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1 Introduction

Pragmatist approaches to relativistic quantum field theories (RQFTs) trade mathe-
matical rigor for the ability to derive predictions from realistic interacting theories.
Examples include the Lagrangian approach found in most textbooks, and Wein-
berg’s approach. Purist approaches to RQFTs trade the ability to formulate realistic
interacting theories for mathematical rigor. Examples include the axiomatic and
algebraic formalisms. Philosophers are split on whether foundational issues related
to RQFTs should be framed within pragmatist or purist approaches.Wallace (2011),
for instance, has argued that cutoff quantum field theory (CQFT), a particular
pragmatist approach, has been successful at resolving the problems associated
with renormalized perturbation theory, while axiomatic and algebraic quantum field
theory (AQFT), which epitomize purist approaches, have not; and this indicates that
CQFT is the correct framework for philosophy of QFT. Fraser (2011), on the other
hand, argues that renormalization techniques indicate how CQFT and AQFT are
empirically indistinguishable, and that AQFT is to be preferred for its mathematical
rigor.

This essay probes this debate by viewing it through the lens of the CPT theorem.
This theorem entails that the state of a physical system described by an RQFT
must possess CPT invariance; i.e., invariance under the combined transformations
of charge conjugation C, space inversion P, and time reflection T. There are both
pragmatist and purist versions of this theorem (Bain 2013). While all versions apply
unproblematically to non-interacting states, and some unrealistic interacting states,

J. Bain (!)
Polytechnic School of Engineering, Department of Technology, Culture and Society, New York
University, 6 Metrotech Center, Brooklyn, NY 11201, USA
e-mail: jon.bain@nyu.edu

© Springer International Publishing Switzerland 2015
U. Mäki et al. (eds.), Recent Developments in the Philosophy of Science:
EPSA13 Helsinki, European Studies in Philosophy of Science 1,
DOI 10.1007/978-3-319-23015-3_17

227

mailto:jon.bain@nyu.edu


228 J. Bain

extending them to realistic interacting states is problematic: For both pragmatists
and purists, to do so requires confronting foundational problems. Greenberg (2002),
however, claims that a violation of CPT invariance in an interacting RQFT,
appropriately construed, entails a violation of Lorentz invariance. This claim is
surprising not only since it purports to cover interacting theories in one fell swoop,
but also because standard proofs of CPT invariance (both purist and pragmatist)
require more than just the assumption of Lorentz invariance. Greenberg’s claim
has been influential in the physics literature since it suggests a test for violations
of Lorentz invariance via experiments that measure CPT violation. Moreover, in
apparently linking Lorentz invariance with CPT invariance, it suggests the latter
is mysterious; in particular, some philosophers have wondered how the charge
conjugation transformation C can arise from a purely spatiotemporal symmetry
(Greaves 2010).

This essay analyzes Greenberg’s claim in the context of the debate between
pragmatists and purists. Section 2 reviews two formulations of the CPT theorem,
one purist and the other pragmatist. Section 3 uses the problems these formulations
face to inform a characterization of the distinction between pragmatism and purity
based on the sense in which an RQFT can be said to exist. This distinction is then
applied in Sect. 3 to a critique of Greenberg’s claim. It will be seen that Greenberg’s
claim can be interpreted in either a purist or a pragmatist sense, and in either case,
it fails to address the associated foundational problems.

2 Pragmatism Versus Purity on CPT Invariance

2.1 The Axiomatic CPT Theorem

The first example of a formulation of the CPT theorem I’d like to consider is the
purist Wightman axiomatic approach (see, e.g., Streater and Wightman 1964).1 The
basic objects are vacuum expectation values of unordered products of fields, referred
to as Wightman functions, W.n/ .x1; : : : ; xn/ ! h0 j! .x1/ : : : ! .xn/j 0i, where !(x)
is a generic quantum field (technically defined as an operator-valued distribution),
and j0i is its vacuum state. Wightman functions are required to satisfy a number
of axioms, and it is the goal of this approach to construct models of these axioms
that represent interacting RQFTs. For the purposes of deriving CPT invariance, the
following three assumptions suffice.

(i) Restricted Lorentz invariance (RLI). The fields are invariant under the restricted
Lorentz group L"C (the subgroup of the Lorentz group connected to the identity
that consists of Lorentz boosts but not parity or time reversal transformations).

1Another purist approach is the algebraic formalism which will not be discussed in this essay. CPT
theorems have been proven in the algebraic approach by Borchers and Yngvason (2001) and Guido
and Longo (1995). For a brief discussion of the latter, see Bain (2013).
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(ii) Spectrum Condition (SC). The fields possess positive energy, in the sense that
the spectrum of the momentum operator associated with L"C is confined to the
forward lightcone.

