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Quantum field theories in classical spacetimes and particles
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a b s t r a c t

According to a Received View, relativistic quantum field theories (RQFTs) do not admit particle

interpretations. This view requires that particles be localizable and countable, and that these characteristics

be given mathematical expression in the forms of local and unique total number operators. Various results

(the Reeh-Schlieder theorem, the Unruh Effect, Haag’s theorem) then indicate that formulations of RQFTs do

not support such operators. These results, however, do not hold for non-relativistic QFTs. I argue that this is

due to the absolute structure of the classical spacetimes associated with such theories. This suggests that

the intuitions that underlie the Received View’s choice of mathematical representations of localizability and

countability are non-relativistic. Thus, to the extent that such intuitions are inappropriate in the relativistic

context, they should be abandoned when it comes to interpreting RQFTs.
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1. Introduction

According to a Received View in the philosophy of quantum field
theory, relativistic quantum field theories (RQFTs) do not admit
particle interpretations (Arageorgis, Earman, & Ruetsche, 2003; Clifton
& Halvorson, 2001; Fraser, 2006, 2008; Halvorson & Clifton, 2002;
Malament, 1996). This view requires that particles be localizable and
countable, and that these characteristics be given mathematical
expression in the forms of local and unique total number operators.
But for RQFTs, the Reeh-Schlieder theorem entails local number
operators do not exist. And while a total number operator is
guaranteed to exist for non-interacting RQFTs, its uniqueness has
been called into question. Moreover, Haag’s theorem suggests total
number operators for interacting RQFTs do not exist. Thus, since the
mathematical representations of particles are not defined in these
theories, these theories cannot be said to be about particles.

This essay argues against the Received View. I will claim that the
Received View’s concept of particle is informed by non-relativistic
representations of localizability and countability. The way I will
argue for this is by first making a distinction between relativistic
QFTs and non-relativistic QFTs in terms of spacetime structure. I will
then argue that it is the presence of absolute spacetime structure
associated with non-relativistic QFTs that allows them to support
the Received View’s concept of particle, whereas it is the lack of this
absolute structure in RQFTs that is the reason why these theories do
not support the Received View’s concept of particle. This suggests

that the intuitions that underlie the Received View’s treatment of
particles are non-relativistic, and to the extent that such intuitions
are inappropriate in the relativistic context, they should be
abandoned when it comes to interpreting RQFTs.

Section 2 begins by summarizing the Received View’s concept of
particle and the argument it mounts against particle interpretations
of RQFTs. Section 3 makes the distinction between RQFTs and NQFTs
in terms of the spacetime symmetries they admit. Section 4 makes
this distinction more precise by comparing the Wightman axioms
for RQFTs with the Lévy-Leblond axioms for a particular family of
NQFTs; namely, Galilei-invariant QFTs (GQFTs). This comparison
suggests extensions of the Lévy-Leblond axioms to include NQFTs in
general. The axiomatic formalism gives the Received View a rigorous
way to define its concept of particle, and a rigorous way to argue
against particle interpretations of RQFTs. Section 5 reviews the
technical details of this argument involving the Reeh-Schlieder
theorem, the Unruh Effect, and Haag’s theorem. Here I mount my
response by indicating the extent to which the absolute structure
of classical spacetimes allows NQFTs to avoid the associated
conceptual problems. I conclude by considering options that
interpreters of quantum field theory are faced with, given that my
argument against the Received View goes through.

2. The Received View

According to the Received View, there are two essential
characteristics of a particle. The first is localizability. Of any
particle, we should be able to say that it is Here, Now, as opposed
to There, Now. The Received View translates this intuition into
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mathematics by means of the requirement that any QFT that talks
about particles must admit a Fock space formulation in which
local number operators occur. Intuitively, if our physical system
consists of eight particles distributed over space, so that, for
instance, three are in region R and five are in region Ru, then the
mathematical formulation of the theory that describes this
system must admit number operators associated with each region
of space, such that, when the number operator associated with
region R acts on the state of the system, it tells you how many
particles are present in that region. And similarly for the number
operator associated with region Ru, and all other regions of space.
Schematically,

NR9stateS¼ 39stateS, NRu9stateS¼ 59stateS:

The second essential characteristic of a particle, according to
the Received View, is what might be called countability. If a
physical system consists of particles, it should be possible to begin
with two Here, Now, add one Here, Now, and obtain three Here,
Now. The Received View translates this intuition into mathe-
matics by means of the requirement that any QFT that talks about
particles must admit a unique Fock space formulation in which a
total number operator occurs. Intuitively, a total number operator
should be definable as the sum of all the local number operators
associated with all regions of space. When you act with the total
number operator on the state of a system of eight particles, it
should tell you that there are eight, and only eight, particles
present. Schematically,

N9stateS¼
Z

NRd3x9stateS¼ 89stateS:

The Received View then claims that RQFTs do not admit
particle interpretations. It supports this claim by pointing to the
following results:

(a) The Reeh-Schlieder theorem entails that there are no local
number operators in RQFTs.

(b) The Unruh Effect indicates that there is no unique total
number operator in non-interacting RQFTs.

(c) Haag’s theorem entails that there are no total number
operators in interacting RQFTs.

Thus, again, since the mathematical representations of parti-
cles are not supported in the formulations of RQFTs, these theories
cannot be said to be about particles. My argument against the
Received View will be based on the following claim:

The existence of an absolute temporal metric is a necessary
condition for the existence of local number operators and a
unique total number operator.

The moral I will draw is that the Received View’s concept of
particle is informed by non-relativistic representations of localiz-
ability and countability associated with an absolute concept of
time. To support this moral, I’ll first consider the distinction
between RQFTs and NQFTs in terms of spacetime structure.

3. Classical spacetimes and NQFTs

By an RQFT I will mean a quantum field theory invariant under
the actions of the Poincaré group, the symmetry group of
Minkowski spacetime. By an NQFT, I will mean a quantum field
theory invariant under the actions of the symmetry group of a
classical spacetime. A classical spacetime is a spacetime that
minimally admits absolute spatial and temporal metrics that

satisfy orthogonality and compatibility constraints. More pre-
cisely, a classical spacetime may be represented by a tuple (M, hab,
ta, ra), where M is a differentiable manifold, hab is a (0, 1, 1, 1)
symmetric tensor field on M identified as a spatial metric; ta is a
covariant vector field on M which induces a degenerate temporal
metric tab¼tatb with signature (1, 0, 0, 0); and ra is a smooth
derivative operator associated with a (non-unique) connection on
M and compatible with the metrics in the sense rch

ab
¼ratb¼0.

