. Before discussing this task, I will briefly

3Conformal transformations preserve angles but not necessarily lengths. In Minkowski space-

time (M, Zab) they preserve the Minkowski metric Zab up to scale (i.e., they map Zab 7!O2Zab, where
O ¼ O(x) is a smooth, positive scalar function on M) and consist of Poincaré transformations

xa 7!La
bx

b þ ra, dilations xa 7!kxa, and inversions xa 7!ðya � xaÞ
�
ðyb � xbÞðy

b � xbÞ, where Lb
a, ra,

and k are constant. Inversions are singular at points on the light cone centered at ya. To construct

a carrying space that includes inversions, M is compactified by attaching a boundary I ¼ @M
consisting of a light cone at infinity. Inversions then interchange I with the light cone at ya. We

thus have Mc ¼ ðI [M; ZabÞ.
4Recall that the 2-spinor oA is an element of a complex 2-dimensional vector space S endowed

with a bilinear anti-symmetric 2-form (the spinor ‘‘metric’’) eAB. S is the carrying space for

representations of the group, SLð2;CÞ, which is the double-covering group of the Lorentz group

SOð1; 3Þ. The 2-spinor pA0 is an element of the Hermitian conjugate vector space S0. (Here and

below the abstract index notation for 2-spinors and for tensors is used. In particular, 2-spinor

indices are raised and lowered via the metrics eAB, eA0B0, and tensor indices b can be exchanged for

pairs of spinor indices BB0.)
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describe the mathematics underlying the twistor correspondence and its appli-
cation to classical field theories5.

3.1. The twistor correspondence and the Penrose transformation

The twistor correspondence can be encoded most succinctly in a double fib-
ration of a correspondence space F into CMc and PT (see, e.g., Ward & Wells,
1990, p. 20). In fiber bundle lingo, such a construction consists of two base
spaces that share a common bundle space6. This common bundle space then
allows structures in one base space to be mapped onto structures in the other. In
the case in question, the common bundle space F is given by the primed spinor
bundle over CMc consisting of pairs (xa, pA0) where xa is a point in CMc and pA0

is a primed 2-spinor. The double fibration takes the explicit form,

� �
↙ ↘

where the projection maps m, n are given by

n : ðxa;pA0 Þ ! xa

m : ðxa;pA0 Þ ! ðixAA
0

pA0 ; pA0 Þ

These maps are constructed so that they give the correspondence between el-
ements of CMc (complex spacetime points) and elements of PT (projective
twistors) by the following relation

oA ¼ ixAA
0

pA0 (KC)

known as the Klein correspondence7. It expresses the condition for the twistor
(oA, pA0)AT to be incident with the point xaACMc8. Based on this correspondence,

5What follows is an exposition of what has been informally called ‘‘Stone-Age’’ twistor theory

(twistor theory during the period 1967–1980). ‘‘21st Century’’ twistor theory has advanced quite a

way from CMc with current applications in such far-flung areas as string theory (Witten, 2004)

and condensed matter physics (Sparling, 2002).
6In fiber bundle theory, a bundle space consists of algebraic objects (the ‘‘fibers’’) that are pa-

rameterized by the points of a base space. Intuitively, the bundle space lives over the base space and

consists of fibers, one for each point of the base space, that are woven together in a smooth way.
7So-named for a construction in algebraic geometry that was first given by F. Klein in 1870

(‘‘Zur Theorie der Liniercomplexe des ersten und zweiten Grades’, Math. Ann. 2, 198). Klein

demonstrated that the points of a 4-dimensional quadric surface embedded in a 6-dimensional

space can be put in 1–1 correspondence with the lines of a projective 3-space. Penrose (1967)

introduced the twistor formalism based on the related observation that compactified Minkowski

spacetime Mc can be viewed as a 4-quadric surface embedded in the projective 5-space associated

with the 6-dimensional carrying space of representations of SO(2, 4).
8(KC) gives the locus of points in CMc where solutions to the twistor equation vanish.
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the maps allow structures in PT to be pulled up to F and then pushed down to
CMc, and vice versa. In particular, the copy in PT of the fiber n�1(xa) is obtained
directly from (KC) by holding xAA

0

fixed and varying (oA, pA0). One obtains a
complex linear 2-dimensional space in T, which defines a line in PT. The copy in
CMc of the fiber m�1(oA, pA0) is obtained in a similar manner by holding the
twistor (oA, pA0) fixed and varying the spacetime point xAA

0

. This defines a complex
null 2-dimensional plane in CMc referred to as an a-plane. Hence under (KC),
points in CMc (complex spacetime points) correspond to ‘‘twistor lines’’, and
points in PT (projective twistors) correspond to a-planes. A summary of similar
geometrical correspondences is given in Table 19.
We have thus obtained the points of CMc from twistors. But to do field theory,

we need more than just manifold points: we need fields and derivative operators.
More precisely, we need to identify those field-theoretic structures in CMc that
can be pulled up to F and then pushed down to PT. A number of results in the
twistor literature indicate the extent to which such an identification is possible.
These results collectively are referred to as the Penrose Transformation. Each
establishes a correspondence between purely geometrical/topological structures
in an appropriate twistor space and the solutions to particular field equations in
spacetime. These results can be divided overall into two categories.

(A) Those that are based on the double fibration between PT and CMc. (‘‘Flat’’
twistor theory.)

(B) Those that are based on a structurally similar double fibration in which
CMc is replaced by a curved manifold. (‘‘Curved’’ twistor theory.)

Table 1

Geometrical correspondences between projective twistor space and complex compactified Mink-

owski spacetime

PT CMc

Point a-plane
Line Point

Point in PN Real null geodesic

Point in PTþ [ PT� Real Robinson congruence

Line in PN Real point

Intersection of lines Null separation of points

9For details see, e.g., Huggett and Todd (1994, pp. 55–58). In Table 1,PTþ, PT�, and PN are

regions of PT defined by Za �Za40, Za �Zao0, and Za �Za ¼ 0, respectively, where �Za is the dual

twistor defined by the Hermitian 2-form on T : �Za ¼
P

ab Z
a ¼ ð �pA; �oA0

Þ, where the bar is com-

plex conjugation. A Robinson congruence is a family of null geodesics that twist about each other

(the origin of the term ‘‘twistor’’).
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There are three important results under (A): Kerr’s Theorem, The Zero Rest
Mass Penrose Transformation (ZRMPT), and Ward’s Theorem; and one pri-
mary result under (B): The Non-linear Graviton Penrose Transformation
(NGPT). In the remainder of this section, I will state each without proof and
briefly describe its content.

(A1) Kerr’s Theorem. Let Q be a holomorphic surface in PT; i.e., defined by
f(Za) ¼ 0, for some homogeneous holomorphic function f(Za). Then the inter-
section of Q with PN defines an analytic shear-free congruence of null geodesics
in Mc. Conversely, an analytic shear-free null congruence in Mc defines the
intersection of PN with a holomorphic surface Q given by the zero locus of an
arbitrary homogeneous holomorphic function f(Za)10.

Comments. For a proof, see Huggett and Todd (1994, p. 60). An analytic
shear-free null congruence in Mc is given by a spinor field oA satisfying
oAoB@BB0oA ¼ 0. Kerr’s Theorem thus states that such spinor fields in Mc cor-
respond to the intersections of surfaces in PT.

(A2) Zero Rest Mass Penrose Transformation (ZRMPT).

H1ðPTþ;Oð�n� 2ÞÞ ffi fZRM fields jA0...B0 ðxÞ of helicity n holomorphic on CMþg:

H1ðPT�;Oðn� 2ÞÞ ffi fZRM fields fA...BðxÞ of helicity � n holomorphic on CM�g:

Comments. For a proof, see Huggett and Todd (1994, pp. 91–98). ZRMPT
states two isomorphisms. First the objects on the left: Here, for instance,
H1ðPTþ;Oð�n� 2ÞÞ is the first cohomology group of PTþ with coefficients in
Oð�n� 2Þ, the sheaf of germs of holomorphic functions of homogeneity �n�2
over PTþ11. The elements of H1ðPTþ;Oð�n� 2ÞÞ consist of equivalence classes
[f] of homogeneous functions of degree �n�2 defined on the intersections Ui\Uj

of a given open cover {Ui} of PT
þ. Two elements fij, gij, of [f] are equivalent iff

they differ by a coboundary: fij�gij ¼ hij, where dhij ¼ 0 for the coboundary
map d. Next, the objects on the right: zero rest mass (ZRM) fields are fields
(here represented by spinor fields) that satisfy the zero rest mass field equations:
@AA

0

fA0

���B0
ðxÞ ¼ 0, and @AA

0

jA���B
ðxÞ ¼ 0, where the number of indices corresponds

to twice the spin/helicity. Hence, ZRMPT again establishes a correspondence
between geometric (topological) objects in PT and fields satisfying a dynamical
field equation in CMc.

