Relativity and Quantum Field Theory

Jonathan Bain

Abstract Relativistic quantum field theories (RQFTs) are invariant under the action
of the Poincaré group, the symmetry group of Minkowski spacetime. Non-relativistic
quantum field theories (NQFTs) are invariant under the action of the symmetry
group of a classical spacetime; i.e., a spacetime that minimally admits absolute spa-
tial and temporal metrics. This essay is concerned with cashing out two implications
of this basic difference. First, under a Received View, RQFTs do not admit parti-
cle interpretations. I will argue that the concept of particle that informs this view
is motivated by non-relativistic intuitions associated with the structure of classical
spacetimes, and hence should be abandoned. Second, the relations between RQFT's
and NQFTs also suggest that routes to quantum gravity are more varied than is typ-
ically acknowledged. The second half of this essay is concerned with mapping out
some of this conceptual space.

1 Introduction

The comparison of Minkowski spacetime with classical (i.e., non-relativistic) space-
times has been fruitful in contemporary philosophy of spacetime in debates over the
ontological nature of space and time (see e.g., Earman 1989, Chap. 2). In this essay,
I extend this type of analysis to debates in the philosophy of quantum field theory.
In particular, the distinction between Minkowski spacetime and classical spacetimes
allows one to make a corresponding distinction between relativistic quantum field
theories (RQFTs) and non-relativistic quantum field theories (NQFTs). This lat-
ter distinction is subsequently helpful, or so I shall argue, in clarifying the debate
over whether or not RQFTs admit particle interpretations, and in investigating the
conceptual space of possible extentions of RQFTs to include gravity.

Section 2 distinguishes between RQFTs and NQFTs in terms of the distinction
between Minkowski spacetime and classical spacetimes. This distinction is then
applied to an on-going debate over the ontology of QFTs. According to a Received
View in this debate, RQFTs do not admit particle interpretations (Arageorgis et al.
2003; Fraser 2008; Halvorson and Clifton 2002). This view takes the existence of
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local number operators and a unique total number operator in the formulation of a
QFT as necessary conditions for a particle interpretation of the theory. Given that
formulations of RQFTs do not admit such objects, the Received View concludes
that RQFT's cannot be given particle interpretations. I will argue that the existence
of local and unique total number operators in a QFT requires the absolute temporal
structure of a classical spacetime. Thus the Received View’s concept of particle
appears to be motivated by a non-relativistic concept of absolute time. The moral I
draw is that the Received View’s concept of particle is inappropriate for RQFTs.

No RQFT currently exists that consistently incorporates gravity. Section 3 reviews
an example of an NQFT that does: Christian’s (1997) Newtonian Quantum Grav-
ity (NQG). NQG is an NQFT in (a version of) Newton-Cartan spacetime, the latter
being an example of a curved classical spacetime. Part of the spacetime structure of
NQG is dynamic and quantized, and its symmetry group is an extension of the non-
relativistic Maxwell group. The latter entails that NQG is not plagued by the family
of conceptual problems associated with unitarily inequivalent representations of the
canonical (anti-) commutation relations, as are QFTs in curved Lorentzian space-
times (Ruetsche 2002). In particular both local number operators and a unique total
number operator are present in NQG, again due to the absolute temporal structure
of classical spacetimes.

Using NQG as motivation, Sect. 4 undertakes the task of relating NQFTs, both in
the presence and the absence of gravity, to RQFTs and to other theories, both of par-
ticles and fields, classical and quantum, in the presence and the absence of gravity.
What emerges is a tentative map of the relations between some of the fundamental
theories in physics, including the as-yet-to-be formulated, fully relativistic quantum
theory of gravity (QG).

2 NQFTs and Particles

By an RQFT I will mean a quantum field theory invariant under the actions of the
Poincaré group, the symmetry group of Minkowski spacetime. By an NQFT, I will
mean a quantum field theory invariant under the actions of the symmetry group of a
classical spacetime. Section 2.1 reviews the distinction between classical spacetimes
and Minkowski spacetime. Section 2.2 indicates the significance this distinction has
for the debate over particle interpretations of QFTs.

2.1 Classical Spacetimes vs. Minkowski Spacetime

Minkowski spacetime can be represented by a pair (M, 1,,), where M is a smooth
4-dim differentiable manifold and ., is a (—1, 1, 1, 1) symmetric tensor field on
M, the Minkowski metric, satisfying the compatibility condition V,n,, = 0, for
the derivative operator V, associated with the connection on M. This condition
determines a unique curvature tensor R%,.;, which vanishes, encoding spatiotem-
poral flatness. The isometry group of Minkowski spacetime, the Poincaré group, is
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generated by vector fields that Lie annihilate the Minkowski metric. Symbolically,
we require £,7% = 0, where £ is the Lie derivative associated with x4 Intuitively,
this means that the transformations between reference frames defined by the integral
curves of the vector field x? preserve the structure of the Minkowski metric. This
structure famously entails that there is no unique way to separate time from space
in Minkowski spacetime: any two observers moving inertially with respect to each
other will disagree on the time interval between any two events, and on the spatial
interval between any two events. In coordinate form, elements of the Poincaré group
may be represented by transformations

s M = AR XY g (Poincare) (1)

where A4 € SL(2, C) is a pure Lorentz boost and d* € R* is a spacetime transla-
tion.