(i) and (ii) entail that Wightman functions can be extended to complex-analytic
functions that are invariant under the proper complex Lorentz group. Moreover, the
extended domain contains real points of analyticity referred to as Jost points.2 The
third assumption refers to these latter:

(iii) Weak Local Commutativity (WLC). At (or in the neighborhood of) a Jost point
the fields satisfy h0 j! .x1/ : : : ! .xn/j 0i D iK h0 j! .xn/ : : : ! .x1/j 0i, where K
is the number of fermionic fields.

Jost (1957) showed that the conjunction of (i), (ii), (iii) entails the existence of
an anti-unitary operator that combines the actions of C, P, and T transformations on
fields, leaving them invariant (Streater and Wightman 1964, p. 150). The axiomatic
CPT theorem thus states:

Œ.RLI of fields/ & SC & WLC") .CPT invariance of fields/

This axiomatic understanding of CPT invariance faces what might be called the
Problem of Empirical Import: No “realistic” interacting models of the Wightman
axioms currently exist; i.e., no interacting models exist for theories (like QED
and QCD) from which empirical predictions have been derived and confirmed.
On the other hand, non-interacting models, and “unrealistic” interacting models
of the Wightman axioms have been constructed (the latter are discussed by Fraser
2011, p. 127). This suggests that the axiomatic CPT theorem (currently) restricts
CPT invariance to non-interacting, or unrealistic interacting RQFT states. This
is problematic, since the evidence for CPT invariance in particular, and for the
reliability of RQFTs in general, invariably comes from successful predictions made
by realistic interacting RQFTs.

2.2 Weinberg’s CPT Theorem

I’d now like to consider Weinberg’s derivation of the CPT theorem as an example
of a pragmatist approach (Weinberg 1995). The basic object of this approach is the
S-matrix, which satisfies three assumptions:

(i) Perturbation Theory. The S-matrix is given by a power series expansion in
time-ordered products of an interaction Hamiltonian densityHint(x):

2A Jost point (x1, : : : , xn) is a convex set of points that are spacelike separated from each other. In
other words, the difference variables #i ! xi!1 " xi satisfy

!P
$j#j

"2
< 0; for$j # 0;

P
$j > 0

(Streater and Wightman 1964, p. 71).
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where jˇi ; j˛i are asymptotic multi-particle states, and the time-ordered
product TfHint(x1) : : : Hint(xn)g orders theHint(xi) according to t1 > " " " > tn.

(ii) Lorentz Invariance. The S-matrix is invariant under restricted Lorentz transfor-
mations.

(iii) Cluster Decomposition (CD). The S-matrix satisfies cluster decomposition
(briefly, correlations between scattering experiments decrease to zero as their
separation distance increases to space-like infinity).

Weinberg shows that a sufficient condition for CD to be compatible with (ii)
is that Hint(x) be a functional of fields that satisfy RLI and local commutativity
(i.e., the fields commute or anti-commute at spacelike separated distances), and that
are linear combinations of Fock space creation and annihilation operators for non-
interacting particle states. Weinberg (1995, p. 198) then argues that if these fields
carry a conserved charge, then anti-particle states must be posited. CPT invariance
of the full Hamiltonian density then follows from a consideration of how the relevant
creation and annihilation operators transform under C, P, and T separately (1995, pp.
244–246). The CPT theorem thus takes the following form:

Œ.RLI of S-matrix/ & CD & .existence of conserved charges/"

) .CPT invariance ofH.x//

whereH(x) is the full Hamiltonian density.
In Weinberg’s approach, one might claim that CPT invariance is a property of

both interacting and non-interacting states, insofar as the demonstration of CPT
invariance ofH(x) rests on CPT invariance of the creation and annihilation operators
of non-interacting multi-particle states that transform, under the S-matrix, into
interacting multi-particle states. However, lest one think that this is an improvement
over the axiomatic understanding of CPT invariance, the rigor of this approach faces
the following problems:

(a) Expression (1) assumes that multi-particle states at asymptotic times are non-
interacting, and can be unitarily related to interacting states at finite times. This
is made problematic by Haag’s theorem, which indicates that, under reasonable
assumptions, the Hilbert spaces for interacting and non-interacting states belong
to unitarily inequivalent representations of the canonical (anti-)commutation
relations, thus a unitary S-matrix operator that transforms non-interacting states
into interacting states does not exist (Duncan 2012, pp. 359–370).

(b) For many of the types of interacting QFTs of interest, the terms in the power
series (1) diverge at high energies. This is referred to as the UV (ultra-violet)
Problem.

(c) For the types of interacting QFTs of interest, there is a consensus that the power
series (1) does not converge. Call this the Convergence Problem.
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A few qualifications are in order at this point. First, these problems are not
unique to Weinberg’s approach, but rather afflict pragmatist approaches in general.
Second, some interacting QFTs of interest, quantum chromodynamics (QCD) for
instance, do not suffer the UV Problem; it is generally thought that QCD has
an ultra-violet fixed point (more on this in Sect. 3 below). Third, problem (a) is
implicitly addressed in pragmatist approaches by employing renormalization. In
order to further distinguish pragmatists from purists, it will help to review where in
pragmatist approaches renormalization occurs. This will be done in Sect. 2.3 below,
but before this discussion, a final concern should perhaps be addressed involving
the extent to which the Wightman axiomatic CPT theorem differs from Weinberg’s
CPT theorem.

