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Abstract

In this essay, I examine the curved spacetime formulation of Newtonian gravity known as

Newton–Cartan gravity and compare it with flat spacetime formulations. Two versions of

Newton–Cartan gravity can be identified in the physics literature—a ‘‘weak’’ version and a

‘‘strong’’ version. The strong version has a constrained Hamiltonian formulation and con-

sequently a well-defined gauge structure, whereas the weak version does not (with some

qualifications). Moreover, the strong version is best compared with the structure of what Earman

(World enough and spacetime. Cambridge: MIT Press) has dubbed Maxwellian spacetime. This

suggests that there are also two versions of Newtonian gravity in flat spacetime—a ‘‘weak’’

version in Maxwellian spacetime, and a ‘‘strong’’ version in Neo-Newtonian spacetime. I

conclude by indicating how these alternative formulations of Newtonian gravity impact the

notion of empirical indistinguishability and the debate over scientific realism.
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1. Introduction

The standard way of formulating Newton’s theory of gravity is as the theory of a
gravitational field in a background spacetime. The latter is normally taken to be flat
Neo-Newtonian spacetime, the spacetime characterized by automorphisms belong-
ing to the Galilei group (the symmetry group for Newtonian dynamics). Newtonian
gravity can also be given a curved spacetime formulation by geometricizing the
gravitational field and incorporating it into the curvature tensor in a manner similar
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to general relativity. This geometricized version of the theory was first described by
Cartan and is usually referred to as Newton–Cartan gravity (NCG, hereafter). While
it has been given considerable attention in the philosophical literature (see, e.g.,
Earman & Friedman, 1973; Friedman, 1983; Earman, 1989; Malament, 1986, 1995;
Norton, 1995), I think it deserves a second look, for a number of reasons.
First, the philosophical literature does not reflect the current state of affairs in the

physics literature. At least two versions of NCG have appeared in the latter, and these
versions affect the status of NCG as an alleged example of empirical indistinguish-
ability. Some authors have claimed that NCG and the standard formulation of
Newtonian gravity make identical empirical claims, but subscribe to different
ontologies; hence they count as a non-trivial example of empirically indistinguishable
theories. This claim is significant in the debate over scientific realism. In particular, an
anti-realist may question whether a realist interpretation of Newtonian gravity is
possible, given that there are non-trivial empirically indistinguishable versions of it.
However, if the standard formulation is only recoverable from NCG under the
imposition of certain constraints, and if these constraints effectively reduce the
ontology of NCG to the ontology of the standard formulation, then perhaps they are
not significantly different after all. In particular, perhaps NCG, so-constrained, is
simply the standard formulation in disguise. I will claim that this is not the case—that
NCG and the standard formulation, appropriately construed, are legitimate non-
trivial examples of empirically indistinguishable theories. But this will involve
distinguishing between different versions of NCG, as well as different versions of the
standard formulation. In particular, it will be seen that ‘‘non-geometricized’’
Newtonian gravity can also be formulated in background spacetimes with less
structure than Neo-Newtonian spacetime, and that one version of NCG is the
legitimate empirically indistinguishable partner to these theories.
Second, while the symmetries of the standard formulation of Newtonian gravity

are relatively straight-forward, those for NCG are, at best, open to debate. Most
authors agree that NCG has a gauge structure represented explicitly by a freedom in
choosing how to distinguish inertial trajectories from gravitationally accelerated
trajectories. But how this gauge structure relates to the standard formulation is a bit
cryptic, as is how it relates to other notions of gauge symmetry. In particular,
Earman (2002, p. S218) observes that NCG cannot be derived from an action
principle; hence, it cannot be formulated as a constrained Hamiltonian system, and
to the extent that gauge talk is talk about constrained Hamiltonian systems, gauge
talk cannot characterize NCG. On the other hand, a version of NCG as a purported
Yang–Mills-type theory has been proposed in the physics literature, primarily by
Duval and K .unzle (1984). These authors claim that NCG is characterized not by any
single symmetry group, but by numerous nested symmetries. Moreover, Christian
(1997, 2001) has recently presented a version of NCG formulated explicitly as a
constrained Hamiltonian system (which is then transformed into a constraint-free
Hamiltonian system by solving for all the constraints). These different versions need
to be sorted out. In particular, I will indicate how Christian’s version (‘‘strong’’
NCG) differs from previous versions (‘‘weak’’ NCG), and how these versions relate
to standard formulations of Newtonian gravity in background spacetimes.
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Section 2 sets the stage by characterizing three types of classical spacetimes in
terms of conditions placed on the curvature tensor. Section 3 looks at theories of
Newtonian gravity obtained by placing a Newtonian gravitational field in a
background classical spacetime. Section 4 looks at theories of Newtonian gravity
obtained by geometricizing the Newtonian gravitational field and making it a part of
the background spacetime structure. Finally, Section 5 summarizes the relationships
between these theories, identifies among them legitimate instances of empirical
indistinguishability, and indicates the impact this discussion has on the debate over
scientific realism.

2. Classical spacetimes

The theories of Newtonian gravity considered below will be distinguished in terms
of the spacetime structure they posit. Such structure takes the form of privileged
global frames of reference, which may be identified intrinsically with congruences
of smooth timelike worldlines. In the absence of gravity and other forces, one
may identify various classical spacetimes by the frames they minimally admit and
the associated group of symmetry transformations between these frames. In this
section, I will review three such spacetimes, what Earman (1989, Chapter 2) refers
to as Leibnizian spacetime, Maxwellian spacetime, and Neo-Newtonian spacetime.
Earman characterizes these spacetimes extrinsically in terms of coordinate trans-
formations between their privileged reference frames. The approach taken below
will be to characterize these spacetimes intrinsically by conditions placed on the
curvature tensor. This will help to clarify the subsequent discussion of theories of
gravity.
To begin, following Malament (1986, p. 183; 1995, p. 493), I will take a classical

spacetime to be a structure (M ; hab; ta; ra), where M is a smooth differentiable
manifold, hab is a symmetric tensor field onM with signature ð0; 1; 1; 1Þ identified as
a degenerate spatial metric; ta is a covariant vector field on M which induces a
degenerate temporal metric tab ¼ tatb with signature ð1; 0; 0; 0Þ; and ra is a smooth
derivative operator associated with a connection on M :1 These objects are required
to satisfy the following conditions:

habtb ¼ 0 ðorthogonalityÞ; ð1Þ

rchab ¼ 0 ¼ ratb ðcompatibilityÞ: ð2Þ

As explained in detail by Malament, such a structure serves as the basis for a
classical theory of motion in the following manner. The vector field ta assigns a
temporal length to all vectors and thus allows a distinction between timelike and
spacelike vectors. The signature of hab and condition (1) entail that the subspace of
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spacelike vectors is three-dimensional. Condition (2) entails that ta is closed,
so a global time function t exists (given that M is well-behaved topologically).
These facts allow M to be decomposed into instantaneous three-dimensional
spacelike hypersurfaces St parametrized by t: Particle trajectories can be associated
with timelike curves g; i.e., curves with everywhere timelike tangent vectors.
Such curves can be parametrized by t by requiring their tangent vector fields xa to
satisfy tax

a ¼ 1: These tangent fields xa can then be identified as the four-velocity
associated with g: The four-acceleration associated with g is then given by
xarax

b: The compatibility condition (2) entails that such four-accelerations are
spacelike. Finally, the spatial metric hab assigns a spatial length to spacelike vectors
but it does not assign spatial lengths to timelike vectors.2 This allows accelera-
tion magnitudes to be assigned to particle trajectories but not, in general, velocity
magnitudes, and this is minimally what a classical Galilean-invariant theory of
motion requires.
At this point, nothing has been assumed about the nature of the connection

and, hence, about the curvature of such classical spacetime models. In fact,
unlike the Riemannian case in which the compatibility condition ragab ¼ 0
on a Lorentzian metric gab uniquely determines the connection, conditions (1) and
(2) fail to uniquely determine a classical connection.3 Thus, one way to further
categorize classical spacetimes is by how they place restrictions on the curvature
tensor.

Curvature constraints: For a given connection, there is an associated curvature
tensor Ra

bcd defined by Ra
bcdxcydzb ¼ rcðrdzaydÞxc �rcðrdzaxd Þyc; for arbitrary

vector fields xc; yd ; zb (here and throughout, the torsion is assumed to vanish
identically). Geometrically, Ra

bcdxcydzb measures the difference in zb upon parallel
transport along a (small) closed curve defined by xc and yd : Thus, the condition
Ra

bcdxcydzb ¼ 0 for arbitrary xc; yd ; zb represents path independence of parallel
transport of an arbitrary zb along an arbitrary closed curve; in other words: complete
path independence of parallel transport. This condition is associated with spacetime
flatness and is given by the vanishing of the curvature tensor Ra

bcd ¼ 0: A slightly less
restrictive constraint on the curvature occurs when zb is required to be spacelike,
while xc and yd are left arbitrary. In this case, zb ¼ hbeoe for some 1-form oe (see
footnote 2) and the condition 0 ¼ Ra

bcdxcydhbeoe ¼ Rae
cd xcydoe represents path

independence of parallel transport for spacelike vectors. Here use has been made
of the fact that, while hab cannot be used to lower indices, it can be used to raise
them. So, for instance, hebRa

bcd can be written as Rae
cd : Again, for arbitrary xc; yd ; and

arbitrary spacelike zb; the preceding condition is equivalent to Rae
cd ¼ 0: In a similar
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vein, the condition Rabcd ¼ 0 represents path independence of parallel transport of
spacelike vectors along closed spacelike curves. To summarize:

Rabcd ¼ 0 ðspatial flatness: spacelike vector fields remain unchanged

under parallel transport on spacelike hypersurfacesÞ; ð3Þ

Rab
cd ¼ 0 ðrotation standard: spacelike vector fields remain unchanged

under parallel transport everywhereÞ; ð4Þ

Ra
bcd ¼ 0 ðspacetime flatness: arbitrary vector fields remain unchanged

under parallel transport everywhereÞ: ð5Þ

As restrictions on the curvature tensor, (5) is strongest and (3) weakest, in the sense
that (5)) (4)) (3). Malament (1986, 1995) refers to condition (3) as spatial flatness,
in so far as imposing it on a classical spacetime entails that the three-dimensional
spacelike hypersurfaces parametrized by the global time function are flat (i.e.,
‘‘space’’ is Euclidean). Condition (4) is equivalent to specifying a standard
of rotation (see Section 2.2).4 Briefly, it requires spacelike vector fields to be
covariantly constant throughout spacetime in general (and not just on spacelike
hypersurfaces). Hence, it requires spacelike surfaces in M to be ‘‘parallel’’
in the sense that the timelike ‘‘rigging’’ between these surfaces is hypersurface
orthogonal. This prohibits ‘‘twisting’’ of the rigging; thus the privileged frames
adapted to the rigging are non-rotating with respect to each other (but, as will be
seen, can have arbitrary relative acceleration). In this vein, condition (5) not only
prohibits relative rotation between adapted frames, but also requires linearity in the
time-dependency of translations between such frames; thus it prohibits relative
acceleration.
In the remainder of this section, I will distinguish Leibnizian, Maxwellian, and

Neo-Newtonian spacetimes in terms of the above three curvature constraints.