10f(Za) is holomorphic if it satisfies the Cauchy–Riemann equations: @f
.
@ �Z

a
¼ 0. f(Za) is ho-

mogeneous of degree k if Zað@f
.
@ �Z

a
Þ ¼ kf .

11A sheaf over a topological space X assigns a type of algebraic object to every open set U of X.

(Compare with a fiber bundle over X, which assigns an object to every point of X.) The co-

homology ‘‘group’’ H1ðPTþ;Oð�n� 2ÞÞ is really a module over the ring defined by Oð�n� 2Þ,

i.e., it is a ‘‘slightly relaxed’’ vector space with vectors in PTþ and scalars in Oð�n� 2Þ.
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(A3) Ward’s Theorem. Let U be an open region in CMc and U 0 the corresponding
region in PT under (KC), which maps points xACMc into lines LxCPT. There
is a 1–1 correspondence between

(a) anti-self-dual GL(n, C) Yang-Mills gauge fields Fab on U; and
(b) rank n holomorphic vector bundles B over U 0, such that the restriction B|Lx

of B to the line LxCU 0 is trivial for all xAU.

Comments. For a proof, see Ward and Wells (1990, pp. 374–381). Ward’s
Theorem states that an anti-self-dual12 Yang-Mills gauge field on CMc is
equivalent to a holomorphic vector bundle over PT which is trivial (i.e., con-
stant) on twistor lines. For n ¼ 1, one obtains an anti-self-dual Maxwell field as
a complex line bundle on PTþ. This is a non-linear version of the ZRMPT
n ¼ 1 case.
The twistor correspondences (A1–A3) are for flat spacetimes (in particular, for

CMc). The extension to curved spacetimes is non-trivial. It turns out that so-
lutions to the twistor equation are constrained by the condition CABCDo

D
¼ 0,

where CABCD is the Weyl conformal curvature spinor. Hence, twistors are pri-
marily only well defined in conformally flat (CABCD ¼ 0 ¼ �CA0B0C0D0) space-
times13. One way to circumnavigate this ‘‘obstruction’’ is to complexify the
spacetime and impose the conditions �CA0B0C0D0 ¼ 0 andCABCD 6¼ 014. This entails
that the Weyl tensor is anti-self-dual, hence such a spacetime M is referred to as
anti-self-dual (or right-conformally flat). Such an M has a globally well-defined

12A Yang-Mills field Fab is anti-self-dual just when it satisfies *Fab ¼ �iFab, where * is the

Hodge-dual operator. The theorem rests primarily on the fact that Fab is anti-self-dual if and only

if, for every a-plane Z0 that intersects U, the restriction of the covariant derivative ra to U\Z0

satisfies narac ¼ 0, for any vector field na tangent to Z0 and any section c of the vector bundle

associated with Fab. Put simply, Fab is anti-self-dual if and only if its associated covariant de-

rivative ra ¼ @a — ieAa is flat on a-planes.
13The Weyl conformal curvature tensor Cabcd is the trace-free, conformally invariant part of the

Riemann curvature tensor. Its 2-spinor equivalent is CAA0BB0CC0DD0 ¼ CABCD�A0B0�C0D0

þ �CA0B0C0D0�AB�CD. Solutions to the twistor equation also exist in (algebraically special type IV)

spacetimes in which the Weyl spinor is null; i.e., can be given by CABCD ¼ aAaBaCaD, for some

non-vanishing aA.
14This cannot be done in real spacetimes in which the primed and unprimed Weyl spinors are

complex conjugates of each other. The move to complex spacetimes removes the operation of

complex conjugation allowing both quantities to be treated independently. For details, see Pen-

rose and Ward (1980). They also review two alternative ways to address the obstruction by

considering twistors at a point on each null geodesic (‘‘local twistors’’), or twistors defined relative

to hypersurfaces (‘‘hypersurface twistors’’). For the latter, when the null cone at infinity is chosen

as the hypersurface, the resultant structures are known as asymptotic twistors. These approaches

seem problematic in the context of the present essay insofar as they define twistors relative to

structures defined on a pre-existing spacetime manifold. Recently, Sparling (1998) has introduced

negative rank differential forms as another means of addressing the obstruction.
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family of a-planes, hence a corresponding (projective) twistor space P can be
constructed. Schematically, we then have the following double fibration.

The primary result based on this double fibration is the following:

(B1) Non-Linear Graviton Penrose Transform (NGPT). There is a 1–1 correspond-
ence between anti-self-dual models M ¼ (M, gab) of general relativity that sat-
isfy the vacuum Einstein equations and 4-dimensional complex manifolds
equipped with the following structures

(i) a four-parameter family of holomorphic curves which in P are compact
and have normal bundle Oð1Þ � Oð1Þ,

(ii) a projection p to primed spin space S0,
(iii) a homogeneity operator U, and
(iv) a 2-form t ¼ eA

0B0

dpA04dpB0 and a 2-form m ¼ eABX
AA0

YBB0

pA0pB0 on each
fiber over S0.

Comments. For a proof, see Huggett and Tod (1994, pp. 108–109). Structure
(i) corresponds to the conformal structure of (M, gab) while (ii), (iii), and (iv)
correspond to the metric gab

15.
Extensions and Limitations. In addition to the above results, there are twistor

constructions for stationary axi-symmetric vacuum solutions to the Einstein
equations, extensions of ZRMPT for fields with sources, and extensions of
Ward’s Theorem for other non-linear integrable field equations (in particular,
the Korteweg–de Vries equation and the non-linear Schrödinger equation). See
Penrose (1999) for a review and references. Moreover, the work of Sparling
(1998) demonstrates that, in principle, the twistor space corresponding to any
real analytic vacuum Einstein spacetime can be constructed.
Despite these extensions, however, it should be noted that no consistent

twistor descriptions have been given for massive fields or for field theories in

15P is the space of a-planes in M. In (i) the curves in P correspond to points in M and the

normal bundle requirement encodes the correspondence in Table 1 between null separation of

points in M (on which conformal structure can be based) and intersection of lines in P . (A

normal bundle N to a curve g in P has fibers Np consisting of all vectors at p modulo tangent

vectors at p. One can show that N is a rank 2 vector bundle of the form , where Oð1Þ is the sheaf of

germs of homogeneous functions on CP1 of degree 1.) Properties (ii) and (iii) follow from the fact

that P , as the space of a-planes in M, becomes naturally fibered over projective spin space if M

satisfies the vacuum Einstein equations. The 2-forms in (iv) together encode the metric

gab ¼ eABeA0B0.
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generally curved spacetimes with matter content. Essentially, as noted above,
the twistor formalism is built on conformal invariance, and problems arise when
it comes to rendering non-conformally invariant classical field theories. This
indicates that the twistor formalism is not completely expressively equivalent to
the tensor formalism, in so far as there are classical field theories that can be
expressed in the latter and that cannot be expressed in the former. This may
raise concerns about whether the twistor formalism should be read literally by a
semantic realist. Toward assuaging these concerns, the following observations
can be made.
First, to be clear, for those classical field theories outlined above, complete

expressive equivalence holds between the twistor and tensor formalisms. For
these examples, the twistor constructions indicate that the differentiable man-
ifold is not essential. Second, and more importantly, while this essay is primarily
concerned with classical field theories, the real (potential) benefit of the twistor
formalism comes when the move is made to quantum theory. In this context, it
should be noted that the verdict is still out on whether 4-dimensional interacting
quantum field theories can be reformulated in a conformally invariant way. The
motive for doing so stems from the fact that 2-dimensional interacting confor-
mal field theories are exactly solvable (whereas standard formulations of 4-
dimensional interacting quantum field theories are far from consistent), and
from the fact that particles in any 2-dimensional quantum field theory are
approximately massless in the high-energy limit (see, e.g., Gaberdiel, 2000, p.
609). Moreover, 2-dimensional conformal field theories are at the basis of string
theory. (In string theory, particle masses are replaced by string tensions, and the
basic Lagrangian for a propagating (bosonic) string is that of a 2-dimensional
conformal field theory.) The point then is that if string theory turns out to be the
correct approach to quantum gravity, for instance, or if interacting quantum
field theory can be consistently reformulated in a conformally invariant way,
then what tensor formulations of classical field theories have right is conformal
structure, as opposed, for instance, to metrical structure predicated on points.
Moreover, extensions of the twistor formalism have been proposed for formu-
lations of 4-dimensional conformal field theory16, and more recently, Witten
(2004) has reformulated perturbative quantum Yang-Mills gauge theory as a