In comparison, a classical spacetime is a spacetime that minimally admits abso-
lute spatial and temporal metrics. More precisely, a classical spacetime may be
represented by a tuple (M, h 1, V.), where M is a differentiable manifold,
h®isa(0,1,1,1) symmetric tensor field on M identified as a spatial metric, #, is a
covariant vector field on M which induces a (1, 0, 0, 0) temporal metric ., = #,1p,
and V, is a derivative operator associated with a (non-unique) connection on M
and compatible with the metrics in the sense V.h* = V,t, = 0. The spatial
and temporal metrics are also required to be orthogonal in the sense h%t, = 0.
These conditions allow M to be decomposed into instantaneous three-dimensional
spacelike hypersurfaces parameterized by a global time function. The most general
classical spacetime symmetry group is generated by vector fields x¢ that Lie annihi-
late #%° and ¢,. Symbolically, we require £.h* = £.t, = 0, and again, this means
that the transformations between reference frames defined by the integral curves of
the vector fields x? preserve the structure of the absolute spatial and temporal met-
rics. This entails that in any classical spacetime, there is always a unique way to
separate time from space: any two observers moving inertially with respect to each
other will always agree on the time interval between any two events, and on the
spatial interval between any two simultaneous events. In this sense, space and time
are absolute in a classical spacetime.

On the other hand, the compatibility conditions in a classical spacetime do not
determine a unique curvature tensor. Additional constraints on the curvature may
be imposed, and such constraints define different types of classical spacetimes. Two
examples include Neo-Newtonian spacetime, characterized by Rf., = 0, encoding
spatiotemporal flatness; and Maxwellian spacetime, characterized by R% = 0,
encoding a rotation standard (Bain 2004, pp. 348-352). The symmetries of Neo-
Newtonian spacetime form the 10-parameter Galilei group (Gal) generated by
vector fields x? that Lie annihilate the spatial and temporal metrics, and the con-
nection. Symbolically, £.h% = £.1, = £ I? = 0 (where I'%j, is the connection
defined by V,,), and in coordinate form,
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x—>x = Rx+vt+a (Gal 2)
t—>t' =t+b

where R is a constant orthogonal rotation matrix, v, a € R3 are velocity boost
and spatial translation vectors, and » € R is a time translation. The symmetries of
Maxwellian spacetime are given by the infinite dimensional Maxwell group (Max)
generated by vector fields x¢ that Lie annihilate the spatial and temporal metrics
and the rotational part of the connection. Symbolically, £.h = £.1, = £ Fcab =0
(where I' C“b = htr, 12). In coordinate form,

x— X = Rx+c(f) (Max) 3)
t—>t'=t+b

where R is a constant orthogonal rotation matrix, ¢(f) € R? is a time-dependent
spatial boost vector, and b € R is a time translation. A quick and dirty distinc-
tion between Neo-Newtonian and Maxwellian spacetime can be given in terms
of the way the absolute spatial slices are “rigged”: In Neo-Newtonian spacetime,
the rigging consists of “straight” trajectories, whereas in Maxwellian spacetime, it
consists of “straight” and “curved” trajectories. More precisely, a Neo-Newtonian
connection can distinguish between a straight and a curved trajectory, whereas a
Maxwellian connection cannot. Both connections can, however, distinguish between
straight and curved trajectories on the one hand, and “corkscrew” trajectories on the
other; i.e., in both spacetimes, there is an absolute standard of rotation.

Now, just as there can be different types of classical spacetimes, there can be
different types of NQFTs. A GQFT (Galilei-invariant Quantum Field Theory), for
instance, is an NQFT invariant under Gal (Lévy-Leblond 1967), while an MQFT
(Maxwell-invariant Quantum Field Theory) is an NQFT invariant under Max. A
slight variant of the latter is Christian’s (1997) Newtonian quantum gravity reviewed
in Sect. 3 below.

2.2 Particle Interpretations

According to a Received View (Arageorgis et al. 2003; Fraser 2008; Halvorson and
Clifton 2002), in order to admit a particle interpretation, a QFT must satisfy the
following two conditions.

(a) The QFT must admit a Fock space formulation in which local number operators
appear that can be interpreted as acting on a state of the system associated with
a bounded region of spacetime and returning the number of particles in that
region.

(b) The QFT must admit a unique Fock space formulation in which a total number
operator appears that can be interpreted as acting on a state of the system and
returning the total number of particles in that state.
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Condition (a) is supposed to encode the essential particle characteristic of local-
izability: For a system of particles distributed over various regions of space, an
adequate theory must be able to identify the number of particles located in each
region.! Condition (b) is supposed to encode the essential particle characteristic of
countability: For a system of particles distributed over various regions of space, an
adequate theory must be able to identify a unique value for the total number of par-
ticles, counted over all regions. (Schematically, one would hope that a unique total
number operator could be defined as the sum over all regions of spacetime of local
number operators.)

One can now demonstrate that Conditions (a) and (b) fail in RQFTs. The
Received View concludes that RQFTs do not admit particle interpretations. How-
ever, it can also be shown that Conditions (a) and (b) hold in NQFTs precisely
because of the existence of an absolute temporal metric in classical spacetimes.
The moral I draw is that Conditions (a) and (b) are motivated by a non-relativistic
notion of time, and hence are inappropriate in the relativistic context. What should
be offered in their place as conditions of adequacy for particle interpretations in
the relativistic context is best left to another essay. The remainder of this section
attempts to substantiate the moral.