2.1. Leibnizian spacetime

Leibnizian spacetime is the classical spacetime with just enough structure to
minimally support the existence of rigid Euclidean, arbitrarily rotating, and
arbitrarily accelerating reference frames (hereafter referred to as Leibnizian frames).
It can be defined as the classical spacetime satisfying

(1) habtb ¼ 0 (orthogonality),
(2) rch

ab ¼ 0 ¼ ratb (compatibility),
(3) Rabcd ¼ 0 (spatial flatness).

The symmetries of Leibnizian spacetime so defined are generated by vector fields xa

that Lie-annihilate the ‘‘absolute objects’’ hab; ta; and Gabc ¼ hcehbdGa
bc; where G

abc
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can be viewed as the spatial part of the connection.5 In particular, the conditions
Lxhab ¼ Lxta ¼ LxGabc ¼ 0 generate an infinite-dimensional Lie group known as the
Leibniz group (Leib),6 which, in terms of coordinates adapted to xa; consists of
transformations of the form:

xi-x0i ¼ Ri
jðtÞx

j þ aiðtÞ; i; j ¼ 1; 2; 3;

(Leib)

t-t0 ¼ t þ c;

where Ri
jðtÞASOð3Þ is an orthogonal rotation matrix for each tAR; aiðtÞAR3 are

arbitrary functions of t; and cAR is a constant. To see that these are transformations
between rigid Euclidean, arbitrarily rotating, and arbitrarily accelerating reference
frames, one can first calculate the connection components in ‘‘Leibnizian
coordinates’’ to obtain:7

G
0i
00 ¼ Ri

m
.Rm

j x0j þ Ri
m .am; G0i

j0 ¼ Ri
m
’Rm

j ; G0a
bg ¼ 0 otherwise; ð6Þ

where am ¼ Rm
j aj and the dot denotes differentiation with respect to t: The path of a

particle with zero four-acceleration xarax
b ¼ 0 is then given by

.xi þ Ri
m
.Rm

j xj þ Ri
m .am þ Ri

m
’Rm

j ’xj ¼ 0:

This indicates that acceleration and rotation are relative in Leibnizian frames: Any
non-zero linear acceleration term on the RHS can be absorbed by an appropriate
choice of the functions .amðtÞ on the LHS, and any non-zero rotational acceleration
term on the RHS can likewise be absorbed by an appropriate choice of the matrices
’Ri

jðtÞ on the LHS. From a geometric point of view, the degrees of freedom in
specifying these functions represent the inability of a Leibnizian connection to
distinguish between ‘‘straight’’, ‘‘curved’’, and ‘‘twisted’’ particle trajectories. (In the
more familiar context of Neo-Newtonian spacetime (Section 2.3), the second, third
and fourth terms on the LHS of the equation of motion above are interpreted as due
to centrifugal, linear, and coriolis inertial forces, respectively.)
Note, finally, that conditions (1) and (2) do not guarantee that the constant t

spatial slices are flat. This guarantee is secured only with the addition of condition
(3). Compatibility of the spatial metric (2), for instance, only guarantees rigidity in
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constant along the integral curves of the former. Hence, the transformations generated by xa leave the

objects hab; ta; and Gabc invariant. In this sense, these objects encode the structure of the frames defined by

these transformations and, hence, the structure of the associated spacetime.
6This terminology follows Earman (1989, p. 31), who associates these transformations with the

spacetime structure proposed in the writings of Leibniz. In the physics literature, this group has been

referred to as the Coriolis group (Duval, 1993, p. 2218), or the kinematical group (K .unzle, 1972, p. 347).
7This follows upon substitution of (Leib) into the general transformation rule for the connection

components

G0a
bg ¼

@2xs

@x0
g@x0

b
þ

@x0
u

@x0
g

@x0
m

@x0
b
Gs
mu

 !
@x0

a

@xs

and setting Gs
mu ¼ 0: Physically, we pick an arbitrary rigid, non-rotating, geodetic frame in which the

connection components vanish, and then perform a Leibniz transformation on it.
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the sense that, if two timelike worldlines are at rest relative to each other, then the
spatial distance between them remains constant (think of the worldlines as endpoints
of a measuring rod).8 It does not, in particular, guarantee that the state of relative
rest of the endpoints can be determined.

2.2. Maxwellian spacetime

Maxwellian spacetime is the classical spacetime with just enough structure to
minimally support the existence of rigid Euclidean, non-rotating, and arbitrarily
accelerating reference frames (hereafter referred to as Maxwellian frames9). It can be
defined as the classical spacetime satisfying

(1) habtb ¼ 0 (orthogonality),
(2) rchab ¼ 0 ¼ ratb (compatibility),
(4) Rab

cd ¼ 0 (rotation standard).

The symmetries of Maxwellian spacetime are generated by vector fields xa satisfying
Lxhab ¼ Lxta ¼ LxGab

c ¼ 0; where Gab
c ¼ hbdGa

bc can be viewed as the rotation part of
the connection. One obtains an infinite dimensional Lie group referred to as the
Maxwell10 group (Max) with coordinate representation given by

xi-x0i ¼ Ri
jx

j þ aiðtÞ; i; j ¼ 1; 2; 3;

(Max)

t-t0 ¼ t þ c;

where Ri
jASOð3Þ is a constant orthogonal rotation matrix, aiðtÞAR3 are arbitrary

functions of tAR; and cAR: Maxwellian transformations consist of transformations
between rigid Euclidean, non-rotating, and arbitrarily accelerating reference
frames, as can be seen by the following. The connection components in Maxwellian
coordinates are

G0i
00 ¼ Ri

m .am; G0a
bg ¼ 0 otherwise: ð7Þ

The path of a particle with zero four-acceleration xarax
b ¼ 0 is thus given in

Maxwellian coordinates by

.xi þ Ri
m .am ¼ 0:

This indicates that acceleration is relative in Maxwellian frames: Any non-zero linear
acceleration term on the RHS can be absorbed into the functions .amðtÞ: Rotation
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spacelike vector fields along arbitrary timelike curves is constant’’ (Malament, 1986, p. 186). In other
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Kuchar, 1980).
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spacetime structure proposed in the writings of James Clerk Maxwell. In the physics literature, this group

is referred to as the Milne group after Milne’s work in Newtonian cosmology (Duval, 1993, p. 2218).
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terms, however, cannot be so-absorbed, hence rotation is not relative. From a
geometric point of view, the degrees of freedom in specifying the .amðtÞ represent the
inability of a Maxwellian connection to distinguish between ‘‘straight’’, and ‘‘curved’’
particle trajectories. Unlike a Leibnizian connection, however, a Maxwellian
connection can distinguish ‘‘twisted’’ from ‘‘non-twisted’’ particle trajectories.
Note that (7) follows immediately from (6) by setting the term ’Rm

j ¼ 0 and thus
removing the time dependency of the rotation matrices in (Leib). Maxwellian frames
may be rotated by a constant amount relative to each other, but they cannot be in
rotation (constant or accelerated) with respect to each other over time.

2.3. Neo-Newtonian spacetime

Neo-Newtonian spacetime is the classical spacetime with just enough structure to
minimally support the existence of rigid Euclidean, non-rotating and non-
accelerating reference frames (hereafter referred to as Neo-Newtonian frames). It
can be defined as the classical spacetime satisfying

(1) habtb ¼ 0 (orthogonality),
(2) rchab ¼ 0 ¼ ratb (compatibility),
(5) Ra

bcd ¼ 0 (spacetime flatness).

The symmetries of Neo-Newtonian spacetime are generated by vector fields xa

satisfying Lxhab ¼ Lxta ¼ LxGa
bc ¼ 0: One obtains a 10-parameter Lie group referred

to as the Galilei group (Gal) with coordinate representation given by

xi-x0i ¼ Ri
jx

j þ vit þ di; i; j ¼ 1; 2; 3;

(Gal)

t-t0 ¼ t þ c;

where Ri
jASOð3Þ is a constant orthogonal rotation matrix, vi; diAR3 and cAR:

Galilei transformations are transformations between rigid Euclidean, non-rotating,
and non-accelerating reference frames: In Neo-Newtonian components, the
connection takes the familiar form Ga

bg ¼ 0: Hence, the path of a particle with zero
four-acceleration xarax

b ¼ 0 is given in Neo-Newtonian coordinates by

.xi ¼ 0:

Any acceleration terms, linear or rotational, that may appear on the RHS cannot be
absorbed by appropriate adjustment of parameters on the LHS (there are no degrees
of freedom available); hence, acceleration and rotation are absolute in Neo-
Newtonian frames. A Neo-Newtonian connection can distinguish between
‘‘straight’’, ‘‘curved’’ and ‘‘twisted’’ particle trajectories.

3. Newtonian gravity in classical spacetimes

Theories of Newtonian gravity in classical spacetimes are obtained by adding a
Newtonian gravitational field to a particular classical spacetime. In such theories,
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one can distinguish between absolute geometrical object fields—those objects that
encode the structure of the given classical spacetime; and dynamical geometric object
fields—those objects that encode the dynamics of the particular theory. In this
context, such objects represent the material contents of the spacetime. Two types of
symmetries can thus be identified: spacetime symmetries are the automorphisms of
the given spacetime, while dynamical symmetries are the symmetries of the
differential equations that hold between the dynamical objects of the theory.