The spatial and temporal metrics are also required to be
orthogonal in the sense habtb¼0 (Bain, 2004, pp. 347–348). These
conditions allow M to be decomposed into instantaneous three-
dimensional spacelike hypersurfaces parameterized by a global
time function t. In particular, they entail that the time interval
between any two events is invariant, as well as the spatial
distance between simultaneous events:

t2�t1 ¼ const:, ð1Þ

9x2�x19¼ const:, if t2 ¼ t1: ð2Þ

As Lévy-Leblond (1971, pp. 225) indicates, the most general
linear transformations that preserve (1) and (2) are the symme-
tries of Neo-Newtonian spacetime, and these form the Galilei
group. But if linearity is dropped, larger symmetry groups are
allowed. The most general classical spacetime symmetry group is
generated by vector fields xa that Lie annihilate hab and ta, subject
to the orthogonality and compatibility conditions. Symbolically,
we require £xhab

¼£xta¼0, where £x is the Lie derivative associated
with xa. Intuitively, this means that the transformations between
reference frames defined by the integral curves of the vector fields
xa preserve the structure of the absolute spatial and temporal
metrics. Additional constraints may be imposed on the curvature
tensor Ra

bcd associated with the derivative operator ra, compa-
tible with the relations (1) and (2). Two examples include
Neo-Newtonian spacetime, characterized by Ra

bcd¼0, encoding
spatiotemporal flatness; and Maxwellian spacetime, charac-
terized by Rab

cd¼0, encoding a rotation standard (Bain, 2004,
pp. 348–352). The symmetries of Neo-Newtonian spacetime form
the 10-parameter Galilei group (Gal) generated by vector fields xa

that Lie annihilate the spatial and temporal metrics, and the
connection. Symbolically, £xhab ¼ £xta ¼ £xGa

bc ¼ 0 (where Ga
bc is

the connection defined by ra). In coordinate form

x-xu¼ Rxþvtþa ðGalÞ

t-tu¼ tþb

where R is a constant orthogonal rotation matrix, v, aAR3 are
velocity boost and spatial translation vectors, and bAR is a time
translation. The symmetries of Maxwellian spacetime are given
by the infinite dimensional Maxwell group (Max) generated by
vector fields xa that Lie annihilate the spatial and temporal
metrics and the rotational part of the connection. Symbolically,
£xhab ¼ £xta ¼ £xGa

bc ¼ 0 (where Ga
bc ¼ hbdGa

bc). In coordinate form

x-xu¼ RxþcðtÞ ðMaxÞ

t-tu¼ tþb

where R is a constant orthogonal rotation matrix, cðtÞAR3 a time-
dependent spatial boost vector, and bAR a time translation.

Thus, just as there are different types of classical spacetimes,
there are different types of NQFTs. A Galilei-invariant Quantum
Field Theory (GQFT), for instance, is an NQFT invariant under (the
central extension of) Gal (see, e.g., Lévy-Leblond, 1967), and an
Maxwell-invariant Quantum Field Theory (MQFT) is an NQFT
invariant under Max. An example of the latter is Christian’s (1997)
Newtonian quantum gravity. This is an example of a QFT
(technically invariant under an extension of Max; see, e.g., Bain,
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2004) in a curved classical spacetime; namely, Newton–Cartan
spacetime.

In comparison, an RQFT is a QFT invariant under the actions of
the Poincaré group, the isometry group of Minkowski spacetime.
The Poincaré group is generated by vector fields that Lie
annihilate the Minkowski metric; symbolically, £xZab

¼0, and in
coordinate form

xm-xmu ¼Lm
v xvþdm ðPoincareuÞ

where Lm
n ASLð2, CÞ is a pure Lorentz boost and dmAR4 a

spacetime translation.

4. Axioms for QFTs

The distinctions between RQFTs and NQFTs can be made even
more precise by means of axiomatic formulations. Table 1
compares the Wightman axioms for RQFTs with the Lévy-Leblond
axioms for GQFTs.1

In general, the areas where the axioms differ are exactly those
areas that involve spacetime structure. The most obvious
difference in this regard is Axiom 2 of which more will be said
in the following subsection. Axiom 3, Local Commutativity,
encodes the requirement that fields (or field quantities) asso-
ciated with causally separated regions of spacetime should be
independent of each other (also referred to as ‘‘micro-causality’’).

The way ’’causal separation’’ gets fleshed out depends on the
structure of the associated spacetime; so one would expect Axiom
3 to be different in the relativistic and non-relativistic contexts.
Note that Non-Relativistic Local Commutativity only requires the
existence of absolute spatial and temporal metrics (to guarantee
the relations encoded in (1) and (2)), so it will be common to all
formulations of NQFTs, and not just GQFTs in particular.

The 4th axiom describes the vacuum state: in the field-
theoretic context, this is the state of zero energy. The last property
of this state, the Spectrum Condition 4(iii), involves a restriction on
the energies that other states of the theory can possess. In
particular, W4(iii) guarantees positivity of energy in Lorentz
frames, and its counterpart L4(iii) encodes the fact that, in non-
relativistic mechanics, the potential energy of a single-particle
state is a matter of convention. Technically, this is encoded in the
fact that irreducible representations of the extended Galilei group
(see later) that differ on their internal energies are projectively
equivalent (Lévy-Leblond, 1971, pp. 277). Another feature of the
extended Galilei group, to be explained below, requires the
restriction to mass sectors in L4. Thus in the GQFT context,
the constraints imposed by L4 can be explained by appeal to the
structure of the spacetime symmetry group. While one would not
expect this type of explanation to be available in the context of
other classical spacetime symmetry groups, nevertheless it might
be claimed that the constraints mandated by L4 should be
imposed as a condition of physicality on all NQFTs, in so far as all
such theories view mass as an absolute quantity distinct from
energy.2

Thus to move from GQFTs to NQFTs, arguably, requires
minimal modification of the Lévy-Leblond axioms. One simply
replaces L2 and L4(i) with invariance under the appropriate
classical spacetime symmetry group.

4.1. Irreducible representations of spacetime symmetry groups

Axiom 2 is perhaps the most significant from the point of view
of spacetime structure. To unpack the significance of invariance
under a spacetime symmetry group, first recall that a representa-

tion of a group G on a vector space V is a map U that takes
elements of G to linear transformations on V and that preserves
the group product. Elements of V are referred to as carriers of the
representation of G. An irreducible representation (IRREP) of G on V

is one in there is no subspace of V invariant under the action of the
image of U, other than the zero subspace or V itself. Intuitively, an
IRREP cannot be ’’divided into parts’’. One can show that an IRREP
is labeled uniquely by the eigenvalues of the Casimir invariants of
G’s Lie algebra, i.e., those elements of the Lie algebra that
commute with all other elements.

In the context of QFTs, since quantum states are physically
distinct up to phase, one requires that the states be invariant
under a projective representation of a spacetime symmetry group,
i.e., a representation that is unique up to a phase. In the relativistic
case (see, e.g., Weinberg, 1995, Chapter 2) one constructs
projective IRREPs of the restricted Poincaré group, call it P. These
correspond to non-projective IRREPs of the universal covering of
P (technically obtained by replacing the proper Lorentz subgroup
SO(3, 1) of P with its universal covering group SLð2, CÞ). Such
IRREPs are uniquely labeled by their mass and spin, these being

Table 1
Axioms for QFTs.

RQFT Axioms GQFT Axioms

W1. Fields. The fundamental

dynamical variables of the theory

are local field operators that act on a

Hilbert space H of states.

