
CHAPTER 16
Condensed Matter Physics and the
Nature of Spacetime

Jonathan Bain*

Abstract This essay considers the prospects of modeling spacetime as a phenom-
enon that emerges in the low-energy limit of a quantum liquid. It evaluates
three examples of spacetime analogues in condensed matter systems that
have appeared in the recent physics literature, indicating the extent to
which they are viable, and considers what they suggest about the nature
of spacetime.

1. INTRODUCTION

In the philosophy of spacetime literature not much attention has been given to
concepts of spacetime arising from condensed matter physics. This essay attempts
to address this. It looks at analogies between spacetime and a quantum liquid
that have arisen from effective field theoretical approaches to highly correlated
many-body quantum systems. Such approaches have suggested to some authors
that spacetime can be modeled as a phenomenon that emerges in the low-energy
limit of a quantum liquid with its contents (matter and force fields) described
by effective field theories (EFTs) of the low-energy excitations of this liquid. In
the following, these claims will be evaluated in the context of three examples.
Section 2 sets the stage by describing the nature of EFTs in condensed matter sys-
tems and how Lorentz-invariance typically arises in low-energy approximations.
Section 3 looks at two examples of spacetime analogues in superfluid Helium: ana-
logues of general relativistic spacetimes in superfluid Helium 4 associated with the
”acoustic” spacetime programme (e.g., Barceló et al., 2005), and analogues of the
Standard Model of particle physics in superfluid Helium 3 (Volovik, 2003). Sec-
tion 4 looks at a twistor analogue of spacetime in a 4-dimensional quantum Hall
liquid (Sparling, 2002). It will be seen that these examples possess limited viability
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302 Condensed Matter Physics and the Nature of Spacetime

as analogues of spacetime insofar as they fail to reproduce all aspects of the ap-
propriate physics. On the other hand, all three examples may be considered part
of a condensed matter approach to quantum gravity; thus to the extent to which
philosophers should be interested in concepts of spacetime associated with ap-
proaches to quantum gravity, spacetime analogues in condensed matter should be
given due consideration.

2. EFFECTIVE FIELD THEORIES IN CONDENSED MATTER SYSTEMS

In general, an effective field theory (EFT, hereafter) of a physical system is a theory
of the dynamics of the system at energies close to zero. For some systems, such
low-energy states are effectively independent of (“decoupled from”) states at high
energies. Hence one may study the low-energy sector of the theory without the
need for a detailed description of the high-energy sector. Systems that admit EFTs
appear in both quantum field theory and condensed matter physics. It is systems
of the latter type that will be the focus of this essay.

In particular, the condensed matter systems to be discussed below are highly-
correlated quantum many-body systems; that is, many-body systems that display
macroscopic quantum effects. Typical examples include superfluids, superconduc-
tors, Bose–Einstein condensates, and quantum Hall liquids. The low-energy states
described by an EFT of such a system take the form of collective modes of the
ground state, generically referred to as “quasiparticles”. Such quasiparticles may
be either bosonic or fermionic. In the examples below, under the intended in-
terpretation, the latter correspond to the fermionic matter content of spacetime
(electrons, neutrinos, etc.), whereas the former correspond to gauge fields (grav-
itational, electromagnetic, Yang–Mills, etc.) and their quanta (gravitons, photons,
etc.).1 Intuitively, one considers the system in its ground state and tickles it with
a small amount of energy. The low-energy ripples that result then take the above
forms. To construct an EFT that describes such ripples, the system must first pos-
sess an analytically well-defined ground state.2 An EFT can then be constructed
as a low-energy approximation of the original theory. One method for doing so is
to expand the initial Lagrangian in small fluctuations in the field variables about
their ground state values, and then integrate out the high-energy fluctuations. An
example of this will be the construction of the EFT for superfluid Helium 4 below.

In this example and the others reviewed in Sections 3 and 4 below, a Lorentz
invariant relativistic theory is obtained as the low-energy approximation of a non-
relativistic (i.e., Galilei-invariant) theory. Before considering some of the details of

1 A third type of low-energy state that may arise in condensed matter EFTs takes the form of topological defects of the
ground state, the simplest being vortices. This type will not play a role in the following discussion.