3.1. Newtonian gravity in Neo-Newtonian spacetime

Newtonian gravity in Neo-Newtonian spacetime, Neo-Newt NG for short, is
obtained by adding a Newtonian gravitational field to Neo-Newtonian spacetime.
Dynamically possible models of Neo-Newt NG are of the form (M; hab; ta; ra; f; r),
where (M; hab; ta; ra) is Neo-Newtonian spacetime, and f and r are scalar fields
representing the Newtonian gravitational potential and the mass density, respec-
tively. The field equations are

ð1Þ habtb ¼ 0 ðorthogonalityÞ;

ð2Þ rch
ab ¼ 0 ¼ ratb ðcompatibilityÞ;

ð5Þ Ra
bcd ¼ 0 ðspacetime flatnessÞ;

habrarbf ¼ 4pGr ðPoisson equationÞ;

ð8Þ

where G is the Newtonian gravitational constant. The equation of motion is

xarax
b ¼ �habraf ð9Þ

for particle trajectories with four-velocity xa: The spacetime symmetries of Neo-
Newt NG are the symmetries of Neo-Newtonian spacetime, namely (Gal). The
dynamical symmetries are symmetries of the equation of motion (9), i.e.,
transformations that send solutions of (9) to other solutions. These are transforma-
tions that leave (9) covariant in Neo-Newtonian reference frames, i.e., frames in
which (9) takes the form .xi ¼ �hij@f=@xj : The most general such transformations are
elements of (Max) together with the transformation f/f0 ¼ f� xi .ai þ jðtÞ; where
j is an arbitrary function of t:
Neo-Newt NG faces the following conceptual problem (see, e.g., Friedman, 1983,

p. 96). The theory states that there are preferred non-accelerating reference frames,
i.e., Neo-Newtonian frames. Accordingly, from the point of view of spacetime
structure, there is a distinction between these non-accelerated frames and arbitrarily
accelerated frames. However, from the point of view of the dynamics, such a
distinction cannot be made. To see this, suppose we perform a (Max) transformation
on the Neo-Newtonian frame xa to obtain a frame x0a that is arbitrarily accelerating
with respect to xa: In this new frame, the equation of motion (9) becomes .x

0i ¼
�hij@c=@x0j ; where c ¼ f� x0i .ai: From the point of view of the dynamics, f and c
are indistinguishable: if f is a solution to (8) and (9), then so is c: Hence, from the
point of view of the dynamics, Neo-Newtonian frames cannot be made distinct from
Maxwellian frames (in the presence of only gravitational forces)—the dynamics
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cannot distinguish between f and c; and thus cannot distinguish between the
gravitational equation of motion in a Maxwellian frame with gravitational potential
c; from the gravitational equation of motion in a Neo-Newtonian frame with
gravitational potential f: In other words, gravitationally accelerated motion cannot
be made distinct from non-accelerated motion.
Such a distinction can be made if we impose an additional constraint on f;

namely, that it vanish at spatial infinity: f-0 as xi-N: Formally, this entails that
.ai ¼ 0; and thus reduces the covariance group of (9) to (Gal) plus the transformation
f/f0 ¼ fþ jðtÞ: Physically, this assumption entails that all the matter in the
universe is concentrated in a finite region of space. This may be called the ‘‘island
universe’’ assumption, after Misner, Thorne, and Wheeler (1973, p. 295).
Without this additional constraint, Neo-Newt NG suffers from not being well-

tuned: its spacetime symmetries (Gal) are smaller than its dynamical symmetries
(Max þf-transformations). Hence, it posits unobservable spacetime fluff; namely, a
connection that can distinguish between ‘‘inertial’’ (viz., non-accelerated) motion
and gravitationally accelerated motion. To obtain a well-tuned theory, one can fiddle
with either the spacetime structure or the dynamics. The dynamics is independently
supported by evidence for the equivalence principle (which, in one version, states just
that inertial motion is indistinguishable from gravitationally accelerated motion).
This indicates that spacetime fiddling is to be preferred. In particular, perhaps
moving to Maxwellian spacetime will tune the fiddle.

3.2. Newtonian gravity in Maxwellian spacetime

Newtonian gravity in Maxwellian spacetime, Max NG for short, is obtained by
adding a Newtonian gravitational field to Maxwellian spacetime. Dynamically
possible models of Max NG are of the form (M ; hab; ta; ra; f; r), where (M ; hab; ta;
ra) is Maxwellian spacetime, and f and r are scalar fields representing the
Newtonian gravitational potential and the mass density, respectively. The field
equations are

(1) habtb ¼ 0 (orthogonality),
(2) rch

ab ¼ 0 ¼ ratb (compatibility),
(4) Rab

cd ¼ 0 (rotation standard),
(8) habrarbf ¼ 4pGr (Poisson equation),

where G is the Newtonian gravitational constant. The equation of motion is

(9) xarax
b ¼ �habraf

for particle trajectories with four-velocity xa: The spacetime symmetries of Max NG
are (Max). The dynamical symmetries should leave (9) covariant in Maxwellian
frames in which it takes the form .xi þ Ri

m .am ¼ �hij@f=@xj : The most general type of
transformation that does this is an element of (Max) with the f-transformation
f/f0 ¼ f� xi .ai þ jðtÞ; where j is an arbitrary function of t:
On first glance, Max NG appears more in tune than Neo-Newt NG in so far as its

spacetime symmetries agree with its dynamical symmetries (up to arbitrary j). It
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turns out, however, that this alone does not solve the problem afflicting Neo-Newt
NG. Max NG still posits an in-principle unobservable distinction between non-
accelerated motion and gravitationally accelerated motion. This is due to the fact
that, on the one hand, the theory explicitly posits the existence of a gravitational
potential field f as the cause of gravitationally accelerated motion; hence, from the
point of view of the dynamics, non-accelerated frames are distinct from
gravitationally accelerated frames by the absence of f in the former. On the other
hand, this distinction is in-principle unobservable since, from the point of view of the
spacetime, f can always be transformed away: For any value of f; one can always
define a new set of Maxwellian frames by Ri

m .am ¼ �hij@f=@xj :
The problem with Max NG is that its spacetime degrees of freedom do not ‘‘mesh’’

with its dynamical degrees of freedom. Formally, the arbitrary functions aiðtÞ are not
explicitly identified by Max NG with the gravitational potential. Simply put, Max
NG does not incorporate a principle of equivalence. Doing so paves the way to the
geometricized version of Newtonian gravity known as NCG.

4. Newton–Cartan gravity

NCG identifies the trajectories of objects in free fall (experiencing no other force
than the gravitational field) with the geodesics of a non-flat connection. This is done
explicitly in two steps: First, one replaces the Poisson equation (8) with a generalized
Poisson equation

Rc
abc ¼ Rab ¼ 4pGrtatb; ð10Þ

which identifies the source r of the Newtonian gravitational potential with the
curvature tensor Ra

bcd : Second, one replaces the equations of motion (9) with the
geodesic equation for the connection associated with Ra

bcd

xarax
b ¼ 0 ð11Þ

for particle trajectories with four-velocity xa:
At this point, several observations are pertinent. First, the problem afflicting Max

NG does not occur in NCG. In effect, the gravitational potential has been absorbed
into the curvature of the spacetime; hence, the equation of motion for particles, given
by (11), does not posit the existence of a physical gravitational field whose influences
are indistinguishable from non-accelerated motion. Rather, non-accelerated motion
now includes the special case of ‘‘gravitationally accelerated’’ motion. (As will be
seen, the distinction between non-accelerated motion and ‘‘gravitationally acceler-
ated’’ motion is still in-principle unobservable. What (10) and (11) effect is simply the
explicit elimination of the gravitational potential term from the equation of motion.)
Second, the generalized Poisson equation (10) indicates that the NCG connection

is dynamic in the sense that it is determined in part by the mass density r: On the
other hand, note that not all of it is dynamic: a large part of it remains absolute (in
the sense of being independent of matter terms). Just how much remains absolute is
important in so far as this will determine what the spacetime symmetries of NGC
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are. Unlike general relativity, NGC does have absolute spacetime structure that
remains unaffected by matter. In particular, part of the NGC connection contributes
to this absolute spacetime structure.
It turns out that there is some lee-way in implementing this geometrization

procedure. For a given derivative operator ra and a scalar function f; the
compatibility and orthogonality constraints (1), (2), pick out a unique connection
given by G0a

bc ¼ Ga
bc þ hadrdftbtc that satisfies x

ar0
ax

b ¼ 0 if and only if xarax
b ¼

�habrbf; for any unit timelike vector field xa (Malament, 1995, p. 498). In general,
ra may be an arbitrary classical connection. In the special case in which ra is Neo-
Newtonian (i.e., spatiotemporally flat), the new connection associated with r0

a

satisfies further constraints. In general, however, it need not. These additional
constraints become important in considering geometricized theories that are the
‘‘Newtonian limit’’ of general relativity, or that reproduce, for instance, the standard
form of the Poisson equation (8). Thus, there arises the possibility of different
versions of NCG, depending on what additional constraints one imposes on the
curvature. In what follows, I will consider two versions; what I will refer to as weak
NCG and strong NCG. I will be primarily concerned with their relationship to each
other and to the theories of Newtonian gravity in classical spacetimes described
above.

4.1. Weak NCG

Versions of weak NCG that have appeared in the physics literature include K .unzle
(1972), Duval and K .unzle (1984), K .unzle and Duval (1994), and De Pietri, Lusanna,
and Pauri (1995). In the following, I will first characterize the features common to all
these presentations and then look briefly at the version given in Duval and K .unzle
(1984).
Weak NCG can be characterized by dynamically possible models of the form (M;

hab; ta; ra; r). Here the dynamical objects are a scalar field mass density r; and part
of a connection associated with the derivative operator ra: The absolute objects
include the spatial metric hab; the temporal metric defined by ta; and part of the
connection associated with ra: These objects are required to satisfy the following
field equations:

(1) habtb ¼ 0 ðorthogonalityÞ;
(2) rchab ¼ 0 ¼ ratb ðcompatibilityÞ;
(10) Rc

abc ¼ Rab ¼ 4pGrtatb ðgeneralized Poisson equationÞ;
(11) xarax

b ¼ 0 ðequation of motionÞ;
R

½a c

½b d
 ¼ 0 (Curl-freeness).11 (12)

As indicated above, conditions (10) and (11) implement the equivalence principle.
Again, together they imply that particles experiencing forces with mass density
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11Explicitly, Rac
bd ¼ Rca

db with indices raised by hab: The label ‘‘curl�freeness’’ is explained below.
Some early presentations of NCG impose a slightly weaker condition R

½a c

ðb dÞ ¼ 0 (K .unzle, 1972, p. 350;

Misner et al.,1973, p. 301).
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sources follow geodesics of the weak NCG connection. This entails that gravitational
acceleration terms in the equations of motion can always be absorbed; hence
gravitational accelerations are relative.
Condition (12) is an additional constraint on the connection that can be motivated

in a number of ways. First, Dixon (1975) has shown that it is the only additional
constraint that is consistent from a group theoretic point of view with conditions (1),
(2), and (10). Second, it is necessary in demonstrating that weak NCG is the c-N

limit of general relativity.12 Third, it goes part way in allowing recovery of the
standard formulation of Newtonian gravity in Neo-Newtonian spacetime (Neo-
Newt NG). This last motivation will become important in the discussion of Strong
NCG in the next section, so it bears fleshing out. The following is adapted in slightly
modified form from K .unzle (1972, pp. 351–352).
To recover Neo-Newt NG from weak NCG, one can first show that conditions (1)

and (2) determine the connection up to an arbitrary 2-form Fab: In particular, given
(1) and (2), the connection components can be decomposed according to

Ga
bc ¼

uG a
bc þ tðbFcÞdhda; ð13Þ

where uGa
bc is the unique connection for which the arbitrary unit timelike vector field

ua is geodetic, ua uGaub ¼ 0; and curl-free, ha½b urauc
 ¼ 0:13 Condition (12) requires
locally that the 2-form be closed: r½aFbc
 ¼ 0 (in this sense, it imposes a ‘‘curl-free’’
condition). It follows that, locally, it can be given by Fab ¼ 2r½aAb
 for arbitrary 1-
form Ab: Hence, a connection satisfying (1), (2) and (12) is determined up to an
arbitrary 1-form Aa: Intuitively, such a 1-form does not uniquely determine a scalar
function that we could associate with the Newtonian gravitational potential. To see
this more concretely, choose a coordinate chart adapted to the temporal and spatial
metrics.14 The connection components are then given by

Gi
00 ¼ 2h

ikF0k; Gi
0j ¼ hikFjk; Ga

bg ¼ 0 otherwise; ð14Þ

and the components of the Ricci tensor are

R00 ¼ 2@iF
i
0 � FijF

ij ¼ 4pGr; Rab ¼ 0 otherwise: ð15Þ

If we now introduce the field Ai � 2Fi
0; condition (12) then entails @½iAj
 ¼ 0; hence,

Ai can be given locally by Ai � @if; for some scalar function f: The Ricci tensor
components then become

R00 ¼ @i@
if� FijF

ij ¼ 4pGr; Rab ¼ 0 otherwise: ð16Þ

Thus, while condition (12) allows us to introduce a scalar function f; we cannot yet
identify it as a Newtonian gravitational potential. This is only possible if we can
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12Condition (12) imposes a Riemannian symmetry on the classical connection that makes it possible to

recover it as a c-N limit of a Riemannian connection. See, e.g., Malament (1986, pp. 194–196) who

demonstrates this holds for the weaker R
½a c

ðb dÞ ¼ 0 case by way of holding for the stronger case (12).