In many textbooks, one finds pragmatist proofs of the CPT theorem followed
by the advice that if one seeks a more rigorous proof, one should consult the
Wightman axiomatic approach (see, e.g., Weinberg 1995, p. 245; Duncan 2012,
pp. 479–483). There is a limited sense in which such pragmatist appeals to purist
proofs of the CPT theorem seem justified. In the cases of non-interacting theories,
and in some unrealistic interacting theories, one can argue that purist approaches
and pragmatist approaches are intertranslatable. In these cases, purists do not face
the Problem of Empirical Import, and pragmatists do not face the Convergence
Problem (in these cases, expressions like (1) converge, and, moreover, as explained
below, problems (a) and (b) can be effectively addressed). When intertranslatability
holds, a pragmatist might be excused for appealing to Jost’s proof, for instance,
to explain CPT invariance. However, even in such cases, it seems to me that if
we take pragmatist and purist approaches literally, we should hesitate to “mix
and match” proofs of CPT invariance. In particular, in Weinberg’s approach, the
basic objects are the S-matrix and particle states, and fields and field equations are
purely instrumental devices. Weinberg makes it clear that fields are introduced only
to guarantee that the S-matrix satisfies restricted Lorentz invariance and Cluster
Decomposition.3 Moreover, to accomplish this task, fields are introduced in a
particular format; i.e., as linear combinations of creation and annihilation operators
that act on a multiparticle Fock space. In the Wightman axiomatic approach, on
the other hand, the basic objects, arguably, are fields which need not be expressible
as linear combinations of Fock space creation and annihilation operators.4 Thus,
one reason an advocate of the Weinberg approach should be hesitant in adopting
Jost’s proof of CPT invariance is that the latter is more general than Weinberg’s

3This is reflected in Weinberg’s (1995, p. 198) view of the axiomatic assumption of local
commutativity (i.e., fields at spacelike separated points commute): “The point taken here is that
[local commutativity of fields] is needed for the Lorentz invariance of the S-matrix, without any
ancillary assumptions about measurability or causality.”
4In other words, a model of the Wightman axioms need not take the form of a Fock space
representation of the canonical (anti-) commutation relations. Note that the basic objects of the
Wightman approach are tempered distributions (i.e., Wightman functions), but Wightman’s (1956)
reconstruction theorem indicates that these can be interpreted as vacuum expectation values of
unordered products of fields.
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proof, and suggests the theory is about more than a pragmatist intends it to be about.
Moreover, keeping purist and pragmatist proofs of the CPT theorem separate may
be important when it comes to addressing the question of why the theorem fails for
non-relativistic quantum field theories (and non-relativistic quantum mechanics in
general). For instance, Lévy-Leblond (1967) appeals to Weinberg’s proof to explain
why the CPT theorem fails for axiomatic Galilei-invariant QFTs (i.e., Galilei-
invariant QFTs formulated via a set of axioms similar to the Wightman axioms).5

Given the conceptual differences between these approaches, and in particular, in
those cases of physical interest in which intertranslatability fails, it seems more
appropriate to frame an explanation of the failure of the CPT theorem in axiomatic
non-relativistic QFTs in terms of Jost’s axiomatic proof, as opposed to Weinberg’s
proof.

2.3 Pragmatism and the Renormalization Problem

Typical pragmatist approaches simplify (1) by reducing it to an expression
that involves vacuum expectation values of time-ordered products of fields,
h0 jT f! .x1/ ; : : : ;! .xn/gj 0i, referred to as "-functions. One can distinguish
between non-interacting and interacting "-functions, depending on whether
the fields are non-interacting or interacting (i.e., satisfy homogeneous or
inhomogeneous field equations, respectively). The initial goal of pragmatist
approaches is to reduce (1) to an expression that only involves non-interacting "-
functions (this subsequently facilitates the calculation of (1) via Feynman diagrams).
This goal is achieved by the following:

(i) One first uses the LSZ reduction formula to relate S-matrix elements to
interacting "-functions (e.g., Duncan 2012, p. 286). This formula comes in
many flavors, one per type of field. For instance, the LSZ formula for a scalar
field of mass m is given by:

out

D
p1; : : : ;pn

ˇ̌
ˇk1; : : : ;k`

E

in

D
!
i=
p
Z

"nC`Z
d4x1 : : : d4y`e!ipixiCikjyj

Y
i

#
@2xi C m2

$Y
j

!
@2yj C m2

"

! h0 jT f' .x1/ : : : ' .xn/ ' .y1/ : : : ' .y`/gj 0i :
(2)

5Lévy-Leblond (1967, p. 165) explains the failure of the CPT theorem in GQFTs as due to the
fact that GQFTs do not satisfy local commutativity: “This situation [i.e., the GQFT case] is
to be contrasted with the relativistic case where the requirements of local commutativity on a
free field : : : impose both the existence of a TCP [i.e., CPT] operation : : : and the spin-statistics
relation, as has been shown in a very illuminating way, for this free-field case, by Weinberg : : : ”
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The left-hand side of (2) represents an S-matrix element for ` incoming
particles with momenta ki and n outgoing particles with momenta pi. The
right-hand side indicates how this can be calculated in terms of an interacting !-
function,where ®(x) is an interacting field (i.e., a solution to the inhomogeneous
Klein-Gordon equation).