2.2.1 Particles in RQFTs?

It is a fairly simple matter to demonstrate that RQFTs fail to satisfy Conditions
(a) and (b). In general, Condition (b) is made problematic by the existence of uni-
tarily inequivalent Fock space representations of the canonical (anti-) commutation
relations (CCRs) of an RQFT.? To the extent that unitary equivalence is necessary
for physical equivalence, this suggests that any given RQFT admits (uncountably)
many different ways to parse particle talk, one for every unitary equivalence class of
Fock space representations and their attendant total number operator. One is faced
with a problem of which representation to privilege (Ruetsche 2002, pg. 359). This
Problem of Privilege may appear to be solved in Minkowski spacetime by appeal
to the time-like isometry subgroup of the Poincaré group. Intuitively, the time-like
symmetries of Minkowski spacetime provide one with a way to “split” the frequen-
cies of solutions to relativistic field equations, and thereby construct a one-particle
state space on which a Fock space representation can then be built. One can then
show that this method of constructing a Fock space representation is unique up to
unitary equivalence.

This is made rigorous by a result due to Kay (1979). Let (S, o, D;) be a classical
phase space, where S is the space of (well-behaved) solutions to a field equation, o

!'This follows the intuitions of Halvorson and Clifton (2002, pp. 17-18). This aspect of the
Received View should thus be made distinct from concepts of localized particles that require the
existence of position operators and/or localized states.

2 This is due to the failure of the Stone-von Neumann theorem for theories with infinite degrees of
freedom.
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is a symplectic formon S, and D;: S — S is a one-parameter group of linear maps
that preserves o and represents the evolution of the classical system in time. A one-
particle structure over (S, o, D;) is a pair (H, U;), where H is a Hilbert space and
U, is a weakly continuous one-parameter group of unitary operators on H with pos-
itive energy?, such that there is a 1-1 real linear map K : S — H with the following
properties: (a) The (complex) range of K is dense in H; (b) 2Im(Kf, Kg) = o(f, g)
forall f, g S, where (, ) is the inner producton H; and (¢) D; K = KU,. Kay (1979)
proves that a one-particle structure associated with the classical Klein-Gordon field
is unique up to unitary equivalence (similar results hold for the Dirac field). Thus, as

Halvorson (2001, pg. 114) states, ... the choice of time evolution in the classical
phase space suffices to determine uniquely the (first) quantization of the classical
system.”

Howeyver, if there is more than one choice of classical time evolution, there will
be more than one choice of one-particle structure, and hence more than one unitary
equivalence class of Fock space representations. Indeed, this occurs for classical
fields defined over a portion of Minkowski spacetime referred to as the right Rindler
wedge. The time-like isometry subgroup of the Poincaré group restricted to this por-
tion admits two distinct time-like Killing vector fields, one associated with inertial
reference frames and the other with accelerated frames. This gives rise to two unitar-
ily inequivalent Fock space representations, the standard Minkowski representation,
and the Rindler representation. This has suggested to some authors that inertial
and accelerating observers will disagree over the particle content of an RQFT in
Minkowski spacetime (see e.g., Wald 1994, Chap. 5). To such authors, then, the
Problem of Privilege is not solved simply by appealing to Minkowski spacetime
structure.*

Now suppose the Problem of Privilege could be solved to the satisfaction of all
for non-interacting RQFTs in Minkowski spacetime. Haag’s Theorem indicates that
this would provide cold comfort for particle physicists engaged in experiments with
what they take to be interacting particles. Under a reasonable assumption, Haag’s
Theorem entails that representations of the CCRs for both a non-interacting and
an interacting RQFT cannot be constructed so that they are unitarily equivalent at
a given time.’> Provided, again, that unitary equivalence is a necessary condition
for physical equivalence, this suggests that an interacting RQFT cannot be inter-
preted as consisting of a system of initially non-interacting particles that interact

3 Such a U, can be written U; = e for H a positive operator.

4 Arageorgis et al. (2003, pp. 180-181) argue that the Rindler representation is unphysical and
hence, implicitly, that there is no Problem of Privilege for physical Fock space representations,
appropriately construed, in Minkowski spacetime. They effectively argue that the time-like Killing
vector field associated with accelerated frames in the right Rindler wedge should not count as a
global way to “split the frequencies”, in so far as it is not extendible to Minkowski spacetime as a
whole.

3 See, e.g., Earman and Fraser (2006, pg. 313). The reasonable assumption is that the representa-
tions admit unique Euclidean-invariant vacuum states. This assumption can be dropped by inserting
a cut-off into the interacting RQFT and renormalizing the fields, but such tactics open up the host
of conceptual problems afflicting renormalized field theories.



Relativity and Quantum Field Theory 135

over a finite period of time, and then separate back into non-interacting states; a typ-
ical scenario for scattering experiments. More precisely, Haag’s Theorem suggests
that a Fock space representation of the CCRs of a non-interacting RQFT cannot
be used to represent particle states in an interacting RQFT. One might then won-
der if particle states might be represented more directly in an interacting RQFT
by constructing an explicit Fock space representation of its CCRs, as opposed to
piggy-backing on non-interacting representations. However, it is unclear if such a
Fock space representation of the CCRs for an interacting RQFT is constructible
(Fraser 2008).°

Thus is Condition (b) foiled in RQFTs, both non-interacting and interacting. Con-
dition (a) is foiled in RQFTs by the consequences of the Reeh-Schlieder theorem.
Briefly, the Reeh-Schlieder theorem entails that the vacuum state is separating for
any local algebra of operators defined by an RQFT (Streater and Wightman 2000,
pg. 138). This means that, given any bounded region of Minkowski spacetime, and
any operator associated with that region (in the sense of being an element of the
corresponding local operator algebra), if the operator annihilates the vacuum state,
then it is identically zero. Now the annihilation operators that appear in Fock space
formulations of QFTs are defined to annihilate the vacuum state and act non-trivially
on other states. Thus separability of the vacuum state of an RQFT entails that there
can be no annihilation operator associated with a bounded region of Minkowski
spacetime; hence there can be no number operator associated with a bounded region
of Minkowski spacetime. Thus “local” number operators in the sense of Condition
(a) do not exist in RQFTs.