16See, e.g., Hodges, Penrose, and Singer (1989). In brief, the basic construction is referred to as a

‘‘pretzel’’ twistor space P with boundary qP consisting of copies of PN. Such a space replaces the

compact Riemann surface X with boundary qX that is used in 2-dimensional conformal field

theory to model interacting quantum fields. qX consists of copies of the circle S1 on which

complex-valued functions representing in- and out-scattering states can be defined. These func-

tions split into negative and positive frequencies, according to whether they extend into the north

or south hemispheres of the Riemann sphere with equator S1. This is similar to the splitting of

twistor functions defined on PN into negative and positive frequencies according to whether they

extend into PTþ or PT�.
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string theory in twistor space. The general point then is that the semantic realist
should not discount twistor theory solely based on its limited applicability to
classical field theories. To do so would be to ignore potential inter-theoretical
relations that are key to understanding how new theories evolve from old
ones17.

3.2. Interpretation

How might a semantic realist take the twistor formulation of the above classical
field theories at its face value? In particular, in what sense does the twistor
formalism do away with the manifold of the tensor formalism? Two observa-
tions seem relevant here. First, the Penrose Transformation in all its above
guises encodes the solution space of a local dynamical field equation formulated
in terms of a derivative operator on a spacetime manifold, in a global geometric
structure in the corresponding twistor space. In a literal sense, the local dy-
namics in the spacetime formulation gets encoded in a global ‘‘static’’ geometric
structure in the twistor description, as twistor advocates like to point out.

Note that in the Ward construction the local ‘field’ information in the space time

description is coded in the global structure of the twistor description, whereas there is

no local (differential) information in the twistor descriptiony . This way in which

local space-time field equations tend to ‘evaporate’ into global holomorphic structure

is a characteristic (and somewhat remarkable) feature of twistor descriptions (Pen-

rose & Rindler, 1986, p. 168).

The dynamical role that the manifold plays in tensor formulations of field
theories is thus side-stepped in the twistor formalism; namely, the role of pro-
viding a local back-drop on which differential equations can be defined that
govern the dynamical behavior of fields.
As a concrete example, tensor models of anti-self-dual CED are given by (M,

Zab, @a, Fab) such that

Zab@aFbc ¼ 0; @½aFbc� ¼ 0; nFab ¼ �iFab (2)

By Ward’s Theorem, twistor models of anti-self-dual CED may be given by
(PT, B), where PT is projective twistor space and B is a line bundle over PT
satisfying the geometrical property (A3b). Explicitly, no derivative operators
occur in such twistor models.
The second observation concerns the kinematical role thatM plays in classical

field theories. In the tensor formalism, traditional semantic realists have tended
to read literally the mathematical fields that quantify over the points of the

17The twistor formalism is, in fact, generally viewed by its proponents as one route to quantum

gravity. One could argue that the limitations it faces with respect to classical fields are just a

particular manifestation of the obstructions to uniting quantum theory with general relativity.
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manifold. The resulting literal interpretation describes physical fields that
quantify over spacetime points, and that are evolved in time by means of the
derivative operator associated with a connection on M. One might quibble over
the details of such a literal interpretation: Do the manifold points really rep-
resent real substantival spacetime points? Which tensor fields defined on M in
the context of a given classical field theory should be awarded ontological status
(potential fields vs. Yang-Mills fields, for instance)? What manifold objects
should we take such fields to be quantifying over (points or loops, for instance)?
But, arguably, the nature of the mathematical objects under debate is not in
question. (Everyone agrees on what a manifold point is, for instance.) The
twistor formalism is not as clear-cut.
In the twistor formalism, the mathematical tensor field has vanished, as has the

derivative operator, and both have been replaced by an appropriate geometric
structure defined on a twistor space. Literally, such structures quantify over the
twistor space (in the same sense that tensor fields quantify over M). Ward’s
Theorem, for instance, replaces an anti-self-dual Yang-Mills field defined on
CMc with a vector bundle over projective twistor space PT. Literally, this bundle
is a collection of vector spaces labeled by the points of PT, these points being
projective twistors. Recall from Table 1 that, under the Klein Correspondence
(KC), projective twistors correspond to complex null surfaces (a-planes) in CMc,
and when (KC) is restricted to real compactified Minkowski spacetime Mc, pro-
jective twistors correspond to twisted congruences of null geodesics referred to as
Robinson congruences18. One option, then, for a traditional semantic realist is to
view such null geodesics as the individuals in the ontology of field theories
formulated in the twistor formalism. Under this interpretation, twisted null ge-
odesics are the fundamental objects, with spacetime points derivative of them
(identified essentially as their intersections). This alone should give a traditional
semantic realist pause for concern. But there is an additional twist: Just what the
twistor individuals are is not as clear-cut as the geometric interpretation pro-
vided by the Klein correspondence might at first appear. Non-projective twistor
space T can also be constructed ab initio as the phase space for a single zero rest
mass particle, or as the space of charges for spin 3/2 fields (see, e.g., Penrose,
1999), or, most recently, as the space of ‘‘edge-states’’ for a 4-dimensional fer-
mionic quantum Hall-effect liquid (Sparling, 2002).
To get a feel for the first of these alternative interpretations, one can show that

a non-null twistor Za uniquely determines a triple (pa, M
ab, s), where pa, M

ab are

18Roughly, the real correlates of projective twistors correspond to the intersections of a-planes
and their duals, referred to as b-planes and defined with respect to the Hermitian twistor ‘‘metric’’P

ab. For a null twistor Z
a that satisfies

P
abZ

aZb
¼ 0, this intersection is given by a null geodesic.

For non-null twistors, the intersection is given by a Robinson congruence — a collection of null

geodesics that twist about the axis defined by the null case.
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tensor fields on Mc, and s 2 R, that defines the linear momentum, angular mo-
mentum, and helicity, respectively, of a zero rest mass particle19. Conversely, a
zero rest mass triple uniquely determines a projective twistor.
To get a feel for the second alternative interpretation, note that in Minkowski

spacetime, spin-3/2 zero rest mass fields can be represented by totally symmetric
spinor fields cA0B 0C 0 (with the number of indices equal to twice the spin) that satisfy
the spin-3/2 zero rest mass field equations, @AA

0

cA0B 0C 0 ¼ 0. The procedure then is to
transform cA0B 0C 0 into a spin-1 (self-dual) Maxwell field jA0B 0, and then define its
charge via Gauss’s Law. This transformation is accomplished simply by contracting
cA0B 0C 0 on the right with a dual twistorWa¼ (lA, m

C 0

) to obtain jA0B 0 ¼cA0B 0C 0mC
020.

The charge Q, a complex number, associated with cA0B0C 0 is then defined by in-
tegrating jA0B 0 over a volume containing the spin-3/2 sources: Q ¼

H
S
jA0B 0dSA0B 0

,
where S is the surface enclosing the sources. Since Q depends linearly onWa, we can
let Q ¼ ZaWa, for some ‘‘charge’’ twistor Za. Hence for each spin-3/2 field cA0B 0C 0,
we have a map from twistor space T to the space C of spin-3/2 charges Q21.
Finally, to get a feel for the last alternative interpretation, and not get too far

afield of the present essay, note that Hu and Zhang (2002) have demonstrated
that the edge states of a 4-dimensional quantum Hall-effect liquid can be de-
scribed by (3+1)-dimensional effective field theories of relativistic zero rest
mass fields22. Sparling (2002) observes that their 2-spinor formalism extends
naturally onto the twistor formalism and attempts to construct twistor spaces
directly from Hu and Zhang’s edge states.