(ii) One then assumes a perturbative split of the Hamiltonian, H D H0 C Hint,
into a non-perturbed piece H0 and a piece Hint encoding small perturbations
away fromH0.6 The following Gell-Mann/Low formula then relates interacting
!-functions to non-interacting !-functions (e.g., Duncan 2012, p. 246):

h0 jT f' .x1/ : : : ' .xn/gj 0i D

D
0
ˇ̌
ˇT

n
"I .x1/ : : : "I .xn/ e!i

R
HIdt

oˇ̌
ˇ 0
E

˝
0
ˇ̌
T
˚
e!i

R
HIdt

!ˇ̌
0
˛ : (3)

In (3), ®(x) is an interacting field, "I(x) is a non-interacting field in the interaction
picture, and HI ! eiH0Hinte!iH0 is the interaction picture representation of Hint.7

In the LSZ formula (2), Z is a renormalization constant. Its purpose is to relate
the interacting field ®(x) to non-interacting fields " in(x),"out(x) at asymptotic times.
One assumes,

hˇ j'.x/j˛i "!
t!!1

p
Z hˇ j"in.x/j ˛i ; hˇ j'.x/j˛i "!

t!C1

p
Z hˇ j'out.x/j ˛i (4)

where jˇi ; j˛i are non-interacting multi-particle states. This assumption may be
motivated by considering the action of a non-interacting asymptotic field on the
vacuum with respect to a single-particle state (Duncan 2012, p. 282). If jki is a
normalized single-particle state, then hk j"in.x/j 0i D 1. An interacting field ®(x)
cannot, in general, be decomposed into creation and annihilation operators, thus one
sets hk j'.x/j 0i D

p
Z, for some constant Z. (4) may be considered a generalization

of this. Formally, the constant Z can be removed from the LSZ formula by
replacing the “bare” interacting field with a renormalized interacting field defined
by 'r.x/ ! Z!1=2'.x/. This assignment guarantees that the renormalized interacting
field behaves like the non-interacting field with respect to single-particle states;
namely, hk j'r.0/j 0i D 1.

Renormalization also enters into the derivation of the Gell-Man/Low formula (3).
In particular, (3) assumes H0 j0i D 0 D H j0i. The first equality entails j0i is the
vacuum state of the non-interacting fields. Since H is a functional of interacting
fields which cannot, in general, be decomposed into creation and annihilation
operators, the second equality is typically not guaranteed. To enforce it, one defines
a renormalized Hamiltonian Hr ! H " #. This corresponds to renormalizing the

6The Hamiltonian is related to the Hamiltonian density by H.t/ D R
d3xH .x; t/.

7"I(x) is defined by "I .x; t/ " eiH0.t!t0/" .x; t0/ e!iH0.t!t0/, where "(x, t0) is a non-interacting field
at time t0.
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mass that appears in H. If this is given by mB (the “bare” mass), and the shift
corresponding to ! is given by ım, then the renormalized mass mr (the “physical”
mass) is given by mr

2 ! mB
2 C ım2

In these examples, renormalization is imposed to force the interacting theory to
behave like the non-interacting theory, as far as the vacuum and single-particle states
are concerned. This solves Problem (a) in the following sense: The renormalized
field and the renormalized Hamiltonian are not self-adjoint operators (for typical
interacting theories, the constant Z and the mass shift ım are infinite). This entails,
for instance, thatHr does not implement unitary time translations, contrary to one of
the assumptions of Haag’s theorem (Fraser 2009, p. 547). Whether this constitutes
an adequate solution to Problem (a) will depend on one’s mathematical proclivities.
The fact that renormalized parameters are, typically, infinite may upset purists.
For such purists, the renormalization procedure simply replaces Problem (a) with
another problem, call it the Renormalization Problem.

Note that renormalization is independent of perturbation theory as evidenced
by its appearance in the non-perturbative LSZ formula. Thus the Renormalization
Problem is independent of the UV and Convergence Problems.8 At this point, it
will be instructive to review how renormalization group (RG) techniques address
these pragmatist problems. Wallace (2011) argues that such techniques underwrite
heuristic (i.e., pragmatist) approaches, whereas Fraser (2011) claims they support
rigorous (i.e., purist) approaches. The next section addresses this issue, as well as
the general concern of how best to distinguish purity from pragmatism.