13The ‘‘flat-for-ua’’ connection uGa
bc is given explicitly by

uGa
bc ¼ had ð@ðbuh cÞd � 1\2@d

uh bcÞ þ ua@ðbtcÞ;
where uh ab is the projection of hab relative to ua; defined by the conditions uh abhbc ¼ dc

a � tauc; and
uh abub ¼ 0 (see, e.g., K .unzle, 1972, pp. 348–349; Christian, 1997, p. 4847).
14 In such a chart ft; xig; ta ¼ ðdtÞa; ua ¼ ð@=@tÞa; and hab ¼ dijð@=@xiÞ

að@=@xjÞ
b; the latter since the

generalized Poisson equation (10) entails spatial flatness (see, e.g., Malament, 1986, p. 188).
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recover the Poisson equation (8), and this is blocked by the appearance of terms in
R00 depending on the ‘‘spatial part’’ Fij of the 2-form Fab: To recover the Poisson
equation, such terms must be forced to vanish. Two options can be considered:15

(a) We can require space to be asymptotically flat.
(b) We can impose condition (4) on the curvature. This entails we can further

specialize to Maxwellian coordinates in which Gi
0j ¼ 0:

Hence, while weak NCG is the c-N limit of general relativity, it does not
constitute the geometricized version of the standard formulation of Newtonian
gravity in Neo-Newtonian spacetime, in so far as it cannot recover the Poisson
equation (8) without the imposition of additional assumptions. Note, further, that, if
option (a) is adopted, what is recovered is not, strictly speaking, Neo Newt NG.
Option (a) is equivalent to the ‘‘island universe’’ assumption, which requires the
scalar function f to vanish at spatial infinity: f-0 as xi-N: Recall that this
assumption reduces the dynamical symmetries of Neo Newt NG from (Max) to
(Gal) (with accompanying f-transformations). Thus, strictly speaking, weak NCG
plus option (a) recovers a restricted version of Neo Newt NG.
Finally, note that conditions (1) and (2) are sufficient for an ‘‘inertial/gravitational

split’’ of the connection, up to an arbitrary timelike vector field ua: They allow us to
identify a ‘‘flat-for-ua’’ (i.e., ‘‘inertial’’) part of the connection, and a ‘‘non-flat-for-
ua’’ (i.e., ‘‘gravitational’’) part (although, strictly speaking, the ‘‘gravitational’’ part
should not be associated with Newtonian gravity, given that the Newtonian potential
cannot be recovered from it). This indicates that such a split is not sufficient to
recover the Poisson equation (8). Again, what is explicitly required for such a
recovery is an additional assumption of the form of (a) or (b) above.

4.1.1. Duval and K .unzle’s (1984) ‘‘Gauge’’ theory of weak NCG

As noted above, conditions (1), (2) and (12) only determine a weak NCG
connection up to an arbitrary 1-form Aa; or, equivalently, up to a unit timelike
vector field ua:16 This motivates Duval and K .unzle’s (1984) version of weak NCG
which identifies the degrees of freedom of the connection as a gauge given
(redundantly) by the pair ðua;AaÞ: Any other pair ðu0a;A0

aÞ reproduces the same weak
NCG connection, so long as u0a is a unit timelike vector field. Duval and K .unzle
demonstrate that this condition holds, and thus weak NCG connections are
invariant, under transformations of the following form:

ua/u0a ¼ ua þ habwb;

Aa/A0
a ¼ Aa þ @af þ wa � ðubwb þ 1=2hcdwcwdÞta; ð17aÞ
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15See K .unzle (1972, p. 352). K .unzle’s second option is to require the global condition H2ðSt;RÞ ¼ 0:
This requires holonomies on St to vanish, which is equivalent to imposing condition (4) on the curvature

tensor.
16More precisely, given a weak NCG connection and a timelike ua; then there exists a unique uG and a

1-form Aa such that the connection can be decomposed as in (13). Conversely, for every weak NCG

connection G; there exists locally a unit timelike, non-rotating, geodetic ua such that G ¼ uG: See, e.g.,
Christian (1997, p. 4849) and references therein.
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where wa is an arbitrary 1-form, and fACNðMÞ is an arbitrary scalar function.
They then formulate weak NCG as a theory given by a connection on a
principle Uð1Þ bundle, call it P; over a classical spacetime satisfying conditions
(1), (2), and (12). They construct P as a restriction of a Bargmann frame
bundle BðMÞ over M :17 It turns out that the connection on BðMÞ defines a
family of connections on P that are in 1–1 correspondence with time-like
vector fields ua on M: They thus identify a ‘‘Bargmann gauge’’ as a choice
of the pair ðua;AaÞ and identify the ‘‘gauge group’’ of weak NCG as the
group AutðBðMÞÞ of automorphisms of BðMÞ: This is given by the group
DiffðMÞ of diffeomorphisms on M together with vertical automorphisms on
the unit tangent bundle over P given by (17a) and the Uð1Þ phase factor
transformations18

w/w0 ¼ wþ f : ð17bÞ

In an earlier work (Duval & K .unzle, 1978), it was shown that suitable
conservation laws can be obtained if the general form of the matter Lagrangian
depends on the fields (hab; ta; ua; Aa) and is invariant under AutðBðMÞÞ: The
procedure is essentially an application of Noether’s 2nd Theorem and follows
the general relativistic case in which conservation of stress–energy is derived by
requiring the general form of the matter Lagrangian to be invariant under
DiffðMÞ:19 In the weak NCG case, invariance under (17a) and (17b) produces
a matter current conservation equation, and invariance under DiffðMÞ produces
a ‘‘stress–energy’’ conservation equation. In the latter case, however, the
conservation equation obtained is not in the form of the vanishing of a divergence.
In fact, as Duval and K .unzle (1984, p. 340) concede, it is only called a
‘‘stress–energy’’ equation in analogy with the relativistic case, and for concrete
weak NCG matter Lagrangians, the actual stress–energy tensor derived via
Noether’s 2nd Theorem is not AutðBðMÞÞ-invariant. This is demonstrated in
subsequent work, which established concrete matter Lagrangians for the coupling of
the weak NCG gravitational field to a complex scalar field that obeys the
Schr .odinger equation (Duval & K .unzle, 1984); for a non-relativistic analogue of
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17The Bargmann group is the projective Galilei group, i.e., the Galilei group up to an arbitrary Uð1Þ
phase (more precisely, it is the non-trivial central extension of the Galilei group). Lagrangians for Galilean

massive particles are not, in general, invariant under (Gal), containing a gauge freedom given by the non-

trivial exponents of (Gal) (see, e.g., L!evy-Leblond, 1971, pp. 254–257). Switching to the Bargmann group

thus restores invariance. The Uð1Þ bundle P is constructed as the quotient B0ðMÞ=G0ðMÞ of a
‘‘homogeneous’’ Bargmann bundle over M by a homogeneous Galilei bundle. The construction rests

ultimately on the fact that G0ðMÞ is uniquely determined by the pair ðhab; taÞ on M satisfying (1) and (2)

(see footnote 3).
18Technically, since the 1-form wa in (17a) is defined modulo ta; the vertical automorphisms must be

factored with respect to the relation waBw0
a iff w0

a ¼ wa þ sta; for arbitrary function s:
19See, e.g., Wald (1984, p. 456). Such a law is sometimes referred to as a ‘‘strong’’ conservation law. It

requires only that the gravitational field equations are satisfied, but is independent of both their explicit

form and the explicit form of the matter field equations.
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the Dirac–Maxwell theory (K .unzle & Duval, 1984); and for a perfect fluid (K .unzle &
Nester, 1984).20

4.1.2. The status of weak NCG as a Gauge theory

Duval and K .unzle (1984, p. 333) claim that their Bargmann frame bundle version
of weak NCG ‘‘y achieves the status of a gauge theory about as much as general
relativity’’. They furthermore state that, ‘‘We attempt to present Newtonian gravity
as much as possible as a gauge theory of the Bargmann group. This cannot fully
succeed, at least not in the narrow sense of a Yang–Mills-type gauge theory, just as
general relativity is not simply the gauge theory of the Poincar!e (or the Lorentz)
group’’ (1984, p. 334).
Given these remarks, in what sense is Duval and K .unzle’s version of weak NCG a

gauge theory? Since there are a number of senses of what it means to be a gauge
theory, it is perhaps helpful to consider what Duval and K .unzle’s weak NCG is not.
Two points seem relevant here. Note first that in the work reviewed above, while
explicit matter Lagrangians have been constructed that, when extremized, produce
appropriate conservation laws and equations of motion, no gravitational Lagrangian
is given that produces all the relevant weak NCG field equations, and in particular,
the generalized Poisson equation (10). This indicates immediately that this version of
weak NCG cannot be formulated as a constrained Hamiltonian system; hence, at
least according to one sense of gauge, it is not a gauge theory. Two qualifications are
perhaps relevant here.