2.2.2 Particles in NQFTs?

In NQFTs, both free and interacting, Conditions (a) and (b) are satisfied, and one
can argue that this is due to the presence of an absolute temporal metric in classi-
cal spacetimes. Consider Condition (b) first. What would guarantee uniqueness of a
Fock space representation of the CCRs for a QFT is the presence of a unique global
time function on the associated spacetime. This would provide a unique (up to uni-
tary equivalence) means to construct a one-particle structure over the classical phase
space. And such a unique global time function is only guaranteed in those space-
times that admit an absolute temporal metric. To see this, note that the compatibility
condition, V,t; = 0, on the temporal metric of a classical spacetime entails ¢, is
closed, and thus locally exact. If M is topologically well-behaved (if, for instance,
it is simply connected), then ¢, is globally exact, and there exists a unique globally
defined time function r: M — R satisfying t, = V,t. On the other hand, suppose
there exists a unique global time functionf : M — R. Then a temporal metric #,
compatible with a connection V, can be defined by t,, = (V,1)(Vpt).

6 Some authors have taken the moral of Haag’s Theorem to be that (irreducible) representations of
the CCRs are inappropriate for interacting RQFTs (Streater and Wightman 2000, pg. 101).
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Thus there is no Problem of Privilege for non-interacting NQFTs. One can fur-
ther demonstrate that Haag’s theorem does not make trouble for interacting NQFTs,
either. Haag’s theorem entails the following necessary condition for the existence of
an interacting quantum field unitarily equivalent to a free field: Either the interac-
tion polarizes the vacuum’ or Poincaré-invariance does not hold (Bain preprint).
For non-relativistic quantum fields, the presence of an absolute temporal metric
guarantees both the failure of Poincaré invariance and the failure of vacuum polar-
ization. To see the latter, consider an interacting Hamiltonian H = Hpee + Hiy.
Any representation of the symmetry group of a classical spacetime in which the
time-translation generator is encoded in H will be unitarily equivalent (in the sense
of satisfying the same commutation relations) to a representation in which the time-
translation generator is encoded in Hp,., provided that H;, is invariant under the
group action. Thus if Hp,, annihilates the vacuum state, so will H. This does not
hold true for the Lorentz group.®

An absolute temporal metric is also sufficient for Condition (a). While a version
of the Reeh-Schlieder theorem can be proven in the NQFT context (Requardt 1982),
it does not entail that the NQFT vacuum state is separating. Briefly, separability of
the vacuum state for a local algebra 9i(O) of operators associated with a region
O of Minkowski spacetime is derived under the assumptions of vacuum cyclicity
for R(O) (guaranteed by the Reeh—Schlieder theorem), relativistic local commuta-
tivity, and the existence of a non-trivial causal complement of ©.” To extend this
result to NQFTs, one must first replace relativistic local commutativity with its non-
relativistic analogue.'? This entails keeping track of the distinction between local
algebras defined on spatial regions of spacetime, and those defined on spatiotempo-
ral regions. Requardt’s (1982) non-relativistic Reeh—Schlieder theorem only holds
for the latter; but, due to the presence of an absolute temporal metric, spatiotem-
poral regions of classical spacetimes have trivial causal complements, and hence
is separability denied.'' On the other hand, the presence of a temporal metric also

7 Vacuum polarization occurs when an interacting Hamiltonian fails to annihilate the vacuum state
of the free field.

8 Lévy-Leblond (1967, pp. 160-161) makes this comparison explicit for the particular case of the
Galilei group. Due to the presence of an absolute temporal metric in Neo-Newtonian spacetime
(and classical spacetimes in general), the commutation relations that define the Galilei Lie algebra
(and the Lie algebra of any classical spacetime symmetry group in general) are such that the gen-
erator of time-translations is independent of the other generators. In the commutation relations that
define the Lorentz Lie algebra, the time-translation generator is mixed up with the other generators.
9 Streater and Wightman (2000, pg. 139). Vacuum cyclicity for i () requires that for any operator
A € R(O), AQ is dense in H, where € is the vacuum state. Relativistic local commutativity
requires that local fields ¢, ¥ commute, [¢(f), ¥ (g)] = 0, when the supports of the test functions
f, g are spacelike separated. The causal complement of a region O of Minkowski spacetime
consists of all points spacelike separated from points in O.

10 Namely, [¢(f), ¥(g)] = 0, when the supports of the test functions f, g have zero temporal
and non-zero spatial separation (Lévy-Leblond 1967, pg. 164).

"' The causal complement of a spatiotemporal region of a classical spacetime may be identified
with the set of all points with zero temporal separation and non-zero spatial separation from points
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guarantees that the domain of dependence for an open spatial region S of a classical
spacetimes is just S, and this ensures that the differential operators that appear in
the parabolic PDEs of NQFTs are not anti-local for such spatial regions.'? This has
the consequence that the vacuum is not cylic for algebras associated with spatial
regions, and thus is separability denied in this case, too.

3 Newtonian Quantum Gravity

While no RQFT currently exists that consistently incorporates gravity, Christian
(1997) has constructed an NQFT that does. Not only is it an explicit example of
an interacting NQFT that satisfies Conditions (a) and (b) of the Received View’s
concept of particle, it also is an instance of an NQFT in a curved classical space-
time. As such, it can be compared with QFTs in curved Lorentzian (i.e., relativistic)
spacetimes.'? This comparison will suggest, in Sect. 4, ways of extending RQFTs
to incorporate gravity. This section first reviews the distinction between two partic-
ular theories of Newtonian gravity in flat and curved classical spacetimes, and then
considers how Christian quantizes a particular version of the latter.