3 Distinguishing Purity from Pragmatism

The goal of the RG approach to renormalization is to determine how a theory’s
low-energy degrees of freedom depend on its high-energy degrees of freedom.
Towards this end, the coupling constants g that appear in the interactionHamiltonian
(or Lagrangian) density, are defined as functions g("(#)) of a scale-dependent
cutoff"(#). Changing the scale (by integrating out high-energy degrees of freedom
with respect to ") generates a flow in the theory’s parameter space. Couplings
can then be characterized by how they behave as the scale is lowered: relevant
couplings increase, irrelevant couplings decrease, and marginal couplings remain
constant. One can show that, for a (3C 1)-dim weakly coupled theory, there are
a finite number of relevant and marginal couplings, and any irrelevant couplings
are suppressed at a given energy scale # by powers of #/"(e.g., Duncan 2012,
pp. 652–660).9 In such a theory, the low-energy degrees of freedom depend on the

8As Weinberg (1995, p. 441) states, “ : : : the renormalization of masses and fields has nothing
directly to do with the presence of infinities, and would be necessary even in a theory in which all
momentum space integrals were convergent.”
9An important exception to this is QCD, which is not weakly coupled.
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high-energy degrees of freedom through a finite number of parameters (the relevant
and marginal couplings), and while the theory may still contain parameters that
become infinite at high energies (the irrelevant couplings), it is still predictive in the
sense that its predictions will be finite if constrained to a given scale. At this scale,
the theory is effectively renormalizable insofar as any irrelevant couplings it may
possess cannot be experimentally detected. With respect to Sect. 2.3’s discussion
of renormalization, an effectively renormalizable interacting theory requires a finite
number of parameters to empirically imitate the behavior of the corresponding non-
interacting theory, and these parameters, as functions of a finite cutoff, are finite.

In this effective field theory approach, the Renormalization Problem is addressed
by adopting effective renormalizability, and the UV Problem is addressed by using
the cutoff ƒ to regulate divergent terms in expressions like (1) in Sect. 2.2. The
cutoff serves to freeze out the high energy degrees of freedom of the theory, and
one then adopts an agnostic attitude about what happens at energy scales above !.
According to Wallace,

This, in essence, is how modern particle physics deals with the renormalization problem: it
is taken to presage an ultimate failure of quantum field theory at some short lengthscale, and
once the bare existence of that failure is appreciated, the whole of renormalization theory
becomes unproblematic, and indeed predictively powerful in its own right. (Wallace 2011,
p. 119.)

While this appeal to RG techniques allows a pragmatist to address the Renor-
malization and UV Problems, the Convergence Problem still remains (with the
qualifications noted at the end of Sect. 2.2). Moreover, Fraser (2011) suggests that
RG techniques support purity, as opposed to pragmatism. In particular, the RG
flow of the type of theory described above indicates an underdetermination of the
theory’s high-energy content by low-energy experiments. The latter fix the values of
the theory’s finite relevant and marginal couplings at the experimental energy scale,
but fail to fix the values of the theory’s irrelevant couplings. These latter determine
how the theory behaves at high-energies. This implies that the successful predictions
made by a realistic interacting RQFT (of this type) fail to determine the form it takes
at high-energies. This suggests to Fraser that axiomatic and algebraic RQFT (AQFT)
on the one hand, and Wallace’s “cutoff” QFT (CQFT) on the other, are empirically
indistinguishable at the energy scales currently probed by experiments:

The upshot of the application of RG methods is that a range of Lagrangians at short distance
scales each yield approximately the same predictions for relatively low energies. : : : This
lends support to the claim that the theoretical framework of QFT is underdetermined by
the empirical evidence. AQFT and [CQFT] should be viewed as alternative theoretical
frameworks for QFT which approximately agree in their empirical predictions. (Naturally,
subject to the qualification that the construction of models of AQFT is still in progress).
(Fraser 2011, p. 135.)

The qualification at the end of this quote is important. It acknowledges that the
purist’s Problem of Empirical Import is a potential obstruction to the claim that
RG underdetermination holds between AQFT and CQFT. This obstruction takes the
form of the question of whether there are AQFTs that can be “RG-related” to the
appropriate low-energy experiments (as CQFTs can be).
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These considerations suggest that an appeal to RG techniques is not decisive
in adjudicating between pragmatists and purists. Both pragmatists and purists can
make such an appeal, and such appeals fail to completely address foundational
issues: the Convergence Problem remains for the RG pragmatist (with the requisite
qualifications), and the Problem of Empirical Import remains for the RG purist. The
discussion in Sect. 2.3 also indicates that an appeal to perturbation theory won’t
help either. On the one hand, pragmatists can employ non-perturbative techniques
(the LSZ formula, for example; and lattice techniques in theories like QCD that are
not weakly coupled). On the other hand, purists can employ perturbative techniques,
as evidenced by “perturbative” AQFT which seeks to combine techniques from
causal perturbation theory with AQFT (see, e.g., the review in Summers 2012,
pp. 45–48).