(i) In subsequent work, Duval and K .unzle have extended their version of weak
NCG to a theory given by a Bargmann frame bundle over a five-dimensional
base manifold.21 In this theory, they have shown that the Poisson equation can
be obtained from a (singular) Lagrangian with a Lagrange multiplier interpreted
as the mass density source of the gravitational field. Thus, the possibility exists
for a constrained Hamiltonian analysis (which the authors do not give) and
hence for treating this five-dimensional theory as a gauge theory. Briefly, the five-
dimensional manifold M is equipped with a (five-dimensional) Lorentzian
metric g and a vector field z: The quotient manifold M/{orbits of z} then
produces a four-dimensional Lorentzian manifold for spacelike z; or a four-
dimensional classical spacetime satisfying (12) for null z; respectively. The
construction is based on the fact that the Lorentz group SO(1,3) and
homogeneous Galilei group are subgroups of (the identity component of) the
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20To get a taste of these constructions, consider Duval and K .unzle’s (1984) derivation of an NCG-

covariant Schr .odinger equation. They start with the standard one-particle Schr .odinger Lagrangian density

L ¼ _2=ð2mÞdab@aF@b %Fþ ði_=2ÞðF@t %F� %F@tFÞ and impose minimal coupling in the form of the

replacements dab-hab; @a-Da; and @t-uaDa; where Da � @a � im=_Aa is the NCG-covariant derivative

defined by the connection on P: The result is LSch ¼ fð_2=2mÞhabDaFDbFþ ði_=2ÞuaðFDaF� %FDaFÞg;
where F is now interpreted as a section of a vector bundle associated with P: Extremizing LSch with

respect to the matter fields produces an NCG-covariant one-particle Schr .odinger equation of the form

originally derived by Kuchar (1980). Kuchar (1980) also provides a matter Lagrangian for a single massive

classical particle which produces the appropriate equation of motion (11).
21For a summary, see K .unzle and Duval (1984) and references therein.
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de Sitter group SO(1,4) that leave invariant a spacelike or a null vector,
respectively. In the null case, condition (12) is satisfied automatically due to the
Riemannian nature of g (see footnote 12). To recover the Poisson equation, the
authors adopt the Einstein–Hilbert action, add the null vector constraint
gðz; zÞ ¼ 0; and require d

R
M

ðR þ lgðz; zÞÞvol ¼ 0; where R is the Ricci scalar on
M and l is a Lagrange multiplier. Upon extremization, they obtain R ¼ 0 and
Rab ¼ �lzazb: The latter projects to the four-dimensional manifold as Rab ¼
4pGtatb if the Lagrange multiplier l is interpreted as the mass density source
l ¼ �4pGr:

(ii) K .unzle and Nester (1984) cast weak NCG in a ð3þ 1Þ-dimensional form in a
manner similar to the ADM Hamiltonian formulation of general relativity. In
particular, they indicate how the Poisson equation arises from a limit of
constraint equations in the relativistic case. Instructively, these constraints are
associated with non-rotating coordinates (more precisely, they stem from the
maximal slicing and maximal distortion choices for the lapse and shift functions
in the relativistic case). They are careful to note, however, that their ð3þ 1Þ
formulation of weak NCG does not produce a Hamiltonian as in the relativistic
case. Rather, their choices for the ð3þ 1Þ decomposition are informed by
formulating the relativistic case in a way that allows a c-N limit to be
consistently taken. (Mathematically, the ‘‘Hamiltonian’’ obtained from their
ð3þ 1Þ decomposition cannot be obtained from a standard symplectic form on a
cotangent bundle, as in the relativistic case.)

The second point is that Duval and K .unzle’s original Bargmann bundle
formulation of weak NCG is similar to frame bundle formulations of general
relativity, in which the base space M does not come prepackaged with absolute
objects, and the frame bundle is (typically) the bundle of Poincar!e frames. These
formulations of general relativity can be given the status of gauge theories by
‘‘gauging’’ the Poincar!e group in a manner similar to Yang–Mills theories. The result
is what is generally referred to as Poincar !e Gauge theory (PGT).22 Here one starts
with a matter Lagrangian that is invariant under ‘‘global’’ Poincar!e transformations.
These are then promoted to ‘‘local’’ transformations by requiring that they be
dependent on spacetime coordinates.23 Gauge potential fields are then introduced to
maintain Poincar!e invariance of the Lagrangian. These fields turn out to be the
connection on the Poincar!e frame bundle over M (rotational gauge) and the tetrad
fields (translational gauge). The Einstein equations are then obtained by extremizing
the Lagrangian with respect to the gauge potentials. It should be noted that PGT is
not, strictly speaking, a Yang–Mills-type gauge theory. The algebra of constraints
for PGT is open (it is not a Lie algebra), unlike the Yang–Mills case. At this point, it
should be obvious that Duval and K .unzle’s weak NCG is not this type of gauge
theory. They do not ‘‘gauge’’ the Bargmann group; hence, their theory should not be
conceived as a non-relativistic version of PGT.
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22See Hammond (2002, pp. 612–615) for a quick review.
23See Earman (2002) for discussion on the terminological nuances of the terms in scare quotes, as well as

Martin (2002) for discussion on the ‘‘logic’’ of the gauge argument.
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One version of weak NCG that expressly follows the PGT lead is given by De
Pietri et al. (1995). Here they ‘‘gauge’’ the Bargmann group and end up with 11
three-dimensional gauge potential fields given by Y; hij ; A0; Ai (it turns out these are
related to ta; hab; and Aa in the four-dimensional formulation). They obtain an
appropriate matter Lagrangian that reproduces the equations of motion, but to get a
gravitational Lagrangian, they essentially employ the same tactic as K .unzle and
Nester (1984) by using a c-N limit procedure on the relativistic case. In particular,
they identify the gravitational part of the weak NCG Lagrangian with the zeroth-
order term of a 1=c2 expansion of the standard Einstein–Hilbert action of general
relativity, motivated in part by Kuchar’s (1980) method of obtaining a consistent
NCG matter Lagrangian, and in part by the fact that the Bargmann group is the
c-N contraction of the Poincar!e group. They then perform a Hamiltonian analysis
of their complete matterþgravitational NCG Lagrangian and indicate how the
Poisson equation falls out of a combination of constraint equations. From K .unzle
and Nester’s (1984) analysis, however, it appears that this theory is not yet in the
form of a constrained Hamiltonian system.
What, then, is the status of Duval and K .unzle’s version of weak NCG as a gauge

theory? The following conclusions can be drawn:

1. It is not a gauge theory in the sense of being a constrained Hamiltonian system. In
this sense, it is unlike general relativity, which does admit constrained
Hamiltonian formulations. In this sense, it is also not a Yang–Mills theory to
the extent that a Yang–Mills theory can be defined as a certain type of constrained
Hamiltonian system in which the algebra of constraints is closed.

2. It is not a gauge theory in a more looser sense of being a Yang–Mills theory;
namely, a theory based on the gauging of a given symmetry group. In this sense, it
is unlike general relativity, which admits formulations of this type (PGT-type
theories). Note that, in this more looser sense, there is still a distinction between
theories with closed constraint algebras (typical Yang–Mills theories) and theories
with open constraint algebras (PGT-type theories).

3. It is a gauge theory in a very loose sense of being a theory associated with
unphysical degrees of freedom (and being formulated in terms of fiber bundles).
In this sense, it is like general relativity, which admits formulations simply in
terms of a frame bundle over a base space.

It might be argued that (3) is too loose a notion for the concept of gauge. If this is
the case, then Duval and K .unzle’s weak NCG is perhaps only suggestive of a gauge
theory. General relativity, likewise, when formulated in terms of a frame bundle over
a base space, is suggestive of a gauge theory. What Duval and K .unzle make explicit
in their formulation of weak NCG is the degrees of freedom of the weak NCG
connection.

4.1.3. Weak NCG symmetries

Duval and K .unzle’s ‘‘gauge group’’ AutðBðMÞÞ; in addition to the vertical
automorphisms (17a), (17b), also includes the base space automorphisms DiffðMÞ:
While this appears to motivate Duval and K .unzle to consider weak NCG as
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‘‘generally covariant’’ (Christian, 1997, p. 4852; follows suite), arguably DiffðMÞ
should not be considered a symmetry of the theory. Certainly, including DiffðMÞ as
a gauge symmetry cannot be motivated by an appeal to Noether’s 2nd Theorem (as,
perhaps, can be done in the case of general relativity): as mentioned above, the
‘‘stress–energy’’ tensor obtained by requiring invariance under DiffðMÞ of an
appropriate weak NCG matter Lagrangian does not satisfy a ‘‘strong’’ conservation
law. And, of course, including DiffðMÞ as a symmetry simply because the weak
NCG objects (hab; ta; ra) are invariant under DiffðMÞ is ill-advised. This would
conflate a trivial notion of general covariance (one that is satisfied by any theory
formulated using tensors on manifolds) with a non-trivial symmetry principle (one
that weak NCG does not satisfy and that general relativity does).
Given that the vertical automorphisms (17a), (17b) represent, if not the ‘‘gauge’’

structure of NCG, then at least the degrees of freedom in the weak NCG connection,
what can we say about the spacetime symmetries of the theory? First, note that talk
of spacetime symmetries should make sense in the context of NCG, in so far as NCG
contains absolute objects that remain unaffected by the dynamical contents of
spacetime. Some authors identify multiple candidates for such symmetries (see, e.g.,
Trautman, 1965, pp. 115–117; Duval, 1993; Christian, 1997, pp. 4852–4853). Duval
(1993), for instance, lists as candidates three extensions of the Lie algebras leib, max,
gal of the Leibniz, Maxwell and Galilei groups. These candidates are associated with
different choices of ‘‘Bargmann gauge’’ ðua;AaÞ: For instance, the ‘‘standard flat’’
choice ua ¼ ð@=@tÞa; Aa ¼ 0 (and hence, implicitly, f ¼ constant) is invariant under
transformations generated by the Bargmann algebra fgalgal (the non-trivial central
extension of gal), whereas the choice ua ¼ ð@=@tÞa; Aa ¼ �fta is invariant under
transformations generated by an extension gmaxmax of max; and the choice ua ¼ ð@=@tÞa;
with arbitrary Aa; is invariant under transformations generated by an extensiongleibleib

of leib.24

To see how these Lie algebras come about in a bit more detail, consider weak
NCG as given by a structure (M; hab; ta; ua; Aa) that satisfies taua ¼ 1 and conditions
(1), (2), (10)–(13), where in the latter, Fab ¼ 2r½aAb
: Condition (13) defines a weak
NCG connection in terms of Duval and K .unzle’s ‘‘Bargmann gauge’’ (ua; Aa).
We have seen that such a connection is not unique: Any other ‘‘Bargmann gauge’’
(u0a; A0

a) satisfying (17a) defines the same connection. Now note that, as far as the
Poisson equation (8) is concerned, not all ‘‘Bargmann gauges’’ are created equal.
Only for a subclass of gauges can (8) be recovered from (10). It is not hard to be
convinced that this subclass, call it a ‘‘Poisson gauge’’ (va; f), defines a weak NCG
connection by the condition