L1. Fields. The fundamental dynamical

variables of the theory are local field

operators that act on a Hilbert spaceH
of states.

W2. Poincaré-Invariance. H admits a

unitary projective representation of

the restricted Poincaré group, under

which the fields transform

appropriately.a

L2. Galilei-Invariance. H admits a

unitary projective representation of

the Galilei group, under which the

fields transform appropriately.a

W3. Relativistic Local Commutativity.

The fields commute (or anti-

commute) at spacelike separations.

L3. Non-relativistic Local
Commutativity. At equal times, the

fields commute/anti-commute for

non-zero spatial separation.

W4. Vacuum State. There exists a

vector 90S in H satisfying the

following conditions:

(i) 90S is Poincaré-invariant.

(Invariance)

(ii) 90S is cyclic for H. (Cyclicity)

(iii) The spectrum of the 4-momentum

operator on the complement of 90S
is confined to the forward

lightcone. (Spectrum Condition)

L4. Vacuum State. There exists a

vector 90S in H satisfying the

following conditions:

(i) 90S is Galilei-invariant. (Invariance)

(ii) 90S is cyclic for H within a given

mass sector. (Cyclicity)

(iii) The spectrum of the internal energy

operator on the complement of 90S
and within a given mass sector is

bounded from below. (Spectrum

Condition)

a For the relativistic case, see Araki (1999, pp. 103). For the Galilei case, see

Lévy-Leblond (1967, pp. 163).

1 I follow Araki’s (1999, pp. 103–104) treatment of the Wightman axioms and

adapt it, for the sake of comparison, to the treatment of the Lévy-Leblond axioms

given in Lévy-Leblond (1967). In W1 and L1, the field operators should more

precisely be defined as operator-valued distributions, and accommodations should

be made for unbounded operators. These details will be glossed over in the

following. Furthermore, in both cases, an additional axiom of asymptotic

completeness, important for scattering theory, will not be needed in this essay.

Finally, I consider only the ma0 case for simplicity.

2 Cyclicity of the vacuum, 4(ii), is the requirement that acting on the vacuum

with operators defined on H (W4ii), or within a mass sector of H (L4ii) yields all

states in H (resp. within the mass sector). In the axiomatic treatment, cyclicity

guarantees that the fields form an irreducible representation of the equal time

canonical commutation relations (Streater and Wightman, 1964/1989, pp. 101).

This is a necessary condition for the construction of a Fock space representation, to

be discussed later.
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the eigenvalues of the Casimir invariants PmPm and SmSm, Sm¼

�1/2emnrsJnrPs, of the Poincaré Lie algebra (generated by infinite-
simal spacetime-translations Pm and Lorentz boosts Jmn). Pm and Sm
admit representations in H as the 4-momentum and spin operators.

In the Gal-invariant case, projective IRREPs of Gal correspond
to non-projective IRREPs of the extended Galilei group ~Gal.3 These
are uniquely labeled by their mass, internal energy, and spin,
these being the eigenvalues of the Casimir invariants M,
U¼H�(1/2m)P2, and S2

¼(J�(1/m)K�P)2 of the ~Gal Lie algebra
(generated by infinitesimal time-translations H, space-transla-
tions P, rotations J, Galilei boosts K, and the one-parameter phase
group M). M, U, and S admit representations in H as the mass,
internal energy, and spin operators, respectively (Lévy-Leblond,
1967, pp. 161, 163).

Note that in the GQFT case, the symmetry group for the states
( ~Gal) is distinct from the spacetime symmetry group (Gal),
whereas this is not the case in the RQFT case. One notable
consequence of this is that it gives rise to a superselection rule for
GQFTs that prohibits superpositions of states with different
masses (Lévy-Leblond, 1967, pp. 160). Briefly, ~Gal-invariant states
are physically distinct up to phase, and this phase depends
explicitly on the mass of the state (technically, to obtain ~Gal, one
adds to Gal a central extension labeled by mass eigenvalues). Thus
a transformation that only changes the phase of a state should not
change the state’s physical properties; and this will not be the
case if one allows transformations between states with different
masses.

Now so far in the axiomatic formulation, talk has only been
about fields: Axiom 1, in particular, explicitly states that the
fundamental variables of the theory represent fields. But there is a
standard way of going from this ‘‘field-talk’’ to ‘‘particle-talk’’. This
involves the construction of a Fock space.

4.2. From IRREPs to particles via Fock space

The carriers of projective IRREPs of a spacetime symmetry
group are what Wigner identified as representing the states of
‘‘elementary systems’’. To identify these as single-particle states
requires the construction of a Fock space.4 The following briefly
reviews four important steps in this process that are relevant to
the Received View’s concept of particle.

Step 1: Hilbert space of states. The first step involves the
construction of a Hilbert space of states. Having obtained the
IRREPs of a given spacetime symmetry group, one restricts
attention to those whose carriers represent physically possible
states. This involves restricting the ranges of the eigenvalues of
the Casimir operators to physically possible values. In the
relativistic case, for instance, one restricts attention to IRREPs
labeled by m¼0, for massless systems, and m40, Pm40, for
massive systems with positive energies. In the ~Gal-invariant case,
one restricts attention to IRREPS for which the internal energy U is
bounded from below.5 (These restrictions are enforced by the
Spectrum Condition.) Under the assumption that the carriers of
these ‘‘physical’’ IRREPs represent free particle states, one then
forms a single-particle Hilbert space H as their span. (Here and
below, for the ~Gal-invariant case, I will assume that the mass

superselection rule onH and its constructs has been appropriately
imposed.) This requires, in particular, the specification of a
positive-definite inner product on the carrying space. This can
be done without problem in the context of the Poincaré and
extended Galilei groups, but may not be so easy in spacetimes
that admit different symmetries (or none at all). More on this
issue is given in Section 5.2 later.

Step 2: Fock space. One then identifies n-particle states as
elements of the symmetrized or anti-symmetrized (depending on
the spin) tensor product HðnÞ � �nH, where Hð0Þ �C for all spins.
A Fock space F can now be defined as the direct sum of all such
multiparticle state spaces: F ¼ �1n ¼ 0 H

ðnÞ,
Step 3: Creation/annihilation operators. Momentum space

creation and annihilation operators ay(q), a(q) are now defined
by their actions on n-particle states and on the vacuum (no-
particle) state 90S:

ayðqÞ9q1. . .qnS� 9qq1. . .qnS, ayðq1Þ. . .a
yðqnÞ90S� 9q1. . .qnS,

aðqÞ9q1. . .qnS�
Xn

r ¼ 1
ð71Þrþ1dðq�qrÞ9q1. . .qr�1qrþ1. . .qnS,

aðqÞ90S� 0,

where the 71 sign depends on the spin, and q labels the
appropriate Casimir invariants. These definitions guarantee that
the creation and annihilation operators satisfy the canonical (anti-
)commutation relations (CCRs)