The diversity of these methods allowed by both pragmatists and purists also
suggests that a general appeal to mathematical rigor may not be enough to make
the distinction as clear as it could be. Note first that the distinction between non-
perturbative and perturbative methods does not necessarily map onto a distinction
between rigorous and non-rigorous methods. In particular, the use of perturbative
methods need not signal a relaxation of rigor. For instance, causal perturbation
theory has been viewed by its advocates as providing a rigorous mathematical
foundation for perturbative techniques, and these advocates include both purists and
pragmatists.10 Arguably, the lack of rigor that purists have traditionally associated
with pragmatists’ use of perturbation theory ultimately manifests itself in the
pragmatists’ Convergence Problem.

Thus what remains to distinguish pragmatists from purists are the Convergence
Problem for the former (with the requisite qualifications), and the Problem of
Empirical Import for the latter. These problems are concerned with the sense in
which realistic interacting RQFTs can be said to exist. Call this basic foundational
concern common to both purity and pragmatism, the Existence Problem. As Bouatta
and Butterfield (2014, p. 16) suggest, this problem can be addressed in a number
of ways. Purists, perhaps, can be essentially characterized by their demand for a
strong notion of existence; namely, existence of a model of an appropriate set of
axioms. Pragmatists, perhaps, can be essentially characterized by their adoption of
a weaker notion of existence. One might require existence of a theory to entail the
convergence of power series expansions like (1) (in which case interacting QED
probably does not exist, whereas interacting QCD probably does). Alternatively,
pragmatists might settle for existence defined in terms of renormalizability (in
which case both interacting QED and QCD exist), or in terms of the existence of

10Causal perturbation theory consists of both a regularization scheme to address UV divergences
in power series expansions, and an axiomatic scheme underwriting such expansions. These
schemes can be separated; in particular, the regularization scheme can be adopted by pragmatists
independently of the axiomatic scheme (Helling 2012; Falk et al. 2010). Conversely, the axiomatic
scheme can be adopted by purists to extend purist axiomatic systems to include perturbative
techniques (Brunetti and Fredenhagen 2000).
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a UV fixed point in an RG flow (in which case interacting QED does not exist,
but asymptotically free and/or safe theories like interacting QCD do, as well as
conformally invariant theories).

Thus, distinguishing purity from pragmatism on the basis of the Existence Prob-
lem addresses the fact that both purists and pragmatists make use of similar methods,
perturbative and non-perturbative, as well as the concern that mathematical rigor
may be in the eye of the beholder. Moreover, it addresses the concern that the types
of interactions described by realistic interacting RQFTs differ in essential ways. The
next section will put this distinction to work.

4 Greenberg on Relativity and CPT Invariance

Greenberg (2002, p. 1) claims: “If CPT invariance is violated in an interacting
quantum field theory, then that theory also violates Lorentz invariance.” This claim
is both influential and puzzling. In the physics literature it is cited for statements
like the following:

Note that Lorentz violation does not imply CPT violation for local EFTs, while CPT
violation does imply Lorentz violation in local EFTs. (Liberati 2013, p. 12.)

In all proofs of the CPT theorem Lorentz symmetry is the basic hypothesis, and indeed a
theorem states that if CPT symmetry is violated then Lorentz symmetry must be violated,
too : : : (Sozzi 2008, p. 198.)

In realistic field theories, CPT violation is always accompanied by Lorentz violation, but
not vice versa. (Berger 2011, p. 180.)

While Greenberg is not directly cited in the philosophy literature, one does find
the following statements:

: : : the CPT theorem : : : says that violations of CPT symmetry imply violations of Lorentz
invariance, but not vice versa. (Hagar 2009, p. 261.)

How can it come about that one symmetry (e.g., Lorentz invariance) entails another (e.g.,
CPT) at all? (Greaves 2010, p. 28)

The CPT theorem says that any (restricted) Lorentz invariant quantum field theory must
also be invariant under the combined operation of [CPT]. (Arntzenius 2011, p. 633.)

Greenberg’s claim is puzzling for two reasons. First, in both the purist and
pragmatist proofs of the CPT theorem reviewed in Sect. 2, more than just Lorentz
invariance was needed to derive CPT invariance. Second, both proofs showed that,
given appropriate assumptions, CPT invariance holds for non-interacting fields,
and certain unrealistic interacting fields. In order to extend the proofs to realistic
interacting fields, both the purist and the pragmatist need to confront Sect. 3’s
Existence Problem. This problem intimately depends on the type of interaction, and
this suggests that a demonstration of CPT invariance for realistic interacting fields
may have to be done on a case by case basis. Thus, on the surface, Greenberg’s
claim seems to both simplify the assumptions needed to derive CPT invariance, and
address the issue of the extent of its applicability in one fell swoop.
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Greenberg begins with the following assertions:

To calculate the S matrix, we need ! functions, or similar functions, such as retarded or
advanced products (r functions or a functions). We require covariance of a quantum field
theory both in and out of cone as the condition for Lorentz invariance of the theory; thus
both Wightman functions and the ! (or r or a) functions must be covariant for the theory to
be Lorentz invariant. (Greenberg 2002, p. 1.)