Ga
bc ¼

vha
bc þ hadrdftbtc; ð18Þ
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24The significance of the Bargmann group, and thus fgalgal; was indicated in footnote 17. The extensionsgleibleib and gmaxmax are required to account for the additional degree of freedom in Aa (resp. f) upon spacetime
transformations. It turns out thatgleibleib leaves Aa determined up to an arbitrary scalar function; gmaxmax leaves

f determined up to a function of time; and fgalgal fixes f up to a constant. Technically,gleibleib ¼gleibleib � CNðMÞ;gmaxmax ¼ max � CNðTÞ; and fgalgal ¼ gal � R; where ‘‘�’’ denotes a semi-direct product, and T ¼
M=forbits of tag (see Duval, 1993, pp. 2220–2221 for details).
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(where vG is defined in analogy with uG). Comparing (13) and (18), one obtains the
relations between a general ‘‘Bargmann gauge’’ and a special ‘‘Poisson gauge’’ as
(Christian, 1997, p. 4849; Duval, 1993, p. 2219)

va ¼ ua � habAb;

f ¼ 1=2habAaAb � uaAa: ð19Þ

Intuitively, transformations between members of a ‘‘Poisson gauge’’ should be those
that leave the Poisson equation (8) covariant. As was seen above, a sufficient
condition for this is (4), and this entails that the spacelike displacement vector habAb

is covariantly constant: habrbðhacAcÞ ¼ 0; thus it can be given by habAb ¼ hab@bf ; for
arbitrary scalar f : Hence, the transformations that leave ‘‘Poisson gauges’’ invariant
are given by

va/v0a ¼ va � hab@bf ;

f/f0 ¼ f� va@af : ð20Þ

This prompts Duval (1993) to consider weak NCG as given by structures of the
form (M ; hab; ta; ua; va; f). On such a structure, the infinitesimal action of AutðBðMÞÞ
is the following:

dh ¼ Lxh;

dt ¼ Lxt;

du ¼ Lxu þ hðyÞ;

dv ¼ Lxv þ hðdf Þ;

df ¼ xðfÞ þ vðf Þ; ð21Þ

where x is a basis for the Lie algebra, y is an arbitrary 1-form on M ; and f is an
arbitrary scalar function (and indices have been suppressed for convenience). By
setting one or more of these infinitesimal transformations to zero and solving for x;
y; f ; we recover the corresponding finite transformations on the objects h; t; u; v and
f: Duval (1993, pp. 2220–2221) now demonstrates that the conditions dh ¼ dt ¼
du ¼ 0 generate gleibleib; the conditions dh ¼ dt ¼ du ¼ dv ¼ 0 generate gmaxmax; and the
conditions dh ¼ dt ¼ du ¼ dv ¼ df ¼ 0 generate fgalgal: From this we can infer, for
instance, that ua defines an ‘‘extended’’ Leibnizian frame (i.e., it is a member of a
subclass of Leibnizian frames related by transformations generated bygleibleib), while va

defines an ‘‘extended’’ Maxwellian frame. (Note that in Maxwellian coordinates,
v0a ¼ va þ .aihab@bxi; and thus f ¼ xi .ai: Hence, f transforms as f0 ¼ f� @f =@t ¼
f� xi .ai (see, e.g., Kuchar, 1980, p. 1288). Hence, an ‘‘extended’’ Maxwell trans-
formation includes both a spacetime coordinate transformation and an accompany-
ing f-transformation. Thus, the dynamical symmetries of both Neo-Newt NG and
Max NG are simply those generated by gmaxmax:)
The important question again is which symmetries should we associate with weak

NCG? More precisely, which terms in (21) should we set to zero? Duval and others
seem satisfied with simply listing the candidates. On the surface, such talk of multiple
candidates for the symmetries of weak NCG is slightly misleading. The groups (and
algebras) mentioned above represent very different symmetries. Certainly, the
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intrinsic structure posited by a given theory cannot exhibit both (Leib) and (Max)
symmetries, for instance (Leibnizian spacetimes are rather different from Maxwel-
lian spacetimes). Trautman (1965) indicates one view of the situation:

A preferred coordinate system in a theory is one which puts some geometrical
structure in the theory in a particularly simple form. The multiplicity of
geometrical structures present in [geometricized] Newtonian theory thus enables
us to have many different classes of preferred coordinate systems, some more
useful than others. (Trautman, 1965, p. 116)

If putting a geometrical structure in a simple form makes a coordinate system
privileged, then clearly there are multiple privileged coordinates in weak NCG, and
hence multiple symmetries, insofar as there are many different geometrical objects in
the theory. In this essay, however, a privileged coordinate system is one adapted to
the intrinsic structure of the global spacetime, and not to individual geometrical
object fields. Thus, it should make sense to say there is only one symmetry structure
for weak NCG, as opposed to multiple candidates; namely, that one that is adapted
to the structure of the background spacetime.
What then are the spacetime symmetries of weak NCG? Certainly, the absolute

structure of weak NCG includes the metrics hab and ta and condition (3) of spatial
flatness; the latter since the generalized Poisson equation (10) entails spatial flatness
(see, e.g., Malament, 1986, p. 188). Hence, weak NCG has as much structure as
Leibnizian spacetime. Note further that weak NCG needs enough structure to
support ‘‘extended’’ Leibnizian frames, in order to foliate spacetime with
‘‘Bargmann gauges’’ (ua; Aa). But what weak NCG does not, strictly speaking,
support is that particular subclass of ‘‘Bargmann gauge’’ (va; f) that define
‘‘extended’’ Maxwellian frames. To pick out this subclass, additional assumptions
need to be tacked on (viz., the ‘‘island universe’’ assumption, or the ‘‘no rotational
holonomies’’ assumption). But it is now clear that weak NCG includes just a bit
more absolute structure than Leibnizian spacetime, given specifically by condition
(12), as well as the particular conditions, beyond spatial flatness, encoded in (10).
These observations suggest that the symmetries of weak NCG be identified with the
extended Leibniz algebragleibleib with basis xa satisfying dh ¼ dt ¼ du ¼ 0 in (21). These
are the symmetries that preserve (M ; hab; ta; ua; Aa) subject to (1), (2), (10)–(13), and
uata ¼ 1: Again, these symmetries are a bit more constrained than those of
Leibnizian spacetime (the symmetries of which are generated by leib). A weak NCG
connection (14) is obtained from a Leibnizian connection (6) by the further
conditions

Ri
m
’Rm

j ¼ hikFjk;

Ri
m
.Rm

j xj þ Ri
m .am ¼ 2hikF0k; ð22Þ

due to the addition of (12), and subject to �2@iF
i
0 þ FijFij ¼ 4pGr; due to the

replacement of (3) with the stronger requirement (10). This suggests that, whereas in
Leibnizian spacetime (in the absence of external forces), all rotations and (linear)
accelerations are relative, in weak NCG spacetime, only certain types of rotation and
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(linear) acceleration are relative. In weak NCG spacetime, relative rotations are only
those that can be given by a closed 2-form Fab; and relative accelerations are only
those induced by the mass density in conjunction with Fab: Geometrically, a
Leibnizian connection cannot distinguish between ‘‘straight’’, ‘‘curved’’, and
‘‘twisted’’ particle trajectories, in toto. A weak NCG connection fails to distinguish
only a subclass of such trajectories.
The dynamical symmetries of weak NCG should leave the equation of motion (11)

covariant in extended Leibnizian frames in which it takes the form .xi þ 2hikF0k þ
hikFjk ’x

j ¼ 0: Evidently, these are transformations generated bygleibleib:

4.2. Strong NCG

Versions of strong NCG have appeared in Trautman (1965), Misner et al. (1973),
Kuchar (1980), and Christian (1997, 2001). In the following, I will characterize its
essential features and then assess Christian’s (1997) version.
Strong NCG differs from weak NCG only in the addition of the rotation standard

condition (4) on the curvature tensor. It can be characterized by dynamically
possible models of the form (M; hab; ta; ra; r) that satisfy:

(1) habtb ¼ 0 (orthogonality),
(2) rchab ¼ 0 ¼ ratb (compatibility),
(4) Rab

cd ¼ 0 (Rotation standard),25

(12) R
½a c

½b d
 ¼ 0 (Curl-freeness),

(10) Rc
abc ¼ Rab ¼ 4pGrtatb (generalized Poisson equation),

(11) xarax
b ¼ 0 (equation of motion).

Recall that the significance of adding condition (4) is that it allows recovery of the
Poisson equation (8) without the need for imposing the ‘‘boundary condition’’ of
asymptotic spatial flatness.

4.2.1. Christian’s (1997) version of strong NCG

None of the versions of weak NCG reviewed in Section 4.1 are derived from a
single four-dimensional Lagrangian. In particular, in none of these theories is the
generalized Poisson equation (10) obtained by extremizing an appropriate four-
dimensional action. Christian (1997) demonstrates that condition (4), which is
sufficient to recover the Poisson equation (8), is also sufficient for the existence of a
Lagrangian density for NCG. In particular, Christian is able to construct a
Lagrangian density that is invariant under Duval and K .unzle’s AutðBðMÞÞ and that
reproduces all the field equations of strong NCG, including the generalized Poisson
equation. Christian then recasts strong NCG as a ð3þ 1Þ constraint-free
Hamiltonian system, and quantizes the theory in the reduced phase-space to obtain
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25Trautman (1965, p. 107) writes t½eRa
b
cd ¼ 0; which is equivalent to (4). In addition to (4) and (12),

Misner et al. (1973, p. 300) also include the curvature constraint Ra cd
b ¼ 0; which entails that arbitrary

vector fields remain unchanged under parallel transport on spacelike hypersurfaces. This appears a bit

redundant.
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what amounts to a (Max)-invariant quantum field theory of Newtonian gravity. In
the remainder of this section, I will review the main features of Christian’s
gravitational Lagrangian density and the ð3þ 1Þ Hamiltonian decomposition,
stressing the role condition (4) plays in the derivation of the generalized Poisson
equation.