½ayðquÞ,ayðqÞ�7 ¼ 0, ½aðquÞ,aðqÞ�7 ¼ 0, ½aðquÞ,ayðqÞ�7 ¼ dðqu�qÞ,

where 7 indicates anti-commutator/commutator, depending on
the spin. In non-axiomatic treatments, one now introduces
configuration space field operators as Fourier transformations
of ay(q), a(q). Schematically, fþ‘ ðx,tÞ ¼ F:T:½ayðp,sÞ�, f�‘ ðx,tÞ ¼
F:T:½ayðp,sÞ�. The explicit form ultimately depends on the
representation of the spacetime symmetry group that acts on
the fields (here ‘ labels field components, p is the 3-momentum,
and s is the spin). These configuration space fields inherit the CCR
structure of their momentum space counterparts. At this point, in
non-axiomatic treatments, the micro-causality condition is
imposed. One takes linear combinations of the configuration
space fields f‘ðx,tÞ ¼ kfþ‘ ðx,tÞþlf�‘ ðx,tÞ and requires that they
satisfy local commutativity

½fl
y
ðx,tÞ,flðxu,tuÞ�7 ¼ 0, for ðx,tÞ and ðxu,tuÞ causally separated,

where, again, causal separation is cashed out in terms of the
specific spacetime. This micro-causality constraint, together with
the representation of the spacetime symmetry group under
which the fields transform, uniquely determines the coefficients
k, l, and the fields fþ‘ ðx, tÞ, f‘ðx, tÞ can now be said to be local in
the sense of being independent of each other when they are
causally separated.

Step 4: Total Number Operator. With this machinery in place, one
can now define a number operator N(q)¼ay(q)a(q) such that
N(q)(ay(q)n90S)¼n(ay(q)n90S). A total number operator that figures
into the Received View’s notion of particle may then be defined by
N¼

R
N(q)d3q. To fully justify identifying the states that it acts on as

multiparticle states, one can observe that the eigenvectors of N are
also eigenvectors of the Hamiltonian operator, which may be written
as H¼

R
EqN(q)d3q (where Eq is the energy of the qth state, the explicit

form of which will depend on the spacetime symmetry group). This
suggests that these eigenvectors represent states with a definite
number of quanta with energies that are typical of that number of
particles (Fraser, 2008, pp. 845–846).

Note that such a Fock space construction is only well-defined,
in the relativistic context, for the case of a non-interacting
quantum field theory. Within this context, it gives the Received
View a rigorous way to define its notion of particle. And it

3 More precisely, projective representations of Gal correspond to non-

projective representations of the central extension of the universal covering of

Gal (Lévy-Leblond, 1971, pp. 252). The universal covering of Gal is obtained by

replacing its rotation subgroup SO(3) with its universal covering group SU(2).
4 See, e.g., Weinberg (1995, Chapters 2–5) for details for the relativistic case.
5 In the Lévy-Leblond axioms for GQFTs there are no restrictions on the mass

spectrum. In particular, states with opposite mass eigenvalues are interpreted as

particle-antiparticle pairs to allow for particle production processes (Lévy-

Leblond, 1967, pp. 162).
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also gives it a rigorous way to implement its argument against
particles.

5. Implications: no particles?

We now have the machinery in place to flesh out some of the
details of the Received View’s argument against particle inter-
pretations of RQFTs. This argument splits into three parts, dealing
the Reeh-Schlieder theorem, the Unruh Effect, and Haag’s
theorem.

5.1. The Reeh-Schlieder theorem and local number operators

The first part of the Received View’s argument involves the
Reeh-Schielder theorem and local number operators. One can
show that the Spectrum Condition, in either its relativistic (W4iii)
or non-relativistic (L4iii) form, entails that the vacuum state is
cyclic for any local (von Neumann) algebra of operators RðOÞ
associated with a spatiotemporal region O of spacetime.6 This
means that the set of states {f90S; fARðOÞ} generated by acting
on the vacuum with any member of RðOÞ is dense in H.7 The
relativistic case was proven by Reeh and Schlieder in 1961 and is
referred to as the Reeh-Schlieder theorem (see, e.g., Streater and
Wightman, 1964/1989, pp. 138), while Requardt (1982) demon-
strated the non-relativistic case. To draw implications of this
result for local number operators, one first notes the following
general result in the theory of operator algebras:

General result (see, e.g., Bratelli and Robinson, 1987, pp. 85).
Any cyclic vector for a von Neumann algebra R is separating
for its commutant Ru.

The commutant Ru consists of operators that commute with all
operators in R. Now Relativistic Local Commutativity (W3) entails
that RðOÞu¼RðOuÞ, where Ou is the causal complement of O,
defined as the set of all points causally separated (in this context,
spacelike separated) from points in O. In words: the commutant
of a local algebra associated with a spacetime region O of
Minkowski spacetime is the local algebra associated with the
causal complement Ou of O. Thus, provided the causal comple-
ment of any region is non-empty, the general result entails that
the vacuum is separating for any local algebra in Minkowski
spacetime. We thus have the following Separating Corollary:

Separating Corollary (Streater and Wightman, 1964/1989, pp. 139).
Suppose (i) the vacuum is cyclic for RðOÞ; (ii) relativistic local
commutativity (W3) holds; and (iii) the causal complement Ou
is non-empty. Then the vacuum is separating for RðOÞ.

Separability of the vacuum means that, given any bounded
region O of Minkowski spacetime, and any operator f associated
with O, if f annihilates the vacuum, f90S¼0, then it is identically
zero, f¼0. Now, for any bounded region O of Minkowski
spacetime, Ou is non-empty. Hence, the upshot of the Separating
Corollary is that no bounded region of Minkowski spacetime can
contain annihilation operators. These annihilate the vacuum, but

cannot be identically zero, since they transform n-particle states
into (n�1)-particle states. Thus no number operator can be
associated with O. Such a local number operator would act on
states associated with O and return the number of particles
present in O. Thus local number operators do not exist for RQFTs.

Does this result hold in the non-relativistic context?
In particular, does the Separating Corollary hold in the
non-relativistic context? First note that Non-relativistic Local
Commutativity (L3) only applies to spatial regions of classical
spacetimes, i.e., regions with zero temporal extent. Thus we
should be a bit more explicit about the type of region we associate
with a local algebra. In particular, one can consider two options:

(1) Associate local algebras with spatiotemporal regions, i.e.,
regions with non-zero spatial and temporal extent.

(2) Associate local algebras with spatial regions, i.e., regions with
zero temporal extent.

In the relativistic context, this is a distinction that makes no
difference. One can show that the local algebra associated with a
spatial region O in Minkowski spacetime is the same as the local
algebra associated with the domain of dependence DðOÞ of O
(Horuzhy, 1990, pp. 40–41, Theorem 1.3.14).8 The latter, which
consists of points p for which any (inextendible) causal worldline
through p intersects O, typically is a spatiotemporal region. On
the other hand, in the non-relativistic context, the distinction
between (1) and (2) is non-trivial. However, in both cases, one can
show that the Separating Corollary cannot be derived.