He then provides the following expression for an n-point !-function:

! .n/ .x1; : : : ; xn/ !
X

p
"

!
tp1 " tp2

"
: : : "

!
tpn!1 " tpn

"
W.n/ !

xp1 ; : : : ; xpn
"

(5)

where the product of Heaviside functions "
!
tp1 " tp2

"
: : : "

!
tpn!1 " tpn

"
enforces

the time ordering tp1 > # # # > tpn on the Wightman function W(n), and the
sum is over all permutations of the indices. Greenberg now argues that, at a Jost
point, restricted Lorentz invariance of ! (n) entails that W(n) satisfies weak local
commutativity (WLC).11 Thus if we require Wightman functions to satisfy RLI and
SC, then a violation of CPT invariance of Wightman functions entails a violation of
RLI of !-functions. Schematically,

!
RLI of ! .n/at Jost points

"
)

!
WLC ofW.n/at Jost points

"

)
!
CPT invariance ofW.n/that satisfy RLI and SC

" (6)

where the second entailment follows from the axiomatic proof of CPT invariance
(Sect. 2.1). Given the assumption that a theory is RLI only if both its Wightman and
!-functions are RLI, Greenberg concludes that a violation of CPT invariance of a
theory’s Wightman functions entails the theory does not satisfy RLI. No mention
of an interacting theory has occurred at this point. However Greenberg (2002, p. 1)
now states: “[t]his argument does not apply to a non-interacting theory for which
! functions need not be considered”. This suggests the view that ! functions are
a necessary ingredient in interacting QFTs, but not in non-interacting QFTs. The
complete argument may thus be schematically represented by the following:

I. RLI violation of !-functions entails RLI violation of the corresponding interact-
ing QFT.

II. CPT violation of Wightman functions entails RLI violation of the corresponding
!-functions.

∴ Therefore, CPT violation of Wightman functions entails RLI violation of the
corresponding interacting QFT.

Dütsch and Gracia-Bondía (2012, p. 429) observe that Greenberg’s argument
depends on the assumption that expression (5) exists for realistic interacting
theories. This of course faces the purist’s Problem of Empirical Import. It appears

11The proof of this claim rests on the fact that it is always possible to choose two Lorentz
transformations that time-order a Jost point (x1, : : : , xn) in opposite ways.
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explicitly in Premise II, which relies on the axiomatic proof of CPT invariance.
Recall that this proof assumes (among other things) that Wightman functions satisfy
the Spectrum Condition, which is essential to establish that complex extensions of
Wightman functions are analytic. Dütsch and Gracia-Bondía (2012, p. 429) then
observe: “ : : : to the best of our knowledge, for non-trivial realistic models one
cannot ascertain analyticity of Wightman-like functions; hence the argument a la
Jost in [Greenberg 2002] flounders.” They conclude with the following remarks:

While the assertion that PCT conservation holds for everyday interacting relativistic theories
remains plausible, to the question whether it has been proven at the required level of rigour,
the clear and present answer is: only for a class of models : : : and for none by Greenberg’s
argument. (Dütsch and Gracia-Bondía 2012, p. 429.)

Thus, as a purist attempt to extend CPT invariance to realistic interacting RQFTs,
Greenberg’s argument fails, to the extent that it fails to address the obstacle to
extending the standard axiomatic proof of CPT invariance to realistic interacting
RQFTs; namely, the Problem of Empirical Import. One way to express this failure
is the observation that simply replacing Wightman functions with !-functions does
not automatically convert a theory that satisfies CPT invariance according to the
axiomatic proof into a realistic interacting theory.

Does Greenberg’s argument fair any better as a pragmatist attempt to extend CPT
invariance to realistic interacting RQFTs? It appears that pragmatists have good
reason to reject both Premises I and II. Consider, first, how a pragmatist might view
Premise I. In Weinberg’s approach, for instance, we have the following implications
(Weinberg 1995, pp. 144–145)s:

.Hint.x/ is RLI and commutes at spacelike separations/) .!-functions of Hint.x/are RLI/

) .RLI of S-matrix/

where Hint(x) is the theory’s interaction Hamiltonian density.12 Thus if an RQFT
is identified with its S-matrix, then a violation of RLI of its !-functions does
not necessarily entail a violation of RLI of the theory. This immediately blocks
Greenberg’s argument without further discussion. On the other hand, if an RQFT is
identified with its Hamiltonian density, then a violation of RLI of its !-functions
entails either the theory violates RLI, or it is nonlocal (in the sense that its
Hamiltonian density does not commute at spacelike separations). Thus a way is
still open for this type of pragmatist to avoid Greenberg’s argument, too.13