The standard way the theory of classical Newtonian gravity is formulated is as
a field theory set against the backdrop of flat Neo-Newtonian spacetime. Models
in this formulation may be given by a 6-tuple (M, h, t,, Va, ¢, p), where
(M, h*, t,, V,) represents classical Neo-Newtonian spacetime, and ¢ and p are
scalar fields on M that represent a Newtonian potential field and a mass density,
respectively. These latter objects are required to satisfy the Poisson equation, and an
equation of motion:

h** V, Vyp = 4nGp  (Poisson equation) 4)
£V 6P = —ha, Vg (equation of motion) ®)

where G is the Newtonian gravitational constant, and £ is a tangent vector field for
a timelike particle trajectory worldline that encodes its four-velocity.

in the region. This assumes a prohibition on infinite causal propagations, but allows that finite
causal propagations have no upper bound.

12 The domain of dependence D(®) of a region © of spacetime consists of points p for which
any inextendible causal worldline through p intersects O. A differential operator is said to be anti-
local for a given region of spacetime just when a function and its transform under the operator can
vanish in that region only if the function is identically zero. In classical spacetimes, for any open
spatial region S, D(S) has no temporal extent. Thus if a solution ¢ to a well-posed PDE vanishes
on S, it vanishes on D(S), but this does not guarantee that it vanishes on an open set in time. This
blocks an inference to anti-locality by means of the Edge of the Wedge Theorem. One can further
demonstrate that anti-locality of a differential operator entails cyclicity of the associated vacuum
state. Segal and Goodman (1965) demonstrated this for the case of the Klein-Gordon operator, and
subsequent authors have extended their results to cover operators associated with other relativistic
field equations.

13 A Lorentzian spacetime is a pair (M, &), where M is a differentiable manifold and g, is a
metric defined on M with signature (—1, 1, 1, 1).
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One can also formulate Newtonian gravity by incorporating the gravitational
potential field into the spacetime connection, and such theories are referred to as
theories of Newton-Cartan gravity (NCG). Models of NCG eliminate the Newto-
nian gravitational potential, and may be given by (M, h®, t,, V,, p). Here the
objects (M, h, t,, V,) still represent a classical spacetime; in particular, the spa-
tial and temporal metrics still satisfy orthogonality and compatibility constraints,
and additional constraints may still be imposed on the curvature tensor defined by
the derivative operator ,. But the Poisson equation (4) is now replaced with a gener-
alized Poisson equation, and the equation of motion (5) is replaced with the geodesic
equation:

Rap = 4YGptaty  (generalized Poisson equation) (6)
£ V,E2 =0 (equation of motion) (7)

where R, is the Ricci tensor defined, ultimately, by the derivative operator V.
These changes enforce the principle of equivalence in NCG. Intuitively, the Newton-
Cartan connection defined by (6) and (7) cannot distinguish “straight” inertial
trajectories from “curved” gravitationally accelerated trajectories. In this sense,
gravity is geometricized in NCG. Now there are different ways this geometrization
procedure can be carried out, depending on additional constraints one might impose
on the curvature tensor. Christian (1997) considers the following two constraints:

lac] _
Ry g1=0 ®)
R = ©)

Let “strong NCG” refer to the theory of NCG that, in addition to the compatibility
and orthogonality constraints of classical spacetimes, satisfies (6), (7), (8), (9), and
call the classical spacetime associated with it strong Newton-Cartan spacetime. In
strong Newton-Cartan spacetime, as in all classical spacetimes, there is a global
time function that may be associated with absolute time, and there are globally
defined spatial slices that may be interpreted as absolute space at an instant. And
as with other examples of curved classical spacetimes, what is “curved” is the way
these spatial slices are rigged together by the connection. Recall in Maxwellian
spacetime, the rigging is determined by condition (9) above and consists of either
“straight” or “curved” trajectories (a Maxwellian connection cannot tell these apart),
but not “cork-screw” trajectories (there still is a standard of rotation). In strong
Newton-Cartan spacetime, “curved” rigging is restricted to gravitationally accel-
erated trajectories, subject to the additional condition (8). More precisely, whereas
the symmetries of Maxwellian spacetime are characterized by the Maxwell group
(3), those of strong Newton-Cartan spacetime are characterized by an extension of
the Maxwell group, and thus are slightly more constrained.'*

14 See, e.g., Bain (2004, pg. 372).
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Christian (1997) demonstrates that Conditions (8) and (9) are sufficient to recast
strong NCG as a constrained Hamiltonian system, and thus to quantize it. The
reduced phase space (Christian 1997, pg. 4867) consists of variables encoding
the matter degrees of freedom, and variables that encode the dynamical degrees
of freedom of the strong NCG connection, which are identified as gravitational
degrees of freedom. The matter variables are solutions to the Schrédinger equa-
tion in strong Newton-Cartan spacetime.'> The connection variables take the form
of extended Maxwell frames; i.e., rigid, non-rotating, gravitationally accelerating
frames. This phase space has a nondegenerate symplectic structure, and a unique
one-parameter family of time evolution maps (due to the absolute temporal metric of
strong Newton-Cartan spacetime). Hence it admits a unique one-particle structure,
and thus a unique Fock space representation of the CCRs. The result is Christian’s
Newtonian Quantum Theory of Gravity (NQG, hereafter), an interacting (extended)
Maxwell-invariant QFT set in strong Newton Cartan spacetime.