19The correspondence is given by pa ¼ �pApA0 , Mab ¼ ioðA �pBÞ�A
0B0

� i �oðA0

pB
0Þ�AB, andP

abZ
aZb

¼ 2s. This ensures that the following relations that define a zero rest mass particle

hold: pap
a
¼ 0, Mab

¼ 2r[apb], spa ¼ 1/2eabcd p
bMcd

�Sa, where ra defines a point relative to an

origin of Mc, and Sa is the Pauli–Lubanski vector.
20The dual twistorWa is actually fully specified by mC

0

. One can show that the (dual) twistor equation

in full generality is given simply by @A
(A0

mB
0)
¼ 0. One can also show that the so-defined field jA0B0

satisfies the spin-1 zero rest mass equations @AA
0

jA0B0 ¼ 0, which describe a self-dual Maxwell field.
21This result motivates a program in twistor theory that seeks to construct twistor spaces for full

vacuum Einstein spacetimes, based on the fact that, in general, the spin-3/2 zero rest mass field

equation is consistent in a spacetime M if and only if the Ricci tensor on M vanishes. The idea

then is to look for the space of conserved charges for spin-3/2 fields on a general Ricci-flat

spacetime, and this will be the corresponding twistor space.
22The 2-dimensional quantum Hall effect occurs when a current flowing in a 2-dimensional

conductor in the presence of an external magnetic field sets up a transverse resistivity. For strong

fields, this Hall resistivity is observed to be quantized in either integral or fractional units of the

ratio of fundamental constants h/e2. Various effective field theories have been constructed that

describe this effect in terms of the properties of a highly correlated 2-dimensional quantum liquid.

In particular, the low-energy excitations of the edge states of such a liquid have been described by

a (1+1)-dimensional effective field theory of relativistic 2-spinor (Weyl) fields. The extension of

the 2-dimensional quantum Hall effect to 4 dimensions was first given a consistent theoretical

description by Zhang and Hu (2001). Their work and the similar work of others in condensed

matter physics has yet to be fully considered by philosophers of spacetime.
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Hence, the semantic realist committed to an individuals-based ontology has to
decide between two seemingly incompatible literal construals of classical field
theories: The tensor formalism suggests a commitment to local fields and
spacetime points, whereas the twistor formalism suggests a commitment to
twistors, which themselves admit diverse interpretations. The traditional realist
might respond by claiming that the Penrose Transformation just shows that
solutions to certain field equations behave in spacetime as if they were geo-
metric/algebraic structures that quantify over twistors. In other words, we
should not read the twistor formalism literally — it merely amounts to a way of
encoding the behavior of the real objects, which are fields in spacetime, and
which are represented more directly in the tensor formalism. In other words, we
should only be semantic realists with respect to the tensor formalism. This
strategy smacks a bit of ad hocness. All things being equal (keeping in mind the
discussion at the end of Section 3.1), what, we may ask, privileges the tensor
formalism over the twistor formalism? From a conventionalist’s point of view,
tensor fields on a manifold are just as much devices that encode the data pro-
vided by measuring devices as are vector bundles over PT. If the semantic
realist is to be genuine about her semantic realism, it appears that she must be
willing to give up commitment to individuals-based ontologies and seek the
basis for her literal construal at a deeper level.

4. Manifolds vs. Einstein algebras

In this section, I indicate how the points of a differentiable manifold can be non-
trivially reconstructed from an Einstein algebra. In particular, I indicate how any
classical field theory presented in the tensor formalism can be recast in the Einstein
algebra formalism, and consider what this suggests about the nature of spacetime.

4.1. Einstein algebras and their generalizations

The Einstein algebra (EA hereafter) formalism takes advantage of an alternative
to the standard definition of a differentiable manifold as a set of points imbued
locally with topological and differentiable properties. The manifold substanti-
valist’s gloss of this definition awards ontological status to the point set. The
alternate definition emphasizes the differentiable structure, as opposed to the
points of M on which such structure is predicated. It is motivated by the fol-
lowing considerations: The set of all real-valued CN functions on a differentiable
manifold M forms a commutative ring CN(M) under pointwise addition and
multiplication. Let Cc(M)CCN(M) be the subring of constant functions onM. A
derivation on the pair (CN(M), Cc(M)) is a map X : CN(M)-CN(M) such that
X(af+bg) ¼ aXf+bXg and X(fg) ¼ fX(g)+X(f)g, and X(a) ¼ 0, for any f,
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gACN(M), a, bACc(M). The setD(M) of all such derivations on (CN(M), Cc(M))
forms a module over CN(M) and can be identified with the set of smooth cont-
ravariant vector fields on M. A metric g can now be defined as an isomorphism
between the module D(M) and its dual D*(M). Tensor fields may be defined as
multi-linear maps on copies of D(M) and D*(M), and a covariant derivative can
be defined with its associated Riemann tensor. Thus all the essential objects of the
tensor formalism necessary to construct a model of general relativity (GR) may be
constructed from a series of purely algebraic definitions based ultimately on the
ring CN(M). At this point Geroch’s (1972) observation is that the manifold only
appears initially in the definition of CN(M). This suggests viewing CN and Cc as
algebraic structures in their own right, withM as simply a point set that induces a
representation of them23. Formally, Geroch (1972) defined an Einstein algebraA
as a tuple (R1;R; g), where R1 is a commutative ring, R is a subring of R1

isomorphic with the real numbers, and g is an isomorphism from the space of
derivations on (R1;R) to its algebraic dual such that the associated Ricci tensor
vanishes (and a contraction property is satisfied)24.
Two observations are relevant at this point. First, Geroch’s algebraic treat-

ment of GR can be trivially generalized to include all classical field theories
presented in the tensor formalism. In general, the latter are given by tuples (M,
Oi), where M is a differentiable manifold and the Oi are tensor fields defined on
M and satisfying the appropriate field equations (via a derivative operator on
M). After Earman (1989), let a Leibniz algebra L be a tuple (R1; R; Ai), where
R1 is a commutative ring,R is a subring isomorphic with the real numbers, and
the Ai are algebraic objects defined as multi-linear maps on copies of D (the set
of all derivations on (R1;R)) and its dual Dn, and satisfying a set of field
equations (via the algebraic correlate of a derivative operator). For an appro-
priate choice of Ai, such anL is the correlate in the EA formalism of a model of
a classical field theory in the tensor formalism.
The second observation concerns the extent to which an Einstein (or Leibniz)

algebra is expressively equivalent to a tensor model of a classical field theory. In
particular, in what sense is the manifoldM done away with in the EA formalism?
There seems to be both a trivial and a non-trivial sense in which M is done away
with. The trivial sense is based on the following considerations. The maximal
ideals of an abstract algebra A (if they exist) are in 1–1 correspondence with the

23Such a representation is given by the Gelfand representation. Any abstract linear algebra A

(over a field ) admits a Gelfand representation defined by r : A ! KAn

;rðxÞðfÞ ¼ fðxÞ, where
x 2 A, f 2 An, and An is the algebraic dual of A (i.e., the set of homomorphisms f : A ! K)

andKAn

is the algebra ofK-valued functions onAn. Intuitively, the Gelfand representation turns

the abstract object A into a ‘‘concrete’’ algebra of functionals on a space An.
24The above deviates slightly from Geroch’s notation. The condition on the algebraic Ricci

tensor can be relaxed and algebraic correlates of the Einstein tensor and cosmological constant

can be introduced to model general solutions to the Einstein equations (see, e.g., Heller, 1992).
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elements of its algebraic dualAn25. Hence, ifA has maximal ideals, the points of
the space An can be reconstructed by means of the Gelfand representation of A
(see footnote 23). In particular, the points of a topological space X can be
reconstructed from the maximal ideals of the ring C(X). (Concretely, one shows
that any maximal ideal of C(X) consists of all functions that vanish at a given
point of X.) A differentiable manifold M can then be reconstructed by imposing
a differentiable structure (i.e., a maximal atlas) on X26. Hence, there is a 1–1
correspondence between Einstein (Leibniz) algebras and models of classical field
theories in the tensor formalism, and this correspondence extends all the way down
to the point set of M. This suggests that, from the point of view of literal in-
terpretations of spacetime, nothing is gained in moving to the EA formalism: any
interpretive options under consideration in the tensor formalism will be trans-
latable in 1–1 fashion into the EA formalism27.
The non-trivial sense will have to wait until the next section, after some

extensions of the EA formalism have been reviewed.
Extensions. Heller and Sasin have extended Geroch’s original treatment of GR

to spacetimes with singularities. A non-singular general relativistic spacetime can
be represented by a differentiable manifold M, or an Einstein algebra generated
by the ring CN(M). To represent certain types of curvature singularities in the
tensor formalism requires additional structures on M. In particular, the b-
boundary construction collects singularities in a space @bM and attaches it as a
boundary to M to create a differentiable manifold with boundary
M0 ¼ M[@bM. In the EA formalism, one can now consider an algebraic ob-
ject of the schematic form CN(M0), consisting of real-valued CN functions on
M0. Originally, this object was identified as a sheaf of (commutative) Einstein
algebras over M0 (Heller & Sasin, 1995). Heller and Sasin (1996) demonstrated
that such an object can also be analyzed as a non-commutative Einstein algebra
of complex-valued CN functions over a more general structure (in particular, the
semi-direct product OMsO(1, 3), of the Cauchy completed frame bundle OM
over M0 and the structure group O(1, 3)). This analysis was then extended to a
schema for quantum gravity in Heller and Sasin (1999). The theory presented
there takes as the fundamental object an ‘‘Einstein C*-algebra’’ E, constructed