4.2.2. A Lagrangian density for strong NCG

The following exposition may be made more perspicuous by a brief review of the
Lagrangian formalism. In the Lagrangian formulation of a field theory, the field
equations and equations of motion are derived from an action principle dS ¼
d
R
Ld4x ¼ 0; where the Lagrangian density L ¼ Lðji; @mji; x

mÞ; i ¼ 1yN; is a
functional of N dynamical field variables jiðxÞ and their first (and possibly higher-
order) derivatives. The equations of motion take the form of the Euler–Lagrange
equations @L=@ji � @m@L=@ð@mjiÞ ¼ 0: In some theories, the Hessian matrix ofL is
singular; hence, the dynamical variables are not all independent, but rather satisfy a
set of constraint equations fmðji; @mjiÞ ¼ 0; m ¼ 1yM : For such theories, both
equations of motion and constraint equations can be derived from the modified
action principle dS0 ¼ d

R
L0d4x � d

R
ðL� umfmÞd

4x ¼ 0; where um are arbitrary
Lagrange multiplier fields. The equations of motion are obtained by extremizingL0

with respect to the dynamical variables, while the constraint equations are obtained
by extremizing L0 with respect to the Lagrange multipliers um:26

Christian’s strong NCG gravitational Lagrangian density Lgrav is a functional of
the dynamical field variables ðua;AaÞ; up to second derivatives, and a set of
parametrized kinematical variables ðsÞy:27 These kinematical variables are required to
make Lgrav manifestly invariant under the DiffðMÞ subgroup of AutðBðMÞÞ in the
manner of a parametrized field theory. They are given by maps ðsÞy :M-M 0; from a
‘‘parametrized’’ manifoldM to a ‘‘fixed’’ manifoldM 0 containing absolute spacetime
structure (in this case, M 0 is simply a classical spacetime). They thus allow the
absolute structures on M 0 to be pulled back to M as dynamical fields.
In addition to the above variables, Lgrav depends on a large set of Lagrange

multiplier fields. By judiciously combining the resulting constraint equations,
Christian is able to recover all the field equations of strong NCG. Below I indicate
how, in particular, the generalized Poisson equation (10) is obtained, and how the
relevant Lagrange multipliers are interpreted.
The field equations (1), (2), (4), (12), and the condition uata ¼ 1; are all obtained as

constraint equations by extremizingLgrav with respect to Lagrange multipliers.
28 In
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26The transition to the Hamiltonian formalism involves defining the conjugate momenta pi � @L0=@ ’ji;
where ’ji � @tji ; and the total Hamiltonian HT � pi ’ji �L0ðji; piðji ; ’jiÞÞ � H0 þ umfm; where H0 ¼
pi ’ji �L: (In general, some of the multipliers um may be determined via secondary constraints by

requiring the fm to be conserved in the sense of ffm;HTg ¼ 0: See, e.g., Henneaux & Teitelboim, 1992,
pp. 13–14.)
27The following is a partial exposition of Christian (1997, pp. 4858–4867). I will ignore the matter field

variables for simplicity, and refer the reader to Christian for the explicit form of Lgrav:
28A simple example of this method of deriving field equations for absolute spacetime objects as

constraint equations of a singular Lagrangian density is given in Sorkin (2001).
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particular, extremizing Lgrav with respect to multiplier fields given by wab and wabc

produces (12) and (4), respectively. These latter two multipliers also play a role in the
derivation of the generalized Poisson equation (10), which proceeds in two steps.

1. First, Lgrav is extremized with respect to Aa (or, it turns out, equivalently with
respect to ua) to produce the equation of motion

kraYa þ tarbwab þ tarbrcwabc ¼ 4pGr; ð23Þ

where k is an arbitrary parameter and Ya � habrbf1=2hcdAcAd � Acucg: It turns
out that the multiplier wab encodes the momentum conjugate to Aa; in so far as the
momentum density conjugate to Aa is given by Pb ¼ Ytawab (where Yd4x is the
volume element).

2. The second step in the derivation of (10) involves extremizing Lgrav with respect
to yet another Lagrange multiplier w; yielding the constraint equation

1=YraPa � ð1� kÞraYa þ lLN � L0 ¼ 0; ð24Þ

where L0 and l are arbitrary scalars, and LN � tarbrcwabc: As will be seen below
in the Hamiltonian formulation, (24) is analogous to the momentum constraint in
general relativity, and the multiplier w can be interpreted as the Uð1Þ phase factor
in (17b). Substituting (24) into (23) then yields

raYa þ L ¼ 4pGr; ð25Þ

where L � L0 þ ð1� lÞLN : This reproduces the Poisson equation (8) with
cosmological constant L just when Y � 1=2habAaAb � Acuc can be interpreted
as the Newtonian gravitational potential f: This is justified by recalling from (19)
that Y is in the form of the potential f in an arbitrary ‘‘Bargmann gauge’’, and
that Aa in this formula can be interpreted as the NCG 1-form, given the recovery
of (1), (2) and (12). Note further that this establishes the physical interpretation of
the multiplier wabc as encoding a contribution LN to the cosmological constant.

29

From these two steps, the generalized Poisson equation (10) follows quickly. First,
we know that the form for the Ricci tensor obtained from recovery of the field
equations (1), (2), (4), and (12) is

Rcd ¼ habrarbftctd ð26Þ

for some scalar f identified as the Newtonian potential. The generalized
Poisson equation (10) with cosmological constant is thus recovered from (25)
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29Christian (1997, p. 4861) notes that if we set the free parameter l ¼ L0=LN ; then L ¼ LN : In this way,
recalling the definition of LN ; condition (4) (derived from the multiplier wabc) can be related, at least

formally, to the cosmological constant. This is consistent with the fact that, if asymptotic flatness is

imposed, then both condition (4) and the cosmological constant become redundant. Christian also notes

that if one desires to make condition (4) independent of the cosmological constant, then one can simply set

l ¼ 1; and thus have L ¼ L0:
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and (26) in the form

Rab þ Ltatb ¼ 4pGrtatb: ð27Þ

The essential features of Christian’s Lgrav can be summarized by the following:

A. The strong NCG field equations (1), (2), (4), (12) appear as constraint equations,
derived by extremizing Lgrav with respect to Lagrange multipliers.

B. The generalized Poisson equation (10) is derived from extremizing Lgrav with
respect to the dynamical field variable Aa; and then applying constraint
equations: Extremizing with respect to Aa yields an equation (23) dependent
on multipliers. Solving for these multipliers, which involves making use of the
momentum constraint equation (24), then reduces (23) to (10).

4.2.3. Strong NCG as a constraint-free Hamiltonian system

The Hamiltonian formalism of a field theory requires a ð3þ 1Þ split of spacetime
into three-dimensional Cauchy surfaces S: It proceeds with the specification of
Cauchy data in the form of dynamical variables that describe the instantaneous
configuration of the fields on S; as well as their conjugate momenta. The equations
describing the evolution of this data come in the form of Hamilton’s equations of
motion. In the context of constrained Hamiltonian systems, constraint equations on
S are required for data to evolve uniquely. In the ADM constrained Hamiltonian
formulation of general relativity, for example, the Cauchy surfaces are obtained as
the level surfaces St of a timelike field ta ¼ ð@=@tÞa and the Cauchy data consists of
the 3-metric and the extrinsic curvature on St: This data satisfies two constraint
equations: the momentum constraint, which generates spatial diffeomorphisms on
St; and the Hamiltonian constraint, which generates ‘‘time’’ evolution (in terms of
the chosen time function t).30 The latter implies that gauge-invariant quantities are
constants of motion, which leads to the well-known problem of time.31 It stems
specifically from the freedom involved in making the initial ð3þ 1Þ split; in
particular, in choosing a time function to label the 3-spaces.
In the NCG case, on the other hand, there is a natural choice of ð3þ 1Þ

decomposition and a natural choice of time function; namely, the preferred foliation
St adapted to ta: The 3-metric on a given slice is given by the spatial projection uh

ab

with respect to a unit timelike field ua (footnote 13). With respect to ua; any quantity
can be decomposed into tangential and normal components. For the Cauchy data,
Christian takes ðua;AaÞ and their conjugate momenta ðuP a;PaÞ; as well as the
kinematical variable ya (with conjugate momentum pa), which is a parametrization
of the global time function.32 It turns out the normal components of the momenta
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30 In the ADM formulation, the vector field ta is decomposed as ta ¼ Nna þ Na; where na is normal to

the St and Na and N are the ‘‘shift’’ vector and ‘‘lapse’’ function. These latter appear as Lagrange

multipliers in the ADM singular Lagrangian, associated respectively with the momentum and the

Hamiltonian constraints. For details, see Wald (1984, pp. 463–465).
31See, e.g., Earman (2002) for a quick review.
32Technically, ya :St-M 0 is an embedding of the 3-spaces St in the fixed manifold M 0: It allows the

global time function onM 0 to be pulled back to the parametrized manifoldM: Its ‘‘ua-derivative’’ is given

by ’ya ¼ uaraya ¼ @ya=@t; and dictates the transition from one leaf of the foliation to another. It can be
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uP a;Pa vanish, so only the tangential components of ua and Aa contribute to unique
Cauchy evolution. Moreover, these momenta are not independent, being related via

uP a ¼ � uhabPb; ð28Þ

which reflects the redundancy in specifying the pair ðua;AaÞ to determine an NCG
connection.
By including the global time function as a canonical variable, Christian is setting

the stage for a time-parametrized Hamiltonian system (see, e.g., Henneaux &
Teitelboim, 1992, p. 103). In any theory with action S½jaðtÞ; paðtÞ
 ¼

R
ðpaðdja=dtÞ �

H0Þ dt; the time variable t can be parametrized. This is done by introducing a
canonical variable j0 � t with conjugate momentum p0; and replacing S with
S0½j0ðtÞ; p0ðtÞ;jaðtÞ; paðtÞ; u0ðtÞ
 ¼

R
ðp0 ’j0 þ pa ’ja � u0ðp0 þ H0ÞÞ dt; where the dot

represents the derivative with respect to the parameter t; and u0 is an arbitrary
Lagrange multiplier. Extremizing S0 with respect to p0 and u0 yields the equation of
motion ’t � u0 ¼ 0; and the ‘‘Hamiltonian’’ constraint equation p0 þ H0 ¼ 0:
Substituting p0 ¼ �H0 and u0 ¼ ’t into S0 yields S; hence, the motion derived from
S0 is identical to that derived from S: Note further that no (first-class) Hamiltonian
occurs in S0; in the sense that the total Hamiltonian for S0 consists solely of the
constraint term u0ðp0 þ H0Þ (see footnote 26). In general relativity, since there is no
global time function to begin with, the action is already time-parametrized, and the
vanishing of the Hamiltonian reflects this. The task of ‘‘de-parametrizing’’ the theory
involves solving the, in general, complicated Hamiltonian constraint. In NCG, since
there is a natural global time function, the task of de-parametrizing a parametrized
version of the theory should not be so difficult. This is reflected in Christian’s approach.
Christian’s Hamiltonian density is given in the time-parametrized form @aHa �

ðuP a ’u
a þPa ’Aa þ pa

’yaÞ �Lgrav; where @a is a multiplier field and Ha � pa þ H 0
a;

where H 0
a is a functional of the Cauchy data. One obtains a set of six equations

of motion and 10 constraint equations. The equations of motion include (23),
condition (12), and ’ya � @a ¼ 0:33 The constraint equations naturally include the
‘‘Hamiltonian constraint’’

pa þ H 0
a ¼ 0: ð29Þ

Unlike its general relativistic counterpart, (29) is linear in the momenta conjugate
to the ‘‘time’’ function ’ya; and hence can be solved. (In general relativity,
the Hamiltonian constraint is quadratic in the momenta, which prevents, in general,
a solution. Hence, a fully reduced phase space for general relativity cannot in general
be constructed.) Additional constraint equations include:

(a) the classical spacetime structure equations (1), (2);
(b) the condition uata ¼ 1;
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(footnote continued)

decomposed into normal and tangential components as ’ya ¼ > ’yua þ jj ’ya; where > ’y � ’yata corresponds to

the lapse function of the ADM formulation, and jj ’ya � da
b
’yb is the shift (footnote 30).