NQG is a concrete example of an interacting NQFT that satisfies the Received
View’s necessary Conditions (a) and (b) for a particle interpretation. It is also an
interacting NQFT that successfully incorporates gravity; in particular, the gravita-
tional degrees of freedom in NQG are both fully dynamical and fully quantized. This
is in stark contrast with attempts to incorporate gravity into RQFTs. For instance,
the fact that the NQG gravitational degrees of freedom are fully dynamical distin-
guishes NQG from the program of QFTs in curved Lorentzian spacetimes. This
program attempts to construct RQFTS that incorporate gravity by treating it clas-
sically as a manifestation of the curvature of spacetime. This is done by breaking
the dynamical link between spacetime and matter forged in general relativity. The
curved Lorentzian spacetime in such an RQFT is absolute in the sense that it has no
dynamical degrees of freedom. In NQG, on the other hand, strong Newton-Cartan
spacetime has quantized dynamical degrees of freedom; namely, those associated
with the quantized strong Newton-Cartan connection. Intuitively, these quantized
degrees of freedom are associated with the dynamical “rigging” of the absolute
spatial slices. Moreover, as indicated above, NQG does not face the Problem of Priv-
ilege in determining a Fock space representation of the CCRs: the absolute temporal
metric of strong Newton-Cartan spacetime decides the matter uniquely up to unitary
equivalence. This is in contrast to QFTs in curved (Lorentzian) spacetimes in which

15 Christian (1997, pg. 4855) refers to this as the Schrodinger-Kuchar equation after Kuchar
(1980), who demonstrated that it can be quantized to produce a non-interacting Galilei-invariant
NQFT in strong Newton-Cartan spacetime. Christian’s NQG is an extention of Kuchar’s non-
interacting theory to one in which the quantized Schrodinger field interacts with a quantized
strong Newton-Cartan connection field (thus Christian’s NQG is a fully interacting NQFT).
The key to this extention is Christian’s construction of a Lagrangian density that produces not
just the Schrodinger-Kuchar equation, but also the field equations of Strong NCG. In particu-
lar, all Lagrangian densities associated with NCG prior to Christian (1997) failed to recover the
generalized Poisson equation (6).
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there is not even a guarantee that the spacetime will admit time-like isometries in
the first place.'®

Finally, note that the fact that the NQG gravitational degrees of freedom are fully
quantized distinguishes NQG from semi-classical approaches to incorporating grav-
ity into RQFTs. These approaches attempt to include dynamical degrees of freedom
associated with the gravitational field into an RQFT by replacing the stress-energy
tensor in the Einstein equations with its expectation value with respect to quantized
matter fields. In such approaches, one treats gravity classically (the metric is not
quantized), but one quantizes the matter fields.

4 Intertheoretic Relations

NQG has suggested to Christian (1997, 2001) a novel route to formulating a fully
relativistic quantum theory of gravity (QG, hereafter); namely, by relativizing NQG.
This section reviews this strategy and expands on Christian’s picture of intertheo-
retic relations associated with it. In particular, the existence of NQFTs suggests
modifications to Christian’s picture, which open up additional routes to QG. Since
a full investigation of all such additional routes is beyond the scope of the current
essay, this section will content itself with an initial explorative expedition.

To begin, Christian (1997, pg. 4847; 2001, pg. 307) views NQG as a means to
fill a void in the “great dimensional monolith of physics”. This is a diagrammatic
representation of the relations between fundamental theories in physics. It takes
the form of a cube with axes representing the Newtonian gravitational constant G,
Planck’s constant /2, and the inverse speed of light 1/c (see Fig. 1).

The vertices of Christian’s cube are meant to represent the following theories:
classical mechanics (CM), special relativity (SR), general relativity (GR), Newton-
Cartan gravity (NCG), Newtonian quantum gravity (NQG), Galilei-invariant quan-
tum mechanics (GQM), relativistic quantum field theory (RQFT), and fully-relativistic
quantum gravity (QG). Schematically, these theories can be described by their
coordinates (G, h, 1/c) in monolith space. GR, for instance, may be given the
coordinates (1, 0, 1), indicating that G and 1/c are “turned on”, whereas / is “turned
off”. The cube thus entails that there are three distinct approaches to constructing
QG: quantizing GR (epitomized in “background independent” approaches like loop
quantum gravity); “turning on” gravity in an RQFT (epitomized in “background
dependent” approaches like string theory); and the approach, novel to Christian
(1997), of “relativizing” NQG.

16 As Ruetsche (2002, pg. 361) notes, one way practitioners have attempted to address this problem
is by becoming “algebraic imperialists” and elevating the status of the underlying abstract C*-
algebra over concrete Hilbert space realizations of it. (Doing so provides one access to notions
of “physical equivalence” weaker than unitary equivalence.) This strategy is adopted by Christian
(1997, pg. 4870) as a way of interpreting NQG, but this seems unnecessary, given that NQG does
not face the problem of privilege in the first place.
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Fig. 1 Christian’s (1997) dimensional monolith

To better understand Christian’s monolith, and ways of extending it, requires

understanding the nature of the limits that define the links in Fig. 1. Under closer
inspection, multiple problems arise.