2 In general this is typically not the case. A necessary condition for the existence of an EFT, so characterized, is that the
associated system exhibit gapless excitations; i.e., low-energy excitations arbitrarily close to the ground state. This notion
of an EFT is that described by Polchinski (1993) and Weinberg (1996, p. 145). For Polchinski, an EFT must be “natural” in
the sense that all mass terms should be forbidden by symmetries. Mass terms correspond to gaps in the energy spectrum
insofar as such terms describe excitations with finite rest energies that cannot be made arbitrarily small. For Weinberg, RG
theory should only be applied to EFTs that are massless or nearly massless. (Note that this does not entail that massive
theories have no EFTs insofar as mass terms that may appear in the high-energy theory may be encoded as interactions
between massless effective fields.)
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these examples, it may be helpful to get a feel for just how this can come about.
It turns out that this is not that uncommon in many non-relativistic condensed
matter systems.

Relativistic phenomena are governed by a Lorentz invariant energy dispersion
relation of the standard form E2 = m2c4 + c2p2. This reduces in the massless case
to a linear relation between the energy and the momentum: E2 = c2p2. It turns
out that such a linear relation is a generic feature of the low-energy sector of Bose–
Einstein condensates and (bosonic) superfluids. The general form of the dispersion
relation for the quasiparticles of these systems is given by E2 = c2

s p2 + c2
s p4/K2,

where cs is the quasiparticle speed, and K is proportional to the mass of the con-
stituent bosons (see, e.g., Liberati et al., 2006, p. 3132). In a low-energy approxima-
tion, one may assume the quasiparticle momentum is much smaller than the mass
of the constituent bosons; i.e., p � K, and thus obtain a massless relativistic quasi-
particle energy spectrum, E2 ≈ c2

s p2. In Section 3.1, we’ll see how this is encoded
in the EFT for superfluid Helium 4.

For fermionic quantum liquids, the Fermi surface plays an essential role in
the low-energy approximation. For a non-interacting Fermi gas, the Fermi sur-
face is the boundary in momentum space that separates occupied states from
unoccupied states and is characterized by the Fermi momentum pF. In the cor-
responding EFT, the Fermi surface becomes the surface on which quasiparticle
energies vanish. The energy spectrum of low-energy fermionic quasiparticles then
goes as E(p) ≈ vF(p− pF), where vF ≡ (∂E/∂p)|p=pF is the Fermi velocity.3 This lin-
ear dispersion relation suggests the relativistic massless case and figures into the
recovery of the relativistic Dirac equation in one- and two-dimensional systems.4

The massless Weyl equation that describes chiral fermions can also be recovered
in the 1-dim case and this will be relevant in the example of a spacetime analogue
in a quantum Hall liquid in Section 4. In this example, a (1 + 1)-dim relativistic
EFT can be constructed for the edge of a 2-dim quantum Hall liquid, and this can
then be extended to a (3 + 1)-dim EFT for the edge of a 4-dim QH liquid, with
an associated notion of spacetime. In three-dimensional systems, the analysis is
a bit more complex. An example of a 3-dim system with a relativistic EFT is the
A-phase of superfluid Helium 3, which is a fermionic system in which a finite gap
exists between the Fermi surface and the lowest energy level, except at two points.
When the energy is linearized about these “Fermi points”, it takes the form of a
dispersion relation formally identical to that for (3 + 1)-dim massless relativistic
fermions coupled to a 4-potential field that can be interpreted as an electromag-
netic potential field. A sketch of the details will be provided in Section 3.2 below.

3. SPACETIME ANALOGUES IN SUPERFLUID HELIUM

This section reviews two examples of spacetime analogues in superfluid Helium:
acoustic spacetimes in superfluid Helium 4, and the Standard Model and gravity

3 Near the Fermi surface, the energy can be linearly expanded as E(p) = E(pF)+(∂E/∂p)|p=pF (p−pF)+· · · . Quasiparticle
energies vanish on the Fermi surface, hence to second order, E(p) = vF(p− pF).