To see this, first suppose that we adopt (1) for NQFTs. Then
Requardt’s (1982) proof of vacuum cyclicity goes through.9

However, under reasonable assumptions, the causal complement
of a spatiotemporal region of a classical spacetime is typically the
empty set (barring topological mutants). In other words, all points
outside a spatiotemporal region of a classical spacetime are
typically causally connectible to some subset of points within that
region. This assumes that the causal complement of a spatiotem-
poral region O of a classical spacetime consists of all points with
zero temporal separation and non-zero spatial separation from all
points in O, which in turn assumes that infinite causal propaga-
tions are prohibited, but allows that finite causal propagations
have no upper bound. These assumptions seem reasonable in so
far as they follow from the requirement that simultaneous
measurements be causally independent, which, arguably, moti-
vates Local Commutativity in the non-relativistic context. The
upshot is that Condition (iii) for the Separating Corollary is not
met, and the vacuum is not separating.

Now suppose we adopt Option (2) and associate local algebras
of operators with spatial regions of classical spacetimes. Then
Requardt’s (1982) proof of cyclicity fails, and Condition (i) of the
Separating Corollary is not met.

Thus, the non-relativistic vacuum is not cyclic for spatial local
algebras, and hence not separating; and while it is cyclic for
spatiotemporal local algebras, it is not separating. Now one can
argue that both of these results are due to the spatiotemporal
structure of classical spacetimes; in particular, to the existence of
an absolute temporal metric. First, it is the simultaneity structure

6 In the axiomatic treatment of QFTs, one can associate to every bounded

region O of spacetime, the polynomial algebra of operators, bounded and

unbounded, smeared with test functions with support in O. This algebra is

supposed to provide candidates for local measurements confined to O. In the

following I will restrict attention to von Neumann algebras consisting of all such

bounded operators.
7 This is to be distinguished from the Cyclicity Axiom 4(ii), which is the

requirement that the vacuum state be cyclic for the ’’global’’ algebra R; i.e., the von

Neumann algebra of all operators defined on H, as opposed to a local algebra RðOÞ
of operators defined only on test functions with support in O.

8 Technically, this assumes a particular way of identifying spatial regions with

subalgebras of operators on H, namely, what Halvorson (2001, pg. 117) calls the

standard localization scheme, which assigns to a spatial region S, the relevant

Cauchy data with support in S (intuitively, this Cauchy data is in 1-1

correspondence with those local field observables, viewed as solutions to the

relevant field equations, with support in S). Alternative localization schemes, such

as Newton–Wigner, will not be a concern of this essay.
9 In general, cyclicity for spatiotemporal local algebras, relativistic or non-

relativistic, is a property of any state that is analytic in the energy.
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associated with an absolute temporal metric that trivializes the
causal complement of a spatiotemporal region of a classical
spacetime; and this, in turn, prevents the non-relativistic vacuum
from being separating for local algebras associated with such
regions. Second, in brief, proofs of the cyclicity of the relativistic
vacuum for spatial local algebras are based on the anti-local
property, for spatial regions, of differential operators associated
with relativistic field equations (Halvorson, 2001, pp. 118–119,
reviews the Klein-Gordon case). This anti-local property for
spatial regions is in part a consequence of the fact that relativistic
field equations are hyperbolic, reflecting the Lorentzian metrics of
relativistic spacetimes. In contrast, the differential operators
associated with non-relativistic field equations are parabolic,
reflecting the degenerate metrics in classical spacetimes; in
particular, these spacetimes contain separate temporal metrics.10

It is this feature that prevents parabolic differential operators
from being anti-local for spatial regions, and thus is the cyclicity
of the non-relativistic vacuum for spatial local algebras blocked.
In the remaining subsection, I will attempt to substantiate this
last claim.

Anti-locality, cyclicity, and classical spacetimes

An operator is said to be anti-local for a given region of
spacetime just when a function and its transform under the
operator can vanish in that region only if the function is
identically zero (Segal and Goodman, 1965, pp. 630). The
implication is that such an anti-local operator will transform a
(non-zero) function with support entirely within a given region of
spacetime into a function with ‘‘infinite tails’’. A series of results
indicates that certain forms of elliptic differential operators are
anti-local for Euclidean, or, in general, Riemannian spaces (Bär,
2000; Segal and Goodman, 1965; Strohmaier, 1999, 2000; Verch,
1993). These results are relevant to the study of RQFTs and NQFTs
for two reasons. First, the elliptic operators in question are the
‘‘spatial’’ parts of the hyperbolic and parabolic differential
operators that figure into relativistic and non-relativistic field
equations. Hence anti-locality results derived for such elliptic
operators may subsequently infect the full ‘‘spatiotemporal’’
versions of the hyperbolic and parabolic operators of which they
are a part. This is, in fact, the case for the hyperbolic operators
associated with relativistic field equations, and this has led to a
literature on No-Go results for the existence of localized single-
particle states and position operators in RQFTs (see, e.g., Wallace,
2001, and references therein). This literature should be made
distinct from the Received View’s argument against particles. The
latter argument, as I see it, is meant to be based on the stronger
No-Go claim entailed by the Separating Corollary, namely that
local number operators do not exist for RQFTs. The Received View
is thus willing to allow that a coherent notion of particles may
obtain even in situations that prohibit localized states, or position
operators (see, e.g., Halvorson and Clifton, 2002, pp. 17–18). In
particular, the assumption is that local number operators provide
a means to talk about the particle content in a region of spacetime
in the absence of position operators and/or localized single-
particle states.

This leads to the second reason anti-locality results are
relevant to the study of RQFTs and NQFTs, namely one can

demonstrate that anti-locality of the ‘‘spatial’’ part of certain
relativistic differential operators entails the associated vacuum
state has the Reeh-Schlieder property (i.e., it is cyclic for any local
algebra). Segal and Goodman (1965) initially demonstrated this
for the vacuum state of the Klein-Gordon field in Minkowski
spacetime, and their results have subsequently been extended to
include the Klein-Gordon, Dirac, and Proca fields in ultrastatic and
stationary Lorentzian spacetimes.11 As Strohmaier indicates, these
results are more general than they at first appear:

As soon as a classical field satisfies a certain hyperbolic partial
differential equation, a state over the field algebra of the
quantized theory, which is a ground- or KMS-state with
respect to the group of time translations, has the Reeh-
Schlieder property (Strohmaier, 2000, pp. 106).