(a)

(b)

First, the 1/c — O limit that “turns off” relativity might initially be thought
of as a contraction of the Poincaré group to obtain the Galilei group (see e.g.,
Bacry and Lévy-Leblond 1968). However, more than one such limit can be
taken for a given relativistic theory. Such limits depend in particular on the form
of the dynamical equations of the theory. For instance, there are two distinct
non-relativistic limits of the Maxwell equations (Holland and Brown 2003).
Moreover, the 1/c  — 0 link between GR and NCG cannot be described by
a group contraction. On the one hand, the Poincaré group is not the symmetry
group associated with GR (under one interpretation, the latter is Diff(M )). On
the other hand, as Sect. 3 indicates, there is more than one version of NCG,
depending on how the geometrization procedure is carried out. One of these
versions can indeed be shown to be the 1/¢c — 0 limit of GR, but this version
does not have the Galilei group as its symmetry group.'’

The G — 0 limit might be associated simply with setting G to zero in
the relevant dynamical equation (thus “turning off” gravity). But this would
make the link between GR and SR problematic. Setting G to zero in the
Einstein equations results in a Ricci-flat (R,, = 0) Lorentzian spacetime,
whereas Minkowski spacetime is spatiotemporally flat (R%,.; = 0). (Note that
Ricci-flatness only entails spatiotemporal flatness in conformally flat (4-dim)

17 This version can be referred to as “weak NCG” (Bain 2004, pg. 346). It differs from strong NCG
by dropping Condition (8). Bain (2004, pg. 365) identifies the symmetry group of weak NCG with
an extention of the Leibniz group, another classical spacetime symmetry group.
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spacetimes, in which the Weyl tensor vanishes.) This problematizes the other
G — 0 links as well, in so far as there can be Ricci-flat classical spacetimes
other than Neo-Newtonian spacetime, which, presumably, is the spacetime of
CM and GQM.

(c¢) Finally, one might describe the 7 — 0 limit as the inverse of quantization. But
just how the quantization procedure should be characterized is far from settled.
For instance, the quantization procedure that represents the link between SR
and RQFT is not unique: For a theory of a classical relativistic field with infi-
nite degrees of freedom, the failure of the Stone-von Neuman theorem entails
that there are uncountably many unitarily inequivalent representations of the
CCRs of the corresponding QFT. Furthermore, inequivalent quantizations are
not only associated with systems with infinite degrees of freedom; they also
arise for finite systems with topologically non-trivial state spaces.'® This prob-
lematizes the link between CM and GQM, as well as the link between NCG and
NQG (in the latter case, for topologically trivial gravitational fields, appeal to
the unique global time function in classical spacetimes solves the Problem of
Unique Quantization (viz., Privilege), as explained in Sect. 3).

In addition to these issues with the extant links in Christian’s diagram, there also
seems to be a deeper, structural problem. This problem manifests itself explicitly in
the links between NQG and GQM, and RQFT and GQM:

1. First, Christian’s NQG is an NQFT that incorporates gravity. Thus, one might
expect that turning off gravity would result in an NQFT sans gravity. One
might then wonder about the referent of “GQM”: Is it meant to include infinite-
dimensional non-relativistic quantum theories (viz, NQFTs) as well as finite-
dimensional non-relativistic quantum theories (viz, non-relativistic quantum
particle dynamics)? And moreover, it is not immediately clear that it should refer
to a Galieli-invariant theory.

2. A second related concern involves the link between RQFT and GQM. The
/¢ — 0 limit of an RQFT might be characterized by a contraction of the
Poincaré group to yield the Galilei group, with the qualifications mentioned
above. But this maneuver by itself does not take us from an RQFT to a the-
ory of GQM, if we allow that the latter includes theories with finite degrees of
freedom.

These concerns stem from the fact that NQFTs are missing from Christian’s dia-
gram. NQFTs may be thought of as appropriately qualified 1/c — 0 limits
of RQFTs. Now suppose we relabel Christian’s GQM as NQM (Non-relativistic
Quantum Mechanics) and restrict its referent to finite-dimensional non-relativistic
quantum theories of particle dynamics (i.e., finite theories of quantum particles
invariant under the symmetry group of a classical spacetime). Then, for N =

18 An example of such a system is a charged particle moving in a region external to an operating
solenoid. Quantization of this system produces the Aharonov-Bohm effect (see e.g., Belot 1998,
pg. 546).
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degrees of freedom, NQMs may be thought of, schematically, as the “inverse ther-
modynamic” limit N — 0 of NQFTs. This limit is intended to be applicable
to quantum theories independently of classical theories, and vise-versa (i.e., it is
intended to be “orthogonal” to the & — 0 limit). So, for instance, it should also
hold between a classical theory with an infinite number of degrees of freedom
(a non-relativistic classical field theory, for instance), and a classical theory with
finite degrees of freedom (a non-relativistic classical theory of particle dynamics,
for instance). Whether such a limit can be precisely defined is a matter for another
essay.'” What it informally suggests is that Christian’s cube should be replaced
by a 4-dim hypercube with an additional axis representing degrees of freedom N.
Suppressing the G-dimension, we then have the diagram in Fig. 2.

The vertices in Fig. 2 represent the following theories: non-relativistic classical
particle mechanics (NCM), relativistic classical particle mechanics (RCM), non-
relativistic classical field theory (NCFT), relativistic classical field theory (RCFT),
non-relativistic quantum particle mechanics (NQM), relativistic quantum particle
mechanics (RQM), non-relativistic quantum field theory (NQFT), and relativistic
quantum field theory (RQFT). The distinctions here are between theories (classical
and quantum, relativistic and non-relativistic) with infinite degrees of freedom, and
theories (classical and quantum, relativistic and non-relativistic) with finite degrees
of freedom.?”