4 See Zee (2003, p. 274) for the recovery in a system of electrons hopping on a 1-dim lattice, and Zhang (2004, pp. 672–
675) for the recovery in current models of 2-dim high temperature superconductors.
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in superfluid Helium 3-A. In both of these examples, the low-energy EFT of the
system is formally identical to a relativistic theory. The EFT for superfluid Helium
4 is formally identical to a theory describing a massless scalar field in Minkowski
spacetime (to first order) or in a curved spacetime (to second order); and the EFT
for superfluid Helium 3-A is formally identical to (relevant aspects of) the Stan-
dard Model. Associated with these EFTs are concepts of spacetime, and the extent
to which the EFTs are adequate analogues of spacetime will depend, in part, on
one’s prior convictions on how best to model spacetime. For the superfluid He-
lium examples, these convictions are:

(a) that spacetime is best modeled by (a given aspect of) the solutions to the Ein-
stein equations in general relativity;

(b) that spacetime is best modeled by the ground state for quantum field theories
of matter, gauge, and metric fields.

The examples can be judged on the degree to which they reproduce the appropri-
ate physics (general relativity, the Standard Model), as well as the feasibility of the
convictions that motivate them. We’ll see that spacetime analogues in superfluid
Helium 4 are wanting insofar as they do not completely reproduce general rela-
tivity, while spacetime analogues in superfluid Helium 3-A are wanting for the
same reason, as well as for some qualified reasons concerning the extent to which
they reproduce the Standard Model. In the following I will first explain relevant
features of each example and then discuss its viability in providing an analogue
of spacetime. Section 3.3 will then take up the question of what these examples
suggest about the nature of spacetime.

3.1 “Acoustic” spacetimes and superfluid Helium 4
The ground state of superfluid Helium 4 is a Bose–Einstein condensate consist-
ing of 4He atoms (Helium isotopes with four nucleons). It can be characterized
by an order parameter that takes the form of a “macroscopic” wavefunction
ϕ0 = (ρ0)1/2eiθ with condensate particle density ρ0 and coherent phase θ . An
appropriate Lagrangian describes non-relativistic neutral bosons interacting via a
spontaneous symmetry breaking potential with coupling constant κ (see, e.g., Zee,
2003, pp. 175, 257),

(1)L4He = iϕ†∂tϕ − 1
2m

∂iϕ
†∂iϕ + μϕ†ϕ − κ(ϕ†ϕ)2, i = 1, 2, 3.

Here m is the mass of a 4He atom, and the term involving the chemical poten-
tial μ enforces particle number conservation. This is a thoroughly non-relativistic
Lagrangian invariant under Galilean transformations.

A low-energy approximation of (1) can be obtained in a two-step process:5

(a) One first writes the field variable ϕ in terms of density and phase variables,
ϕ = (ρ)1/2eiθ , and expands the latter linearly about their ground state values,
ρ = ρ0+ δρ, θ = θ0+ δθ (where δρ and δθ represent fluctuations in density and
phase above the ground state).

5 The following draws on Wen (2004, pp. 82–83) and Zee (2003, pp. 257–258).
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(b) After substituting back into (1), one identifies and integrates out the high-
energy fluctuations.

Since the ground state ϕ0 is a function only of the phase, low-energy excitations
take the form of phase fluctuations δθ . To remove the high-energy density fluc-
tuations δρ, one “integrates” them out: One way to do this is by deriving the
Euler–Lagrange equations of motion for the density variable, solving for δρ, and
then substituting back into the Lagrangian. The result schematically is a sum of
two terms: L4He = L0[ρ0, θ0]+L′4He[δθ ], where the first term describes the ground

state of the system and is formally identical to (1), and the second term, depen-
dent only on the phase fluctuations, describes low-energy fluctuations above the
ground state. This second term represents the effective field theory of the system
and is generally referred to as the effective Lagrangian. To second order in δθ , it
takes the form,

(2)L′4He =
1

4κ
(∂tθ + vi∂iθ )2 − ρ0

2m
(∂iθ )2,

with δθ replaced by θ for the sake of notation. Here the second order term de-
pends explicitly on the superfluid velocity vi ≡ (1/m)∂iθ . One now notes that (2)
is formally identical to the Lagrangian that describes a massless scalar field in a
(3+ 1)-dim curved spacetime:

(3)L′4He =
1
2

√−g gμν∂μθ∂νθ , μ, ν = 0, 1, 2, 3,

where the curved effective metric depends explicitly on the superfluid velocity vi:

(4)gμν dxμ dxν = (ρ/cm)
[−c2 dt2 + δij

(
dxi − vi dt

)(
dxj − vj dt

)]
,

where (−g)1/2 ≡ ρ2/m2c, and c2 ≡ 2κρ/m (see, e.g., Barceló et al., 2001, pp. 1146–
1147). One initial point to note is that, if the original Lagrangian had been ex-
panded to 1st order in δθ , the second order term dependent on vi would vanish
in both the effective Lagrangian and the effective metric, and the latter would be
formally identical to a flat Minkowski metric (up to conformal constant).6 This
suggests an interpretation of the effective metric (4) as representing low-energy
curvature fluctuations (due to the superfluid velocity) above a flat Minkowski
background. This is formally identical to the linear approximation of solutions to
the Einstein Equations in general relativity, which can likewise be approximated
by low-energy fluctuations in curvature above a flat Minkowski background met-
ric. This formal equivalence has been exploited to probe the physics of black holes
and the nature of the cosmological constant.

(i) Acoustic Black Holes. The general idea is to identify the speed of light in the
relativistic case with the speed of low-energy fluctuations, generically referred to
as sound modes, in the condensed matter case; hence the terms “acoustic” space-
time and “acoustic” black hole. In general, acoustic black holes are regions in the

6 When the vi term is suppressed in (2), the Lagrangian describes a massless field with energy spectrum E2 = c2p2. This
is the linearly dispersing relation associated with low-energy quasiparticles in Bose–Einstein condensates and bosonic
superfluids mentioned in Section 2.
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background condensate from which low-energy fluctuations traveling at or less
than the speed of sound cannot escape. This can be made more precise with the
definitions of acoustic versions of ergosphere, trapped region, and event horizon,
among others. A growing body of literature seeks to exploit such formal similari-
ties between relativistic black hole physics and acoustic “dumb” hole physics (see,
e.g., Barceló et al., 2005). The primary goal is to provide experimental settings in
condensed matter systems for relativistic phenomena such as Hawking radiation
associated with black holes.

(ii) The Cosmological Constant. Volovik (2003) has argued that the analogy be-
tween superfluid Helium and general relativity provides a solution to the cosmo-
logical constant problem. The latter he takes as the conflict between the theoreti-
cally predicted value of the vacuum energy density in quantum field theory (QFT),
and the observational estimate as constrained by general relativity: The QFT theo-
retical estimate is 120 orders of magnitude greater than what is observed. Volovik
sees this as a dilemma for the marriage of QFT with general relativity. If the vac-
uum energy density contributes to the gravitational field, then the discrepancy
between theory and observation must be addressed. If the vacuum energy density
is not gravitating, then the discrepancy can be explained away, but at the cost of the
equivalence principle. Volovik’s preferred solution is to grab both horns by claim-
ing that both QFT and general relativity are EFTs that emerge in the low-energy
sector of a quantum liquid.

(a) The first horn is grasped by claiming that QFTs are EFTs of a quantum liquid.
As such, the vacuum energy density of the QFT does not represent the true
“trans-Planckian” vacuum energy density, which must be calculated from the
microscopic theory of the underlying quantum liquid. At T = 0, the pressure
of such a liquid is equal to the negative of its energy density (Volovik, 2003,
pp. 14, 26). This relation between pressure and vacuum energy density also
arises in general relativity if the vacuum energy density is identified with the
cosmological constant term. However, in the case of liquid 4He in equilibrium,
the pressure is zero (Volovik, 2003, p. 29); hence, so is the vacuum energy den-
sity.

(b) The second horn is grasped simply by claiming that general relativity is an
EFT. Thus, we should not expect the equivalence principle to hold at the
“trans-Planckian” level, and hence we should not expect the true vacuum en-
ergy density to be gravitating.

Limitations
The implicit claim associated with both the acoustic black hole program and
Volovik’s solution to the cosmological constant problem is that acoustic space-
times can be considered analogues of general relativistic spacetimes. One way to
assess this claim is by considering the notion of background structure in acoustic
spacetimes and in general relativity. Note that the acoustic metric arises in a
background-dependent manner. The acoustic metric (4) is obtained ultimately by
imposing particular constraints on prior spacetime structure; it is not obtained ab
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initio.7 A natural question then is What should be identified as the background structure
of acoustic spacetimes? The answer to this question will affect the extent to which
acoustic spacetimes effectively model general relativity.