25Elements of An are sometimes called the ‘‘characters’’ of A. A maximal ideal of A is the

largest proper subset of A closed under (left or right) multiplication by any element of A.
26Note that there are (at least) two ways to view the reconstruction of points of a differentiable

manifold. One can reconstruct the points of a topological space X from the maximal ideals of

C(X), and then impose a differentiable structure on X to obtain a differentiable manifold. Al-

ternatively, one can directly reconstruct the points of M from the maximal ideals of CN(M). See,

e.g., Demaret, Heller, and Lambert (1997, p. 163).
27In particular, some authors have claimed interpretive issues surrounding the hole argument

cannot be addressed simply by moving to the EA formalism. For a discussion, see Bain (2003).
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from the non-commutative algebra of complex-valued CN functions with com-
pact support on a transformation groupoid (see Bain, 2003 for a brief review).

4.2. Interpretation

As indicated above, there is a trivial sense in which the original EA formalism
does away with manifolds; namely, simply by renaming them: instead of man-
ifold points, the original EA talk is about maximal ideals. One might argue that
renaming an object does not make it go away. In particular, Einstein algebras for
non-singular spacetimes reproduce the diffeomorphism ‘‘redundancy’’ of M. An
argument could be made, however, that the extended EA formalism does do
away with M in a non-trivial manner. First, as Heller and Sasin (1995) note, the
(commutative) extensions of EA to singular spacetimes in effect place non-sin-
gular and singular spacetimes under a single category (namely, the category of
‘‘structured spaces’’: spaces structured by a sheaf of Einstein algebras); whereas
in the tensor formalism, technically, non-singular and singular spacetimes belong
to different categories (the categories of smooth manifolds and manifolds with
boundaries, respectively)28. In not talking about manifold points to begin with,
the extended EA formalism can handle field theories characterized by missing
manifold points in a conceptually cleaner manner than the tensor formalism.
Heller and Sasin (1995) further suggest that certain conceptual problems as-

sociated with the b-boundary construction in the tensor formalism do not arise in
the extended EA formalism. Briefly, in the closed Friedman universe (of Big Bang
fame), the b-boundary consists of a single point corresponding to both the initial
and final singularities, and in both the closed Friedman and Schwarzschild so-
lutions, the b-boundary is not Hausdorff-separated from M. These results are
hard to reconcile with any notion of localization. (Intuitively, some amount of
separation between the initial and final singularities in the Friedman solution
should obtain.) Moreover, that the points of the b-boundary are not Hausdorff-
separated from the points of the interior implies counter intuitively that every
event in spacetime is in the neighborhood of a singularity. The suggestion of
Heller and Sasin (1995) is that these decidedly non-local aspects of b-boundary
constructions are pathologies only when viewed from within the differentiable
manifold category and its emphasis on local properties. In the extended EA
formalism (in particular, in the category of structured spaces), in contrast, the
emphasis throughout is on sheaf-theoretic global features, and these features
allow a natural distinction between the decidedly non-local behavior of fields on
the b-boundary and the local behavior of fields on the interior M.

28Unlike a manifold with boundary, a smooth (CN) differentiable manifold is differentiable at

all points; intuitively, it has no ‘‘edge points’’ at which differentiation may break down. For the

theory of structured spaces, see Heller and Sasin (1995) and references therein.
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A second point is that in the non-commutative extensions of EA given in
Heller and Sasin (1996, 1999), the manifold M truly disappears. In these ex-
tensions, a commutative algebra is replaced with a non-commutative algebra,
and, simply put, these latter, in general, have no maximal ideals. Thus well-
behaved point sets cannot, in general, be reconstructed from them. Intuitively,
one might claim that Einstein algebras, both commutative and non-commuta-
tive, encode the differentiable structure of a differentiable manifold first and
foremost, and only secondarily encode M’s point set.
How might a semantic realist take the EA formulation of classical field theories

at its face value? In particular, what might a literal interpretation of a (commu-
tative) Einstein algebra amount to? In the original EA formalism, the correlates
of manifold points are the maximal ideals of the algebra A. Under the Gelfand
representation, these are certain subsets of functionals defined on An, which,
under the intended manifold interpretation, become real-valued CN functions
defined on M. Some authors have suggested that these functions can be inter-
preted as a system of scalar fields, which the literal-minded semantic realist can
include in her ontology in lieu of manifold points (see, e.g., Penrose & Rindler,
1984, p. 180; Demaret et al., 1997, p. 146). This interpretation suggests a notion
of spacetime as arising out of the relations between these fundamental fields29.
In the extended EA formalism, we have replaced commutative algebras with

non-commutative algebras, and these latter, in general, do not possess maximal
ideals. Hence, there are, in general, no correlates of manifold points to help the
literal-minded semantic realist. One option for the semantic realist is a literal in-
terpretation not of the objects of any particular representation of an Einstein
algebra (commutative or not), but rather of the algebraic structure intrinsic to the
algebra itself. An Einstein algebra A can be realized in many ways on many
different types of spaces. Some of these spaces can be interpreted as smooth dif-
ferentiable manifolds, others as manifolds with boundaries, and still others do not
admit a manifold interpretation at all. An ‘‘algebraic structuralist’’ might claim that
the concrete representations of A should not be read literally; rather, the structure
defined by the algebraic properties of A is what should be taken at face value.

5. Manifolds vs. geometric algebra

In this section, I indicate how classical field theories can be recast using ge-
ometric algebra and the extent to which the geometric algebra formalism is

29Relationalists like Rovelli (1997) hold a similar view with respect to the metric field in tensor

formulations of general relativity. Note, however, that such metric field relationalists differ from

algebraic relationalists in so far as the former posit a single ‘‘manifold-generating’’ field that has

physical significance (being a solution to the Einstein equations), whereas the latter require an

uncountable infinity of fields, most of which will not have physical significance. (Thanks to an

anonymous referee for making this point explicit.)
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non-trivially expressively equivalent to the tensor formalism. Whereas an
Einstein algebra may be said to encode the differentiable structure of a manifold
in an abstract algebraic object, a geometric algebra on first glance may be said
to encode the metrical structure of a manifold in a concrete algebra of ‘‘mul-
tivectors’’. As it turns out, there is also an abstract algebraic object lurking
behind the scenes here, too; namely, an abstract Clifford algebra.
In slightly more detail, a geometric algebra G can be initially viewed as a

generalization of a vector space. The elements of G are referred to as multi-
vectors and come in ‘‘grades’’. The intended geometrical interpretation identifies
0-grade multivectors as scalars, 1st-grade multivectors (‘‘1-vectors’’) as vectors,
2nd-grade multivectors (‘‘bivectors’’) as directed surfaces, 3rd-grade multivec-
tors (‘‘trivectors’’) as directed volumes, etc. For any r, the collection of all r-
grade multivectors forms a subalgebra Gr of G, with G then being the direct sum
of all the Gr, r ¼ 0yN. This allows any n-dimensional vector space Vn to be
identified with a geometric algebra GðVnÞ for which G1ðVnÞ ¼ Vn. The real
significance of G lies in the geometric product which encodes both an inner
product (bilinear form) and an outer (wedge) product. These properties of G
allow classical field theories to be presented in the geometric algebra (GA here-
after) formalism in an intrinsically coordinate free manner in a way that does
away with the differentiable manifold of the tensor formalism.

5.1. Geometric algebra

From a mathematical point of view, a geometric algebra G is first and foremost
a real Clifford algebra. There are numerous ways of defining the latter. For
instance, let V be a real vector space equipped with a bilinear form g : V � V !