The hyperbolicity requirement is non-trivial. To see why, consider
the following concrete examples (these expand on Saunders, 1992,
pp. 372, and Streater, 1988, pp. 138). It turns out that a positive
frequency solution f to either the relativistic Klein-Gordon equation
or the non-relativistic Schrödinger equation, as a real function of
time, is a boundary value of a holomorphic function, call it F, defined
on a complex extension of R1.12 The Edge of the Wedge theorem
then entails that if f vanishes on some open set in time and then F
vanishes everywhere (Streater and Wightman, 1964/1989, pp. 83,
Theorem 2.17). Now if F vanishes everywhere, then so do all its
boundary values. Hence f cannot vanish on any open set in time
unless it is identically zero. Thus the differential operators associated
with the Klein-Gordon and Schrödinger equations are anti-local in
time, but are they, in addition, anti-local in space? Suppose first that
f is a non-zero positive frequency solution to the Klein-Gordon
equation and S is an open spatial region of Minkowski spacetime
(i.e., an open spacelike hypersurface). Then the hyperbolicity of the
Klein-Gordon equation entails that if the relevant Cauchy data
(f, @f/dt) vanish on S, then f vanishes in the domain of dependence
DðSÞ of S. In Minkowski spacetime, DðSÞ is guaranteed to always
have finite temporal extent; thus if f vanishes in DðSÞ, it vanishes in
some open set in time. The Edge of the Wedge theorem then entails
that f, as a non-zero boundary value of a holomorphic function in
time, cannot vanish on open spatial sets. Hence the hyperbolicity of
the Klein-Gordon equation entails that the Klein-Gordon operator is
anti-local on spatial regions.

Now suppose f is a non-zero positive frequency solution to the
Schrödinger equation, and S is an open spatial region of a classical
spacetime. Then the parabolicity of the Schrödinger equation
entails that if the relevant Dirichlet (f) or Neumann (@f/dt) data
vanish on S, then f vanishes in DðSÞ. However, in classical
spacetimes DðSÞ ¼ S, i.e., any point p not in S is such that there
will be a causal curve that intersects p and does not intersect S.
Hence DðSÞ has no temporal extent. Thus if f vanishes on S, this
does not entail that it vanishes on some open set in time. Thus the
simultaneity structure of classical spacetimes, as encoded by the
absolute temporal metric, entails that the Schrödinger operator is
not anti-local on spatial regions. Note further that for a
spatiotemporal region O of a classical spacetime, it is still the
case that DðOÞ ¼O, but now if f vanishes on O, it also vanishes in
some open set in time. Hence, the Edge of the Wedge theorem
entails that the Schrödinger operator is anti-local for spatiotem-

poral regions, and this is consistent with Requardt’s (1982)10 The partial differential equations (PDEs) of interest in non-relativistic and

relativistic QFTs are of the parabolic form ut+Lu¼0, and the hyperbolic form

utt+Lu¼0, respectively, where L is a second-order elliptic operator dependent on

the spatial coordinates. These PDEs are obtained as the configuration space

representation of the Spectrum Condition (defined explicitly on momentum space

variables) and inherit the signature of the spacetime through the (inverse) Fourier

transformation of the momentum space variables. The result is an elliptic PDE in

Riemannian spacetimes, a hyperbolic PDE in Lorentzian spacetimes, and a

parabolic PDE in classical spacetimes (see, e.g., McCabe, 2007, pp. 41–43).

11 For the Klein-Gordon and Dirac fields in ultrastatic spacetimes, see Verch

(1993) and Bär (2000), respectively. For the Dirac field in static globally hyperbolic

spacetimes, see Strohmeier (1999). For the Klein-Gordon, Dirac, and Proca fields in

stationary spacetimes, see Strohmeier (2000).
12 This is the analyticity property referred to in footnote 9. It is enforced by the

Spectrum Condition in the context of the Wightman or Lévy-Leblond axioms.
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demonstration that the non-relativistic vacuum is cyclic for local
algebras defined on such regions.

One might thus infer that anti-locality on open spatial regions
of spacetime is a characteristic of the hyperbolic differential
operators that appear in the field equations of RQFTs. This is
because the Lorentzian spacetimes associated with such operators
place bounds on the upper limit of propagations, and thus
domains of dependence are guaranteed to have temporal extent.
While parabolic equations do admit well-posed problems in the
context of initial and/or boundary data on open spatial regions,
the fact that the associated classical spacetimes place no bounds
on the upper limit of propagations entails domains of dependence
will always be trivial (barring topological mutants). And this
ensures that the parabolic differential operators that appear in the
field equations of NQFTs are not anti-local for spatial regions of
spacetime.

Thus, to recap, it is the absolute temporal structure of classical
spacetimes that prevents the vacuum in NQFTs from being separating,
and this subsequently makes room for local number operators.

5.2. The Unruh Effect and unique total number operators

Another part of the Received View’s argument against particles
in RQFTs involves the Unruh Effect and unique total number
operators for non-interacting RQFTs. Recall that the first step in
constructing a total number operator in the Fock space formalism
was the construction of a Hilbert space of single-particle states,
and this required the definition of a positive-definite inner
product on the carrying space of the irreducible representations
of the relevant spacetime symmetry group. A sufficient condition
for the existence of a positive-definite inner product on the state
space of an RQFT in a Lorentzian spacetime is global hyperbolicity

of the spacetime (Wald, 1994, pp. 64–65). Briefly, global
hyperbolicity entails that the spacetime can be foliated by a
family of smooth Cauchy surfaces

P
t parameterized by a global

time function t.13 This global time function then allows a
decomposition of the solution space of hyperbolic PDEs into
positive and negative frequency subspaces. One can then uniquely
define a positive-definite inner-product on the space of positive
frequency solutions, and a Fock space with its attendant total
number operator can then be constructed.

Now while global hyperbolicity guarantees the existence of a
total number operator, it does not guarantee uniqueness. Globally
hyperbolic spacetimes may admit more than one foliation

P
t, and

hence more than one global time function. Thus there may be
more than one way to ‘‘split the frequencies’’ of the solutions to
hyperbolic PDEs. Most authors take Minkowski spacetime as an
example: the Unruh Effect occurs when an observer, accelerating
relative to the Minkowski vacuum, experiences a thermal bath of
quanta. This is due to the presence (in the right Rindler wedge) of
a timelike Killing vector field (i.e., a timelike isometry) distinct
from the one associated with Poincaré symmetry. These distinct
timelike isometries induce distinct global time functions, and
this allows for distinct unitarily inequivalent Fock representations
of the canonical commutation relations (the Minkowski and
Rindler representations). So accelerating and inertial observers
in Minkowski spacetime make use of different total number
operators, and hence disagree on the total number of particles
present.

Now what would guarantee uniqueness of a total number
operator would be the presence of a unique global time function.
And this is only guaranteed in those (topologically well-behaved)

spacetimes that admit an absolute temporal metric.14 The moral
then is that the existence of a unique total number operator
reflects the non-relativistic structure of classical spacetimes.

Note, finally, that some authors (Arageorgis et al. 2003, pp. 180–
181) have claimed that the Rindler representation in the Unruh
Effect is unphysical; thus there is no problem of uniqueness in
Minkowski spacetime.15 Instead of entering into this debate, for
those convinced that the uniqueness of a ‘‘physical’’ total number
operator is not an issue for non-interacting RQFTs, I caution,
’’Beware of Haag’’. Whether or not classical spacetimes are
necessary for the existence of a unique physical total number
operator in non-interacting QFTs, they are arguably so for
interacting QFTs. And surely interacting QFTs are the more
empirically successful theories, and hence should warrant our
attention more. Let’s thus move on to Haag.