Theories in hypermonolith space are coodinatized by 4-tuples (G, h, 1/c, N).
There are now four distinct approaches to constructing relativistic QG: quantiz-
ing the classical field theory of GR, with coordinates (1, 0, 1, 1); “turning on”
gravity in an RQFT with coordinates (0, 1, 1, 1); “relativizing” a non-relativistic
QFT of gravity (such as Christian’s NQG) with coordinates (1, 1, 0, 1); or “taking
the thermodynamic limit” of a relativistic quantum particle theory of gravity with
coordinates (1, 1, 1, 0). Just what the latter might involve requires further analysis.

As an example of how this investigation might proceed, consider how the
eight G — 0 links in the hypercube could be fleshed out (these all end in the
vertices/theories that appear in Fig. 2). They may be divided into links in which
gravity is turned off in a field theory, and links in which gravity is turned off in a
particle theory.

1. (Non-relativistic classical field theory of gravity (1, 0, 0, 1)) — NCFT.
An example of a theory with coordinates (1, 0, 0, 1) that produces an NCFT
in the G — 0 limit is asymptotically flat weak NCG. This is a version of

19 Landsman (2007) discusses a rigorous way of defining an N —> oo limit that holds between a
quantum system with N degrees of freedom and a classical system. The definition makes use of the
C *-algebra formulation of quantum and classical systems. This formalism also admits a rigorous
definition of an # — 0 limit, and Landsman notes that the former limit is a special case of the
latter.

20 For simplicity’s sake, the former are identified as field theories and the latter as particle theories.
This ignores field-theoretic systems on lattices (with finite degrees of freedom), as well as particle
systems with infinitely many particles; and it also glosses over conceptual issues concerning the
nature of a particle vis-a-vis a field; but nothing in the following hangs on this simplifying means
of expediency.
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Fig. 2 Relations between theories in the absence of gravity

NCG that drops condition (9) in Sect. 3 above, and imposes asymptotic spa-
tial flatness to enforce Galilei-invariance. Bain (2004, pg. 358) indicates that it is
empirically equivalent to a version of (non-geometricized) Newtonian gravity
in Neo-Newtonian spacetime in which an “island universe” boundary condi-
tion is imposed (namely, ¢ — 0 at spatial infinity). Hence turning off gravity
in asymptotically flat weak NCG is equivalent to turning off gravity in (non-
geometricized) Newtonian gravity in Neo-Newtonian spacetime under the island
universe assumption, and this evidently yields a Galilei-invariant classical field
theory in Neo-Newtonian spacetime.

2. (RCFT of gravity (1, 0, 1, 1)) — RCFT.
GR is a theory with coordinates (1, 0, 1, 1). Turning off gravity in GR results in
a field theory in a Ricci-flat Lorentzian spacetime (providing non-gravitational
fields are present). This does not by itself guarantee the theory is Poincaré-
invariant. To assure coherence here, one might additionally impose the require-
ment of conformal flatness (although whether this can be motivated on physical
or other grounds remains to be seen). Alternatively, one might simply expand
one’s concept of a relativistic theory to include theories invariant under the
symmetries of Lorentzian spacetimes in general.

3. (NQFT of gravity (1, 1, 0, 1)) - NQFT.
NQG is an NQFT of gravity in strong Newton-Cartan spacetime. Evidently, turn-
ing off gravity yields an NQFT in a Ricci-flat classical spacetime satisfying
conditions (8) and (9).

4. (RQFT of gravity (1, 1, 1, 1)) - RQFT.
The expectation here is that the full-blown relativistic theory of quantum gravity
will reproduce a relativistic quantum field theory in the limit of no gravity (just
as it should produce GR in the classical limit).
The remaining four links involve turning off gravity in a particle theory:
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5. (Non-relativistic classical particle theory of gravity (1, 0, 0, 0)) — NCM.
6. (Non-relativistic quantum particle theory of gravity (1, 1, 0, 0)) - RCM.
7. (Relativistic classical particle theory of gravity (1, 0, 1, 0)) — NQM.
8. (Relativistic quantum particle theory of gravity (1, 1, 1, 0)) — RQM.

Whether examples of all the theories on the left hand side in links 5-8 can be iden-
tified is best left to another essay, with particular interest directed at an example of
Link 8. Such an example, together with an appropriately formulated thermodynamic
limit that links field theories with particle theories, would open up a fourth route to
the elusive fully relativistic theory of quantum gravity.

5 Conclusion

This essay has used the distinction between Minkowski spacetime and classical
spacetimes as a tool to probe two contemporary issues in philosophy of quan-
tum field theory; namely, the debate over particle interpretations of RQFTs, and
the status of approaches to a fully relativistic quantum theory of gravity. First, the
distinction between Minkowski spacetime and classical spacetimes suggested a dis-
tinction between RQFTs and NQFTs which in turn suggested that the concept of
particle that a Received View adopts in arguing against particle interpretations of
RQFTs is motivated by a non-relativistic notion of absolute time. Second, the exis-
tence of NQFTs, and in particular, consistent NQFTs of gravity, also suggested that
routes to fully relativistic quantum gravity are more varied than the current literature
suggests.

Finally, a general moral can be drawn. The existence of NQFT's suggests that the
distinction between relativistic and non-relativistic theories should not be couched
in terms of Poincaré-invariance vs. Galilei-invariance. On the one hand, as is
already evident in GR, a relativistic theory need not be Poincaré-invariant. On the
other hand, as is evident in NQFTs, a non-relativistic theory need not be Galilei-
invariant. The discussion in Sect. 4 of this essay suggests that a more appropriate
distinction should be based on theories that are invariant under the symmetries of
a Lorentzian spacetime vs. theories that are invariant under the symmetries of a
classical spacetime.
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