33The equations of motion also include the condition ’Ha ¼ 0; indicating the Hamiltonian constraint
(29) below is preserved in time.

J. Bain / Studies in History and Philosophy of Modern Physics 35 (2004) 345–376370



(c) Eq. (23);
(d) condition (4);
(e) Eq. (24);
(f) the constraints on momenta (28).

Constraint (a) can be eliminated by working with a non-Diff(M) invariant
background spacetime structure. (Formally, the functions ta; hab are constant on the
phase space. This means, as far as the dynamics is concerned, we do not have to
work with the parametrized manifold M; rather, we can work on the ‘‘fixed’’
manifold M 0:) Constraint (b) is redundant, given already by the natural foliation St

adapted to ua; and constraint (c) is also redundant, since it already appears as an
equation of motion. Thus, at this point, Christian has a constrained Hamiltonian
formulation of strong NCG containing the three constraints (d)–(f) on the Cauchy
data.34

It turns out that constraints (d) and (e) can be eliminated simultaneously.
Enforcing condition (4) on the Cauchy data entails a modification of the constraint
equation (24) that reduces it to the equation of motion (23) in the limit k-0: It is
instructive to compare this process with the analogous one in general relativity. By
eliminating the Ya-term in (23) and (24), the NCG ‘‘momentum’’ constraint (24) can
be rewritten as

1=YraPa þ LN � ð1� kÞ4pGr� kL ¼ 0: ð30Þ

In general relativity, the momentum constraint can be satisfied by taking equivalence
classes of 3-metrics up to spatial diffeomorphism on St (the resulting partially
reduced phase space is referred to as ‘‘superspace’’). In the NCG case, Christian
takes equivalence classes of Aa’s up to Aa/Aa þraf ; which entails the momenta
satisfy 1=YraPa � 4pGr ¼ 0: This is not yet (30). However, further constraining the
Aa’s to satisfy condition (4) entails that the momenta satisfy 1=YraPa þ LN �
4pGr ¼ 0; and this is identical to (30) in the limit k-0: Hence, condition (4)
guarantees that the NCG ‘‘momentum’’ constraint is satisfied for a particular choice
of the free parameter k:35

At this point in the reduction process, all constraints have been eliminated with the
exception of (f). To eliminate (f), Christian further restricts the Cauchy data by
defining a new set given by ðva; paÞ; where va ¼ ua � habAb and pa ¼ Pu

a: His
constraint-free Hamiltonian density then takes the form @aHa ¼ pa ’v

a þ pa
’ya �

Lgrav: The reduced phase space is the cotangent bundle T�Z over an infinite-
dimensional configuration space Z evaluated on St; where

Z ¼ fvajtava ¼ 1; r½arb
v
c ¼ 0; vaBva � habrbf g: ð31Þ
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34Note that condition (4) is locally equivalent to r½arb
Ac � hu
cdr½arb
u

d ¼ 0 (see, e.g., Christian,
1997, p. 4851).
35Thus, the constraint 1=YraPa þ LN � 4pGr ¼ 0 generates the gauge transformations (17a) in the

case of no boosts (i.e., wa ¼ 0); and the constraints (24), in the limit k-0; and (4) together generate the

gauge transformations (17a), (17b), for ‘‘Maxwell boosts’’ (i.e., wa ¼ @af ; for some f ). This justifies

identifying the Lagrange multiplier w in Christian’s Lgrav as the Uð1Þ phase factor (see comments below
Eq. (24)).
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Intuitively, the va constitute extended Maxwellian frames that pick out an
‘‘extended’’ Maxwellian connection determined by the Poisson equation.

4.2.4. Strong NCG symmetries

Christian’s explicit formulation of strong NCG as a constraint-free Hamiltonian
system indicates that strong NCG is a gauge theory in the sense of Earman (2002).
Evidently, the gauge group is generated by the extended Maxwell algebra gmaxmax;
obtained by setting dh ¼ dt ¼ du ¼ dv ¼ 0 in (21). The reduced phase space (31)
consists simply of extended Maxwellian frames va: In particular, note that the
‘‘momentum’’ constraint (24) is obtained by extremizing Lgrav with respect to the
multiplier w associated with the arbitrary Uð1Þ phase factor. Hence, in Christian’s
construction of the reduced phase space, constraint (d) picks out the Maxwell
algebra max; constraint (e) extends the Maxwell algebra to gmaxmax via w; and constraint
(f) eliminates the redundancy of specifying both ua and Aa initially as dynamically
variables.
In terms of absolute and dynamical structure, the spacetime symmetries of strong

NCG are generated by the extended Maxwell algebra gmaxmax; in so far as the absolute
objects of the theory can be identified as the metrics hab; ta; and the family of
extended Maxwellian frames va: These symmetries are a bit more constrained than
those of Maxwellian spacetime (the symmetries of which are generated by max). A
strong NCG connection is obtained from a Maxwellian connection (7) by the further
condition

Ri
m .am ¼ hij@f=@xj ; ð32Þ

subject to hij@i@jf ¼ 4pGr: This suggests that, whereas in Maxwellian spacetime
(in the absence of external forces), all linear accelerations are relative, in strong
NCG spacetime, only a certain type of linear acceleration is relative. In strong
NCG spacetime, relative accelerations are only those induced by the mass
density in conjunction with f: Geometrically, a Maxwellian connection cannot
distinguish between ‘‘straight’’, and ‘‘curved’’ particle trajectories, in toto. A
strong NCG connection fails to distinguish between only a subclass of such
trajectories.
The dynamical symmetries of strong NCG should leave the equation of motion

(11) covariant in extended Maxwellian frames in which it takes the form .xi þ
hij@f=@xj ¼ 0: These are transformations generated by gmaxmax (i.e., max plus the f-
transformation f/f� xi .ai þ jðtÞ).

5. Conclusion

I now would like to return to the issue raised in the introduction of empirical
indistinguishability. Some authors have claimed that the standard way of
formulating Newtonian gravity (i.e., Neo-Newt NG) and the curved spacetime
formulation share the same empirical commitments but subscribe to different
ontologies; hence, they constitute a non-trivial example of empirically indistinguish-
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able theories.36 It is now evident that, without further ado, this claim is ambiguous,
in so far as it fails to distinguish between weak NCG and strong NCG.
Before attempting a bit of disambiguation, perhaps it is best to first explain what
is at stake.
Empirical indistinguishability plays a central role in one form of underdetermina-

tion argument in the debate over scientific realism. Briefly, some anti-realists attempt
to use empirical indistinguishability to drive a wedge between semantic realism (the
realist’s desire to read successful theories literally) and epistemic realism (the realist’s
contention that there can be good reasons to believe the theoretical claims of
successful theories). A conventionalist, for instance, argues that empirical
indistinguishability conjoined with epistemic realism entails semantic anti-realism:
If T and T 0 are distinct empirically indistinguishable theories, then, to the extent that
any reason to believe one is also a reason to believe the other, we cannot read both of
them literally. A constructive empiricist, on the other hand, argues that empirical
indistinguishability conjoined with semantic realism entails epistemic anti-realism: T

and T 0; read literally, make different, possibly conflicting, theoretical claims, with
respect to which we cannot be epistemic realists.
The task for such anti-realists then is to identify non-trivial examples of

empirically indistinguishable theories. In particular, an anti-realist may look to
Neo-Newt NG and NCG as such an example. On the other hand, a realist might
respond by claiming that Neo-Newt NG and NCG are really a trivial example of
empirical indistinguishability, in so far as they are the same theory. Such a realist
might suggest that the empirical content of Neo-Newt NG is only recoverable from
NCG under conditions that effectively reduce the ontology of NCG to the ontology
of the standard formulation. Hence, NCG is just Neo-Newt NG in disguise. I will
now attempt to describe the contexts in which both of these anti-realist and realist
claims are correct.
Note, first, that the different versions of Newtonian gravity canvassed above can

be distinguished in terms of their symmetries:

Theory Spacetime symmetries Dynamical symmetries

Neo-Newt NG gal gmaxmax

Neo-Newt NG w/b.c. gal gal and f/fþ jðtÞ
Max NG max gmaxmax

Weak NCG gleibleib gleibleib

Weak NCG w/b.c. gal gal and f/fþ jðtÞ
Strong NCG gmaxmax gmaxmax

where ‘‘b.c.’’ denotes ‘‘boundary condition’’ in the form of the ‘‘island universe’’
assumption. Now suppose the anti-realist makes the following claim:

(A) If two theories agree on their dynamical symmetries, then they are empirically
indistinguishable.
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One way to make (A) plausible is in terms of two further claims: (i) two theories are
empirically indistinguishable just when they share the same set of observables; and
(ii) the observables of a theory are the invariants of its dynamical symmetries. If the
anti-realist can mount arguments in support of these claims, then she has found two
cases of empirical indistinguishability in the context of Newtonian theories of
gravity; namely,

(a) Neo-Newt NG w/b.c. and Weak NCG w/b.c.;
(b) Neo-Newt NG, Max NG, and Strong NCG.

A realist may now take issue with case (a), claiming that, to the extent that both
theories have the same spacetime symmetries, and hence posit the same absolute
objects, they are really the same theory with the same ontological commitments. (Of
course, ‘‘pathological’’ interpretations that would distinguish between the two are
always possible, but perhaps disingenuous on the part of the anti-realist). The realist
may claim that the ‘‘island universe’’ assumption imposed on weak NCG effectively
reduces its ontology to that of Neo-Newt NG w/b.c.
However, to the extent that the realist labels case (a) as a trivial example of

empirical indistinguishability in this fashion, she will have to admit that case (b) is a
non-trivial example; namely, that Neo-Newt NG, Max NG, and Strong NCG, while
agreeing on their observables, posit different absolute objects and hence constitute
different theories with different ontologies. (For instance, a typical semantic realist,
who desires to read Max NG and Strong NCG literally, will admit f into the
ontology of the former, but not the latter.)
Note, finally, that this is not to say that case (b) provides fool-proof ammunition

for the anti-realist in her attack on scientific realism. In the light of case (b), the
realist has at least two options available:

(i) Case (b) can be given a semantic gloss. For example, a structural realist may
take heart with the above classification of Newtonian gravitation theories in
terms of their symmetries and claim: dynamical structure is real, and not the
contents of ‘‘individuals-based’’ ontologies.37 A structural realist interpretation
of Neo-Newt NG, Max NG and Strong NCG will then view all three as the
same theory.

(ii) Case (b) can be given an epistemic gloss: Typical semantic realists who adopt
‘‘individuals-based’’ ontologies can appropriate a suitable epistemic component
for their realism; one based on, for instance, epistemic criteria like simplicity,
explanatory and/or unifying power, etc. Case (b) can then be addressed by
attempting to adjudicate between Neo-Newt NG, Max NG, and Strong NCG in
terms of these criteria.

Hence, arguably, even in the light of non-trivial examples of empirically
indistinguishable theories, the debate over scientific realism is far from settled.
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