5.3. Haag’s theorem and total number operators

The last part of the Received View’s argument against particles in
RQFTs involves Haag’s theorem and total number operators for
interacting QFTs. In one form, Haag’s theorem implies that, under
fairly reasonable assumptions, one cannot construct unitarily
equivalent representations of the CCRs that describe both free and
interacting fields (see, e.g., Earman and Fraser, 2006, pp. 316). The
immediate upshot of this is that in an interacting RQFT, the Fock
space representation of free particles cannot be used to describe
interacting particles. Moreover, Fraser (2008) has argued that other
attempts at constructing Fock space representations for interacting
particles in RQFTs fail. In particular, attempts to construct an
appropriate Fock space representation of interacting particles by
second-quantizing classical interacting relativistic fields, or by
defining interacting creation and annihilation operators directly
with respect to classical interacting relativistic fields, fail (Fraser,
2008 pp. 849–855). Taken together, these results indicate that total
number operators that can be interpreted as counting particles do
not exist for interacting RQFTs. My response is going to be that the
reason why total number operators do not exist in interacting RQFTs
is that their existence requires absolute spacetime structures; in this
case, an absolute temporal metric.

To see why, consider what Earman and Fraser (2006, pp. 313–314)
term the Haag–Hall–Wightman (HHW) version of Haag’s theorem.
For two local fields f1, f2, the first part of the HHW theorem
demonstrates that, under the assumptions,

(a) the fields belong to irreducible representations of the equal-
time canonical commutation relations;

(b) there are unique Euclidean-invariant vacuum states 901S, 902S;
(c) there is a unitary transformation V(t) that relates the fields at

a given time;

then the vacuum states are constant multiples of each other:
c901S¼V(t)902S, 9c9¼1. The second part of the HHW theorem
demonstrates that, under the assumptions,

13 Wald (1994, pp. 56). A spacetime is globally hyperbolic just when it admits

a Cauchy surface, i.e., a spacelike surface
P

that intersects every causal curve.

14 The compatibility condition, ratb¼0, on the temporal metric of a classical

spacetime entails ta is closed, and thus locally exact. If M is topologically well-

behaved (if, for instance, it is simply connected), then ta is globally exact, and there

exists a unique globally defined time function t : M-R satisfying ta¼rat. On the

other hand, suppose there exists a global time function t : M-R. Then a temporal

metric tab compatible with a connection ra can be defined by tab¼(rat)(rbt).
15 Briefly, these authors first note that the right Rindler wedge is extendible;

i.e., it can be isometrically embedded as a proper subset of another spacetime,

namely, full Minkowski spacetime. Intuitively, this suggests that the time function

associated with the right Rindler wedge should not count as a global way to ’’split

the frequencies’’ of solutions to hyperbolic PDEs in Minkowski spacetime. To make

this more precise, Arageorgis et al. point out that the Rindler vacuum cannot be

extended to a physically realizable state (in the sense of satisfying the Hadamard

condition) on the global algebra of Minkowski spacetime.
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(d) (a)–(c) above;
(e) the fields and vacuum states are Poincaré-invariant;

then the first four vacuum expectation values of the two fields are
equal. One can then demonstrate that if one of the fields is free,
both are free (Earman and Fraser, 2006, pp. 314). Thus if we insist
that there are such things as interacting relativistic quantum fields,
then in the first instance, we have to deny that the vacuum state
of any such interacting field is a constant multiple of the
corresponding free vacuum state. And, in the second instance,
this entails that we must give up one or more of Assumptions (a),
(b), or (c). Now if one is wedded to the notion that number
operators (for whatever reason) are essential aspects of the
formulation of a QFT, one may be loath to give up assumptions (a)
and (b), in so far as both appear to be necessary for Fock space
representations of free fields. One is thus compelled to reject (c).16

Now the condition that the vacuum states of a free and an
interacting field are multiples of each other is equivalent to the
condition that the interaction does not polarize the vacuum.
Vacuum polarization occurs when the Hamiltonian operator that
describes the interacting field fails to annihilate the vacuum of the
free field. (Let H¼H0+HI be an interacting Hamiltonian operator
with free part H0 and interaction part HI. Suppose further
that there is a free vacuum 90FS such that H090FS¼0. Then
the interaction is said to polarize the vacuum just when
H90FSa0.) Vacuum polarization is conceptually problematic:
the Hamiltonian operator encodes the energy of the system, so it
should act on the state with zero energy (the vacuum state) and
produce zero. In the HHW theorem, Part I, let H1 and H2 be
Hamiltonian operators associated with the fields f1, f2, such that
H1901S¼0¼H2902S. Then, since c901S¼V(t)902S implies that
H2901S¼0, we can replace the condition that the vacuum states
are constant multiples of each other with the condition that
vacuum polarization does not occur. (And, obviously, if vacuum
polarization does not occur, then the free and interacting vacuum
states must be constant multiples of each other.)

This gives us two necessary conditions for the existence of
interacting fields that are unitarily equivalent to free fields, namely

(i) The interaction polarizes the vacuum or
(ii) Poincaré-invaraince does not hold.

One can now argue that it’s the absolute temporal structure of
classical spacetimes that allows NQFTs to satisfy (ii) while
denying the conceptually problematic (i).

This argument was suggested by Lévy-Leblond (1967, pp.
160–161) to explain how interacting GQFTs avoid Haag’s theorem.
He asks us to consider the structure of the (extended) Galilei
group, as encoded in its Lie algebra. This structure is encoded in
the algebraic commutation relations between 5 generators, which
are responsible for time-translations (H), space-translations
(P), velocity boosts (K), rotations (J), and mass scalings (M).17

Lévy-Leblond points out that the generator of time-translations
nowhere occurs on the right hand side of these relations.
Intuitively, time-translations are ‘‘independent’’ of the other

generators, and this encodes the fact that the temporal metric is
absolute in Neo-Newtonian spacetime. One can now consider a
representation of the generators on a state space that encodes the
time-translation generator as the Hamiltonian operator H0 of a
free field. If we then construct a Hamiltonian operator H¼H0+HI

that consists of this free part and a part HI that describes an
interaction, then the ‘‘free’’ representation (H0, P, K, J, M) will be
unitarily equivalent to the ‘‘interacting’’ representation (H, P, K,
J, M) in the sense of satisfying the same commutation relations.
The only constraint is that the interaction term HI be Galilei-
invariant. And one can then show that if the free Hamiltonian
annihilates a vacuum state, then so does the interacting
Hamiltonian (Fraser, 2006, pp. 40, footnote 23). Hence no vacuum
polarization occurs.

Lévy-Leblond now asks us to contrast this with the situation
arising in the case of the Poincaré group. The commutation
relations that define its generators include one in which the
generator of time-translations is ’’mixed up’’ with the generators
of pure Lorentz boosts and space-translations: [K, P]¼ iH.18

This encodes the fact that there is no independently occurring
absolute temporal metric in Minkowski spacetime. Hence requir-
ing that HI be Poincaré-invariant will not guarantee that H0+HI

will preserve the Lie bracket structure of the representation in
which H0 appears (Fraser, 2006, pp. 41). In general, another
structurally distinct representation of the Poincaré generators will
have to be constructed for the interacting Hamiltonian H0+HI.
Thus if a free Hamiltonian annihilates a Poincaré-invariant
vacuum state, this does not guarantee that an interacting
Hamiltonian will do so, too.