R with signature (p, q). The real Clifford algebra Cðp;qÞ is the linear algebra over
R generated by the elements of V via ‘‘Clifford multiplication’’ defined by
xy+yx ¼ g(x, y)1, x, yAV, where 1 is the unit element. In this, and other
standard definitions, a Clifford algebra is defined in terms of a bilinear form (or
its associated quadratic form) defined on a vector space30. Given such defini-
tions, Clifford algebras might seem limited to applications in metrical geometry,
or might seem less fundamental than tensor algebra. The axiomatic treatment of
Hestenes and Sobczyk (1984) is meant to address these apparent limitations.

30An alternative definition is the following (Ward &Wells, 1990, p. 209): Let V be a vector space

over a commutative field K with unit element 1 and equipped with a quadratic form q : V ! K.

(Such a q is defined by qðxrÞ ¼ r2qðxÞ; r 2 K; x 2 V such that the map h : V � V ! K defined by

h(x, y) ¼ q(x+y)�q(x)�q(y) is a bilinear form on V. A simple consequence of this definition is

that h(x, x) ¼ 2q(x).) The tensor algebra of V is given by TðV Þ ¼ S1
r¼0�

rV . Let I be the two-

sided ideal in TðV Þ generated by elements of the form x�x+q(x)1, for xAV. The Clifford

algebra associated with V is then defined as the quotient CðV ; qÞ � TðV Þ=J. The Clifford prod-

uct in CðV ; qÞ is then the product induced by the tensor product in TðV Þ.
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Their goal is to construct a real Clifford algebra (now referred to as a geometric
algebra) as a primitive object in its own right, with the notions of vector space
and bilinear form as derivative concepts. In what follows, I will briefly review
their axiomatic construction before reviewing its application to classical field
theories in Minkowski spacetime and in generally curved spacetimes.
In Hestenes and Sobczyk’s (1984) treatment, a geometric algebra G is a graded

real associative algebra with a few additional properties. Elements of G are
referred to as multivectors. As a real associative algebra, a geometric algebra is a
septuple G ¼ (G, +g, � g; R, +, � ; �), where (G, +g, � g) is a ring with unity
closed under geometric addition +g and non-commutative geometric multipli-
cation � g; (R;þ;�) is the real field, and � denotes the external binary op-
eration of scalar multiplication (in the following, the subscript on +g has been
dropped and � g and � are represented by juxtaposition). As a graded algebra,
G admits a linear idempotent grade operator /Sr: G ! G by means of which
any multi-vector A 2 G can be written as the sum A ¼

hAi0 þ hAi1 þ hAi2 þ � � � ¼
P

rhAir. If A ¼ /ASr, then A is referred to as ho-

mogeneous of grade r and called an r-vector. The space of all r-vectors is de-
noted Gr and is an r-dimensional linear subspace of G. The space G0 is identified
with R. The role of the bilinear form in standard treatments is accomplished by
including an axiom relating scalar and vector multiplication: for a 2 G0,
aa ¼ a2 ¼ /a2S0. In words: the square (under geometric multiplication) of a
‘‘1-vector’’ is a scalar31. This relation is then extended to arbitrary r-vectors by
the axiom: For any r>0, an r-vector can be expressed as a sum of r-blades,
where Ar is an r-blade iff Ar ¼ a1a2yar, where ajak ¼ �akaj, for j, k ¼ 1y r

and j6¼k. Finally, Hestenes and Sobczyk posit the existence of non-trivial
blades of every finite grade: For every non zero r-blade Ar, there exists a non-
zero vector a in G such that Ara is an (r+1)-blade. (Hence, G is infinite di-
mensional.)
The geometric product can be decomposed into an inner product and an outer

product. For homogeneous multivectors, the inner product � and the outer
product 4 are defined by Ar � Bs � ArBsh i r�sj j, if r and s>0, otherwise Ar �Bs�0,
and Ar4Bs�/ArBsSr+0

32. Intuitively, the inner product decreases the grade of
multivectors, whereas the outer product increases grade. These definitions entail
that the geometric product of a 1-vector a and an arbitrary multivector A can be
decomposed as aA ¼ a �A+a4A. In particular, the geometric product of 1-
vectors has the simple decomposition ab ¼ a � b+a4b, where a � b ¼ 1/2(ab+ba)

31In standard treatments, G would be identified as the Clifford algebra of the quadratic form

q(a) ¼ a2 with associated bilinear form h(a, b) ¼ (a+b)2�a2�b2 (see previous footnote).
32For arbitrary multivectors, they are defined as A � B �

P
r

P
s Ah ir � Bh is and

A ^ B �
P

r

P
s Ah ir ^ Bh is.
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is the totally symmetric part of ab, and a4b ¼ 1/2(ab�ba) is the totally anti-
symmetric part of ab33.
Every n-dimensional vector space Vn determines a subalgebra GðVnÞ of G by

geometric multiplication and addition of elements in Vn such that G1ðVnÞ ¼ Vn

and GrðVnÞ is the linear subspace of GðVnÞ consisting of all r-vectors formed by
taking products of elements of Vn. In particular, let {e1,y , en} be a basis for
Vn. Then a basis for GrðVnÞ is given by f1; ei; ei1 ei2 ; . . . ; ei1 . . . eing, i ¼ 1y n,
and a multivector element B 2 GrðVnÞ may be expanded as, B ¼

cþ ciei þ ci1i2ei1ei2 þ � � � þ ci1 ... inei1 . . . ein , where the ci are scalar coefficients.
GðVnÞ can thus be decomposed into a direct sum of linear subspaces GrðVnÞ.
Note that the dimension of GðVnÞ is 2n.
Two subalgebras of G play essential roles in the formulation of classical field

theories in the GA formalism: the Pauli algebra associated with Euclidean 3-
space and the Dirac algebra associated with Minkowski spacetime.
Pauli algebra and Dirac algebra. The Pauli algebra P is the geometric algebra

GðE3Þ (alternatively, the real Clifford algebra Cð0;3Þ) of the vector space E3

tangent to a point in Euclidean 3-space. A basis for E3 is given by {s1, s2, s3},
where the basis 1-vectors satisfy sI � sj ¼ dij, si4sj ¼ 034. The corresponding 8-
dimensional basis for P is then,

f1; fs1; s2; s3g; fs1s2; s1s3; s2s3g; fs1s2s3gg (3)

where, e.g., s1s2 ¼ s1 � s2+s14s2 ¼ �s2s1. Note that the highest-grade basis
element (or ‘‘pseudoscalar’’) s1s2s3 of P has the properties (s1s2s3)

2
¼ �1 and

(s1s2s3)sk ¼ sk(s1s2s3), i.e., s1s2s3 commutes with all basis elements. This
motivates the denotation s1s2s3�i. Hereafter, ‘‘i’’ will denote the pseudoscalar
ofP (and, as will be seen, that of the Dirac algebraD as well). Any AAP can be
expanded in the basis (3) as A ¼ a+a+ib+ib, where a ¼ aksk, b ¼ bksk are 1-
vector elements of P1 � G1ðE3Þ and ak, bk, a, b are scalars.
The Dirac, or spacetime, algebra D is the geometric algebra GðM4Þ of

Minkowski vector space M4 (alternatively, the real Clifford algebra Cð1;3Þ). It
can be generated by the set of 1-vectors {gm}, m ¼ 0y3, satisfying g0g0 ¼ 1,
gkgk ¼ �1, and gm � gn ¼ 0 for m6¼n35. TheMinkowski metric Zmn is then recovered as

33In standard treatments, the inner product is defined by the bilinear form h(x, y) ¼ x � y asso-

ciated with the quadratic form q(x) ¼ x2. The outer product is the wedge product of tensor algebra.
34The Pauli operator algebra of non-relativistic quantum mechanics can be realized in P (hence

the name). Under this realization, the 1-vectors s1, s2, s3 correspond to the Pauli spin matrix

operators, and 2-component SU(2) ‘‘non-relativistic’’ spinors correspond to even elements of P