12The first entailment is based on the fact that the time-ordering of two points is RLI unless the
points are spacelike separated. Thus if a field is RLI, then so are time-ordered products of it, except
when it is evaluated at spacelike separated points. But if the field commutes when it is evaluated at
spacelike separated points, then time-ordering will not violate RLI even at such points. This also
holds for sums of products of fields, and hence for Hint(x). The second entailment follows since
if time-ordered products of Hint(x) are RLl, then so is the S-matrix in the form (1), since all other
quantities in (1) are manifestly RLI.
13Chaichian et al. (2011, p. 178) provide examples of non-local interaction Hamiltonian densities
that are restricted Lorentz invariant and violate CPT invariance (thanks to a referee for pointing
this out).
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Two observations perhaps should be made at this point. First, note that one can
adopt either of these options (i.e., identifying an RQFT with its S-matrix or with
its Hamiltonian density) and still be faced with the pragmatist’s Existence Problem.
One is still faced with the question of whether a given S-matrix is well-defined in any
of the pragmatist senses listed in Sect. 3, or if a given Hamiltonian density entails
a well-defined S-matrix in these senses. Second, one might argue that the type of
RQFTs of interest should be local (in the sense that their Hamiltonian densities
commute at spacelike separations), and/or should be such that the condition of
RLI of time-ordered products of their Hamiltonian densities is both necessary and
sufficient for RLI of their S-matrix. But more must be said on both points for
Greenberg’s argument to gain initial traction for pragmatists.14

With respect to Premise II, pragmatists can justify the existence of realistic
interacting !-functions, not by providing provisos concerning the possibility of
constructing realistic interacting models of a set of axioms, but rather by employing
the Gell-Mann/Low formula (3). However, this confronts them with the Existence
Problem. In particular, the Gell-Mann/Low formula requires a perturbative power
series expansion of relevant quantities, and this expansion, even after it has been
regularized and renormalized, fails to converge for the theories of interest. Thus,
with respect to Premise II, Greenberg’s argument is on the same shaky foundations
for pragmatists as it is for purists. This problem makes its explicit appearance for a
pragmatist in the second entailment in Greenberg’s derivation (6) of Premise II. The
technical difficulty in this case is that realistic interacting !-functions obtained from
the Gell-Mann/Low formula do not satisfy the Spectrum Condition.15

The upshot of this discussion is that, considered as either a purist or a pragmatist
attempt to extend CPT invariance to realistic interacting fields, Greenberg’s claim
faces the Existence Problem. While his demonstration is insightful in uncovering
connections between Lorentz invariance and CPT invariance in abstract objects
like !-functions and Wightman functions, both purists and pragmatists should be
hesitant in extending these observations to concrete things like realistic interacting
RQFTs.

14Here is another concern about the feasibility of Premise I in pragmatist approaches. If an
interacting RQFT is in the business of calculating S-matrix elements, then ! -functions play an
important role, as the discussion of the LSZ and Gell-Mann/Low formulas indicated, and this seems
to make Premise I initially plausible. However, if there are other methods for calculating S-matrix
elements that do not rely on ! -functions, and, moreover, if there are other testable predictions of
RQFTs that can be derived without the use of ! -functions, then Premise I will again loose traction
with pragmatists.
15For the purist, this problem manifested itself in the fact that currently there are no examples of
realistic interacting ! -functions in the form of well-defined analytic functions. For the pragmatist
who allows ! -functions to take the form of divergent power series expansions obtained via the Gell-
Mann/Low formula, the problem is that such expressions do not satisfy the Spectrum Condition
(in the sense that the fields that occur in them do not satisfy the Spectrum Condition).
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5 Conclusion

This essay has used the debate between purists and pragmatists to critically examine
Greenberg’s (2002) claim that a violation of CPT invariance in an interacting RQFT
entails a violation of Lorentz invariance. Section 2 revealed the extent to which
purist and pragmatist versions of the CPT theorem extend to realistic interacting
RQFTs. In both cases, this extent is constrained by what Sect. 3 called the Existence
Problem; namely, the problem of articulating an appropriate notion of existence
for a QFT, and then demonstrating that this notion holds for realistic interacting
RQFTs. Purists can be characterized by their adoption a notion of existence that
requires the existence of a model of an appropriate set of axioms, and the Existence
Problem then becomes the task of constructing such a model for realistic interacting
RQFTs. Pragmatists can be characterized by their adoption of a weaker notion of
existence (convergence, renormalizability, existence of a UV fixed point, etc.), and
the Existence Problem then becomes the task of demonstrating that their preferred
notion holds for the types of realistic interacting RQFTs of interest. Greenberg’s
claim was shown in Sect. 4 to suffer from a failure to address the Existence Problem,
in either its purist or its pragmatist form.
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