The moral then is that the existence of interacting GQFTs that
do not polarize the vacuum reflects the absolute temporal
structure of Neo-Newtonian spacetime. Now one would expect
that this way of avoiding Haag’s theorem extends to all NQFTs,
given that all have in common the classical spacetime structure
associated with an absolute temporal metric. The key condition is
that the generator of time translations be independent, as it were,
of the other generators, and this will be the case for the symmetry
group of any spacetime with an absolute temporal metric. This
inference is given support by explicit examples of Fock space
representations of interacting GQFTs, as mentioned above, as well
as Christian’s (1997) Maxwell-invariant QFT of Newtonian
gravity. The latter is an interacting NQFT that admits a Fock
space representation and a total number operator (Christian,
1997, pp. 4872). Thus one might infer that any NQFT will not run
afoul of Haag’s theorem.19

6. Conclusion

Schematically, the Received View’s argument against particle
interpretations of RQFTs can be reconstructed in the following way:

(RV1) (Particle concept)) (localizability/countability)
(RV2) (Localizability/countability)) (local/unique total

number operators)

16 If one is not wedded to number operator chauvinism, one may give up (b)

and avoid Haag’s Theorem by inserting a cut-off into one’s interacting theory and

renormalize the fields. Alternatively, some authors have proposed giving up (a)

(Streater and Wightman, 1964/1989, pp. 101).
17 The generators of the extended Galilei Lie algebra (H, P, K, J, M) satisfy the

following commutation relations:

½Ji ,Jj� ¼ ieijkJk ½Ji ,Kj� ¼ ieijkKk ½Ji ,Pj� ¼ ieijkPk

½Ki ,Pj� ¼ iMdij ½Ki , H� ¼ iPi

½Ji ,H� ¼ ½Ki ,Kj� ¼ ½Pi ,Pi� ¼ ½Pi ,H� ¼ 0

½H,M� ¼ ½Ji ,M� ¼ ½Pi ,M� ¼ ½Ki ,M� ¼ 0

18 In a 3-dimensional notation, the Poincaré Lie algebra is generated by time

translations H, space translations Pi, rotations Ji, and pure Lorentz boosts Ki that satisfy

the following commutation relations: ½Ji ,Jj� ¼ ieijkJk ½Ji ,Kj� ¼ ieijkKk ½Ji,Pj� ¼

ieijkPk ½Ki ,Pj� ¼ iHdij ½Ki,Kj� ¼ �ieijkJk ½Ki,H� ¼ iPi ½Ji ,H� ¼ ½Pi ,H� ¼ ½H,H� ¼ 0.
19 Note that Fraser (2006, pp. 46) indicates that non-relativistic local

commutativity L3 blocks the Streit-Emch version of Haag’s theorem (which does

not explicitly require Poincaré invariance). Lévy-Leblond (1967, pp. 166) suggests

the Spectrum Condition L4(iii) also plays a role. Since these two axioms are

(arguably) shared by any NQFT, this further suggests that nothing unique to the

Galilei group beyond what it shares in common with other non-relativistic

spacetime symmetry groups does the work in avoiding the consequences of Haag’s

theorem.
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(RV3) (RQFT)):(local/unique total number operators)

‘ (RQFT)):(particle concept)

(RV1) encodes the Received View’s pre-theoretic particle
concept, embodied in the necessary properties of localizability
and countability. (RV2) encodes the manner in which the
Received View chooses to mathematically represent this concept
in the forms of local and unique total number operators.

I have argued that a necessary condition for the existence of
local and unique total number operators is the existence of an
absolute temporal metric:

ðLocal=unique total number operatorsÞ
) ðabsolute temporal metricÞ ð�Þ

First, the existence of local number operators requires the
absolute temporal metric of a classical spacetime. This structure
allows NQFTs to avoid the consequences of the Reeh-Schlieder
theorem. In particular, it prevents the non-relativistic vacuum
state from being separating for any local algebra of operators, and
this allows for the possibility of local number operators. Second,
the existence of a unique total number operator requires the
absolute temporal metric of a classical spacetime. An absolute
temporal metric guarantees the existence of a unique global time
function for non-interacting NQFTs, and hence a unique way to
define an inner-product (or its equivalent) on the space of single-
particle states. This ultimately leads to a uniquely defined total
number operator via a Fock space construction, thus avoiding the
implications of the Unruh Effect. Finally, an absolute temporal
metric allows interacting NQFTs to avoid polarizing the vacuum,
and this immunizes such theories against the consequences of
Haag’s theorem. In particular, interacting NQFTs exist that are
unitarily equivalent to non-interacting NQFTs, and hence the
former can appropriate the Fock space structure of the latter, and,
in particular, the total number operators defined in the latter.

The claim (n) suggests that the Received View is (implicitly)
appealing to the existence of an absolute temporal metric in its
representations of the pre-theoretic particle concepts of localiz-
ability and countability. In particular, it suggests that (RV2) is
informed (implicitly) by non-relativistic intuitions, and thus should
be rejected in the context of interpretations of relativistic QFTs.

What are our options? We might reject (RV2) while upholding
(RV1). This would require identifying mathematical objects, other
than Fock space number operators, that encode the notions of
localizability and countability and that are supported by the
formalisms in which RQFTs, both free and interacting, are
presented. On the other hand, one might reject (RV1) and attempt
to identify alternative conditions of adequacy for a particle
concept that are compatible with the relativistic context. The
concept of localizability, for instance, might be weakened to allow
for asymptotically localized states (Bain, 2000), or ’’effectively
localized’’ states (Wallace, 2001).20 What this essay warns against,
however, is the implicit adoption of mathematical objects that

require structures associated with classical spacetimes, either in
the representations of localizability and/or countability, or in the
representations of any particle concepts that are meant to replace
them. Given this warning, it may turn out that the identification
of appropriate mathematical representations goes hand in hand
with alternative conditions of adequacy for the particle concept.

Regardless of the strategy one adopts, what I hope to have
made plausible is that the debate over whether or not RQFTs
admit particle interpretations has yet to be settled.
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20 Halvorson and Clifton (2002, pp. 16) prove a No-Go theorem for the

existence of ’’unsharply localizable’’ particles. But as they state, their theorem’’. . .

only show[s] that it is impossible to define position operators that obey

appropriate relativistic constraints. But it does not immediately follow from this

that we lack any notion of localization in relativistic quantum theories’’ (pp. 18).

This motivates them to replace position operators with local number operators as

the way to mathematically represent the concept of particle localizability. They go

on to prove a Reeh-Schlieder-like theorem from which they conclude: ’’This serves

as a reducio ad absurdum for a notion of localizable particles in any relativistic

quantum theory’’ (pp. 20). But again, the qualification should be that Reeh-

Schlieder-type No-Go theorems militate against attempts to represent localiz-

ability by local number operators.
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