(see, e.g., Lasenby, Doran, & Gull, 1993). Thus, insofar as P is a real Clifford algebra in which

the object i has a definite geometric interpretation (see below), one can reconstruct the kinematics

of non-relativistic quantum mechanics in P without introducing the complex field C.
35The Dirac operator algebra of relativistic quantum mechanics can be realized in D (hence the

name). Under this realization, the 1-vectors gm correspond to the Dirac matrix operators, and 4-

component Dirac spinors correspond to even elements of D (see, e.g., Lasenby et al., 1993).
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gm � gn ¼ 1=2ðgmgn þ gngmÞ ¼ Zmn The corresponding 16-dimensional basis for D is
given by
f1; fgmg; fsk; iskg; figmg; ig (4)

where the pseudoscalar of D is given by g0g1g2g3 ¼ s1s2s3 ¼ i, and sk�gkg0,
k ¼ 1y3, are bivectors (inD) that form an orthonormal frame in the Euclidean 3-
space orthogonal to the g0 direction. In terms of this basis, the Pauli algebra
generated by the sk is the even subalgebra ofD. Vectors inD are embedded intoP
by geometric right-multiplication by g0, bivectors in D are embedded into P by
expansion in the basis {sk, isk}, and scalars and pseudoscalars in D remain scalars
and pseudoscalars in P.
Any AAD can be expanded in the basis (4) as A ¼ AS+AV+AB+AT+AP,

where the labels S, V, B, T, P refer to the scalar, vector, bivector, trivector, and
pseudoscalar part of A, respectively. Geometric interpretations of these objects
are as follows: Scalars are elements of the subalgebra G0ðM4Þ, identified with R;
elements of the subalgebra G1ðM4Þ ¼ M4 are Minkowski 4-vectors; elements of
the subalgebra G2ðM4Þ are bivectors: directed surface elements in M4; elements
of the subalgebra G3ðM4Þ are trivectors: directed volume elements in M4; and
elements of G4ðM4Þ are pseudoscalars: directed hypervolumes in M4.
Fields and derivative operators. Physical fields are represented in the GA for-

malism by geometric functions. A geometric function F(A) is a function whose
domain and range are subsets of G. The standard definitions of limit and con-
tinuity for scalar-valued functions on Rn can now be employed for geometric
functions using the scalar magnitude, which defines a unique distance 9A�B9
between any two multivectors A, B36. A geometric function of r variables
T ¼ T(A1, A2,y , Ar) is called an extensor of degree r on Gn if it is linear in each of
its arguments and each variable is defined on a geometric algebra Gn. In par-
ticular, if n ¼ 1, then T is a tensor of degree r. A tensor T ¼ T(a1,y , ar) of degree
r that takes values in a geometric algebra Gs is said to have grade s and rank s+r.
A geometric calculus for the Dirac algebra D can be constructed by extending

the well-defined notion of derivative in G0ðM4Þ to all of D. Naively, this is
possible since both addition and multiplication are well defined for all elements
of D (hence, specifically, limits of quotients can be defined). In general, the
vector derivative @ for G is defined by @ �em(em � @x) where {em} is a basis for G1

and (em � @x) is a scalar derivative operator37. The vector derivative @ so-defined

36For arbitrary A;B 2 G, the scalar product * is defined as A�B�/ABS0 (note that this is

distinct from the inner product). The scalar magnitude of A is then defined by|A|2�Ay�A, where
the reversion map y: G ! G is defined on r-vectors by Ar

y
¼ (�1)r(r�1)/2Ar (reversion reverses the

order of all products of 1-vectors in Ar).
37In general, let F(x) be a multivector-valued geometric function of x 2 G1 on G and let a 2 G1.

The directional derivative of F(x) in the direction of a is defined by ða � @xÞFðxÞ � lim
t!0

ðF ðxþ

taÞ � F ðxÞÞ=t One can show that the operator (a � @x) has all the properties of a scalar derivative

operator (Hestenes & Sobczyk, 1984, pp. 44–53).
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is the geometric product of a 1-vector em and a scalar differential operator
(em � @x), acquiring the algebraic properties of a 1-vector from the former and
differential properties from the latter. Since it is a vector quantity its action on
geometric functions can be decomposed into inner and outer products: For any
differentiable geometric function A(x) of a vector argument with values in G,
@A(x) ¼ @ �A(x)+@ 4A(x). To specialize to D, let {gm} be a basis for D1. Then
the vector derivative for D is given by @ �gm(gm � @m), where {g

m} is the reciprocal
basis defined by gm � gn ¼ Zmn.
We are now in the position of being able to transcribe classical field theories in

Minkowski spacetime into the GA formalism. In all such transcriptions, the
differentiable manifold M that appears in the tensor formalism is replaced with
the Dirac algebra D. As an example, the Maxwell equations can be written in
the GA formalism as

@F ¼ 4pJ (5a)

where the electromagnetic field F ¼ F(x) is a bivector-valued tensor on D1 (i.e.,
a tensor of degree 1, grade 2, and rank 3) and the current density J ¼ J(x) is a
tensor on D1 of degree 1, grade 1 and rank 2. To show that (5a) reproduces the
Maxwell equations, it can be decomposed into

@ � F ¼ 4pJ; @ ^ F ¼ 0 (5b)

These equations then reproduce the standard tensor formulation (1) in a
given basis {gm}.
To formulate general relativity in the GA formalism, two options are avail-

able. First, Lasenby, Doran, and Gull (1998) have constructed a gauge theory of
gravity in flat Minkowski vector space that reproduces the Einstein equations
and that is similar to Poincaré gauge theory formulations of GR. In these latter
theories, one typically imposes local Poincaré gauge invariance on a matter
Lagrangian, which requires the introduction of gauge potential fields. These are
then identified as the connection (rotational gauge) on a Poincaré frame bundle
over a manifold M, and the tetrad fields (translation gauge). The Einstein
equations are then obtained by extremizing the Lagrangian with respect to the
gauge potentials. In Lasenby et al. (1998), ‘‘displacement’’ and rotational gauge
invariance is imposed on a matter Lagrangian defined on the Dirac algebra D,
and this leads to the introduction of potential gauge fields defined on D that
generate the Einstein equations (plus an equation for torsion). In this theory,
gravity is conceived as a force described by geometric functions defined on the
Dirac algebra.
The second option is to attempt to transcribe GR as a theory governing fields

in a curved spacetime directly into the GA formalism. To accomplish this, one
can make use of Hestenes and Sobczyk’s (1984, Chapter 4) notion of a vector
manifold: a collection of 1-vector elements of G. A vector manifold M can be
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considered as a curved surface embedded in a larger flat space (associated with
G). The extrinsic geometry of M can be defined in terms of objects in the
‘‘embedding space’’ G, and an intrinsic (Riemannian) geometry can be defined
in M by projecting the relevant quantities in G onto M. In particular, a cur-
vature tensor can be defined as a geometric function on M and this then allows
the transcription of the Einstein equations as equations governing geometric
function fields defined on M38.

5.2. Interpretation

In what sense does the GA formalism do away with the manifold M of the
tensor formalism? Note that, for classical field theories in Minkowski spacetime,
including the GA gauge theory of gravity of Lasenby et al. (1998), the kine-
matical role of M as a point-set for tensor fields to quantify over is explicitly
played by the subalgebra D1 of 1-vector elements of the Dirac algebra D, in so
far as physical fields in the GA formalism are represented by geometric tensor
functions that quantify over 1-vectors. The dynamical role of M as a set of
points imbued with differentiable and topological properties on which deriv-
ative operators may be defined is also played by D1 with its associated vector
derivative q. On the other hand, a case could be made that the object in the GA
formalism that plays both the kinematical and dynamical roles ofM is the Dirac
algebra D in its entirety. Recall that D is the direct sum
D0ð¼ RÞ þD1 þD2 þD3 þD4. Geometric tensor functions in D quantify over
D1 and take values in any of these subalgebras of D. Hence physical fields, in
this sense, are represented simply by elements of D. Moreover, the vector de-
rivative operator @ 2 D1 is only well defined as a derivative operator due es-
sentially to the differentiable properties of D039. The claim then is that D comes
as a self-contained package: to use any one aspect of it in formulating a classical
field theory in Minkowski spacetime requires making use of D in its entirety.
(Arguably, this is not the case in the tensor formalism in which M is considered
as a ‘‘self-contained’’ mathematical object in its own right with additional
structures defined on it as the need arises.)

38As Doran, Lasenby, and Gull (1993) note, one drawback of this approach is that the Einstein

equations in their tensorial form only determine the local curvature of M and, in general, say

nothing about its global properties. In contrast, a vector manifold, as an embedded surface, has a

well-defined global extrinsic curvature. Hence to fully accommodate vector manifolds into GR,

the Einstein equations should be modified to specify such extrinsic properties. Furthermore, there

are topological issues associated with both options of incorporating GR into the GA formalism,

due to the well-behaved (topologically) features of vector spaces vis-á-vis differentiable manifolds.
39In addition to a vector (D1) derivative, higher-grade derivatives associated with each of the

other subalgebras of D can be defined. The general theory of such multivector derivatives is

presented in Hestenes and Sobczyk (1984, p. 54).
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To make this a bit more explicit, consider, once again, CED in Minkowski
spacetime. In the GA formalism, a dynamical model for CED in Minkowski
spacetime may be given by (D; @; F ; J), where D 	 G is the Dirac algebra, @ is
the vector derivative of D, and the electromagnetic bivector F 2 D2 and the
current density vector J 2 D1 satisfy the GA formulation of the Maxwell equa-
tions (5a). Here, the Dirac algebra in its entirety replaces (M, Zab) as the object
encoding the properties of spacetime.
How might a semantic realist take the GA formulation of classical fields at its

face value? Unlike the Einstein algebra case, GA comes pre-packaged with an
intended interpretation. The objects of a geometric algebra, and the Dirac al-
gebra in particular, are interpreted as multivectors. One option for a semantic
realist is to include them as the fundamental geometric entities in the ontology
of classical field theories. This perhaps suggests a relationalist’s view of space-
time as arising from the algebraic relations between multivectors in the Dirac
algebra. Alternatively, the algebraic structuralist of Section 4.2 may claim that
the concrete representations of a geometric algebra G should not be read lit-
erally, but rather the structure defined by G. Such a structuralist will claim that
spacetime has the structure inherent in the abstract real Clifford algebra Cð1;3Þ.

6. Spacetime as structure

The above review of alternative formalisms indicates that classical field-theoretic
physics can be done without a 4-dimensional differentiable manifold, at least for
most theories of interest. Minimally, this suggests that, if we desire to read classical
field theories at their ‘‘face value’’, differentiable manifolds need not enter into our
considerations: manifold substantivalism is not the only way to literally interpret a
classical field theory. What does this suggest about the ontological status of
spacetime? In particular, if we desire to be semantic realists with respect to classical
field theories, what attitude should we adopt toward the nature of spacetime? One
initial moral that can be drawn from the preceding discussion is that ‘‘funda-
mentalism’’ is in the eye of the beholder. In particular, all the alternative formal-
isms discussed above disagree on what the essential structure is that is minimally
required to kinematically and dynamically support classical field theories.

6.1. Against fundamentalism

Note first that the relations between the tensor formalism and the alternative
formalisms reviewed above may be summarized as follows. Projective twistor
space PT encodes the conformal structure (M, OZab) of Minkowski spacetime (i.e.,
the metrical structure up to a multiplicative constant O), with limited extensions
to curved spacetimes. The dynamics of physical fields is encoded by geometrical
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structures on PT and its extensions. An Einstein algebra directly encodes the
differentiable structure on M (i.e., the points of M imbued with differentiable and
topological properties), and then encodes physical fields as derivations on this
structure40. The Dirac algebra directly encodes the metrical structure (M, Zab) of
Minkowski spacetime, and then encodes physical fields and their dynamics as
geometric functions on this structure (i.e., maps from D1 to subalgebras of D).
A manifold substantivalist is a ‘‘point set fundamentalist’’. In the tensor for-

malism, this may seem a natural way to literally interpret spacetime: The point
set of the manifold is the fundamental mathematical object, on which additional
structures supervene. In particular, the moves to differentiable, conformal, and
metrical structures are accomplished by adding more properties to the point set.
On the other hand, proponents of alternative formalisms may claim that the
manifold gives us too much as a representation of spacetime. In particular, they
may charge one or more of the features of M with the status of surplus math-
ematical structure in the context of classical field theories.
Proponents of twistors may claim that conformal structure is what is essen-

tial. They may claim that both the point set and the differentiable structure ofM
are surplus: The point set can be reconstructed via the Klein Correspondence
from twistors, while the differentiable structure is encoded in geometric/alge-
braic constructions over an appropriate twistor space. Moreover, twistor ad-
vocates will attempt to rewrite classical field theories in a conformally invariant
way, hence they will also consider metrical structure as surplus.
Proponents of Einstein algebras may claim that differentiable structure is

minimally sufficient to do classical field theory and view the point set of M as
surplus structure, and conformal and metrical structure as derivative.
Finally, proponents of geometric algebra may claim that metrical structure

gives us everything we need for field theory, and view the point set, and the
differentiable and conformal structures of M as surplus. The point set is no
longer needed to support fields, and the role played by differentiable structure is
encoded directly in the Dirac algebra (in particular, in D0). There is also a
precise sense in which conformal structure is derivative of D: It turns out that
twistors, as well as 2-component spinors, can be realized in the Dirac algebra.
Lasenby et al. (1993) indicate how this is achieved by the following corre-
spondences for the 2-spinor spaces S, S0 and twistor space T:

S ¼ f8c 	 D : c ¼ k1
2
ð1þ s3Þ; for any k 2 Pþg

S0
¼ f8c 	 D : c ¼ �ois212ð1� s3Þ; for any o 2 Pþg

T ¼ f8Z 	 D : Z ¼ fþ rfg0is3
1
2
ð1� s3Þ; for any f 2 Dþg

40An original Geroch–Einstein algebra encodes local differentiable structure, whereas its com-

mutative and non-commutative extensions may be said to encode global differentiable structure.
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where Pþ, Dþ are the even Pauli and Dirac subalgebras, and r ¼ gmx
m41. The

GA fundamentalist then may argue that, if spacetime is encoded by the Dirac
algebra D, then S, S0 and T are less fundamental than spacetime in the sense of
being contained within D. The main point, however, is that this cuts both ways:
In the spinor formalism, Minkowski vector space (as encoded in D) may be said
to be derivative of S in the sense that it isomorphic to the real subspace
Re(S� S0); and, of course, in the twistor formalism, the points of (compacti-
fied) Minkowski spacetime Mc can be derived from geometric relations in T.
The conclusion, then, is that what counts as fundamental and what counts as

derivative, from a mathematical point of view, depends on the formalism.

6.2. For structuralism

The debate between these fundamentalisms revolves around what the essential
structure of spacetime is that is necessary to support classical field theories: a
point set, or differentiable, conformal, or metrical structures. But it does not
revolve around how this structure manifests itself: in particular, what it is
predicated on; or, in general, the nature of the basic mathematical objects that
are used to describe it. This suggests adopting a structural realist approach to
spacetime ontology.
Such spacetime structuralism, as motivated here, depends on prior semantic

realist sympathies. It says: If we desire to be semantic realists with respect to
classical field theories; i.e., if we desire to interpret such theories literally, or take
them at their ‘‘face value’’, then we should be ontologically committed to the
structure that is minimally required to kinematically and dynamically support
mathematical representations of physical fields. Just what this structure is de-
pends explicitly, for a semantic realist, on the formalism one adopts, as indi-
cated above. Note, however, that this is not to say that essential structure is a
matter of convention, in so far as the formalism one adopts generally is not a
matter of pure convention. Rather, in the context of classical field theory, it will
be influenced by inter-theoretical concerns; concerns, for instance, over which
formulation of quantum field theory one adopts, or which approach to quan-
tum gravity one adopts. Thus ultimately, the essential structure of classical field
theory is empirical in nature, in so far as, ultimately, which extended theory
(quantum field theory, quantum gravity) is correct is an empirical matter. What

41In the transcriptions for S and S0, k and o are the GA realizations of SU(2) spinors and the

factors (1+s3) and (1�s3) essentially realize chiral operators in D (the factor is2 in S0 realizes

Hermitian conjugation). Thus elements of S and S0 may be thought of as right- and left-handed

spinors. (More precisely, they are right- and left-handed Weyl spinors in the Weyl representation

of the Dirac operator algebra.) In the transcription for twistor space T, a twistor in the GA

formalism is realized as a position-dependent Dirac 4-spinor (in the Weyl representation). See

Lasenby et al. (1993) for details.
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the spacetime structuralist cautions against (in the here and now) is adopting an
‘‘individuals-based’’ ontology with respect to this structure. Conformal struc-
ture, for instance, can be realized on many different types of ‘‘individuals’’:
manifold points, twistors, or multivectors, to name those considered in this
essay. What is real, the spacetime structuralist will claim, is the structure itself,
and not the manner in which alternative formalisms instantiate it.
As a form of realism with respect to spacetime, spacetime structuralism thus

can be characterized by the following:

(a) It is not substantivalism: It is not a commitment to spacetime points.
(b) It is not relationalism: It does not adopt an anti-realist attitude toward

spacetime42.
(c) Rather, it claims spacetime is a real structure that is embodied in the world.
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