One option is to identify Minkowski spacetime as the background struc-
ture of acoustic spacetimes. This might be motivated by the explicit form of
the acoustic metric (4). As indicated above, it can be interpreted as describing
low-energy curvature fluctuations, due to the superfluid velocity, above a flat
Minkowski background metric. In particular, (4) can be written in the suggestive
form gμν dxμ dxν = ημν dxμ dxν + g′μν dxμ dxν , where the first term on the right is
independent of the superfluid velocity and is identical to a Minkowski metric, and
the second term depends explicitly on the superfluid velocity. (The issue of general
covariance will be addressed in the subsequent discussion below.)

A second option, however, is to identify the background structure of acoustic
spacetimes with (Galilei-invariant) Neo-Newtonian spacetime. This is motivated
by considering the procedure by which the acoustic metric was derived. This starts
with the Galilei-invariant Lagrangian (1). Low energy fluctuations of the ground
state to first order obey the Lorentz symmetries associated with Minkowski space-
time, and low energy fluctuations to second order obey the symmetries of the
curved acoustic metric (4).8 From this point of view, the relation between acoustic
spacetimes and Minkowski spacetime is one in which both supervene over a back-
ground Neo-Newtonian spacetime. This second option seems the more appropri-
ate: If acoustic metrics are to be interpreted as low-energy fluctuations above the
ground state of a condensate, then the background structure of such spacetimes
should be identified with the spatiotemporal structure of the condensate ground
state, which obeys Galilean symmetries.9

This response has implications for the question of the viability of acoustic
spacetimes as models of general relativity. Note first that acoustic metrics are
not obtained as solutions to the Einstein equations; they are derived via a low-
energy approximation from the Lagrangian (1) (and similar Lagrangians for other
types of condensed matter systems). As noted above, this approximation results
schematically in the expansion L4He = L0[ρ0, θ0]+L′4He[δθ ]. To make contact with

the Lagrangian formulation of general relativity, Volovik (2003, p. 38) interprets
L4He as comprised of a “gravitational” part L0 describing a background spacetime
expressed in terms of the variables θ0, ρ0, with gravity being simulated by the su-
perfluid velocity, and a “matter” part L′4He, expressed in terms of the variable δθ .

To obtain the “gravitational” equations of motion, one can proceed in analogy with
general relativity by extremizing L4He with respect to θ0, ρ0. This results in a set
of equations that are quite different in form from the Einstein equations (Volovik,
2003, p. 41), and this indicates explicitly that the dynamics of acoustic spacetime
EFTs does not reproduce general relativity. Hence acoustic spacetimes cannot be
considered dynamical analogues of general relativistic spacetimes.

7 For the moment I will leave aside the question of how this structure can be interpreted. In particular, as will be made
explicit in Section 3.3 below, background-dependence of a spacetime theory does not necessarily imply a substantivalist
interpretation, any more than background-independence necessarily implies a relationalist interpretation.

8 Whether or not (4) exhibits non-trivial symmetries will depend on the explicit form of the superfluid velocity.
9 Again, I will postpone discussion of how this structure can be interpreted until Section 3.3.
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While acknowledging that acoustic spacetimes do not model the dynamics of
general relativity, some authors have insisted, nonetheless, that acoustic space-
times account for the kinematics of general relativity:

. . . the features of general relativity that one typically captures in an “ana-
logue model” are the kinematic features that have to do with how fields
(classical or quantum) are defined on curved spacetime, and the sine qua
non of any analogue model is the existence of some “effective metric” that
captures the notion of the curved spacetimes that arise in general relativity.
(Barceló et al., 2005, p. 7.)

The acoustic analogue for black-hole physics accurately reflects half of gen-
eral relativity—the kinematics due to the fact that general relativity takes
place in a Lorentzian spacetime. The aspect of general relativity that does
not carry over to the acoustic model is the dynamics—the Einstein equa-
tions. Thus the acoustic model provides a very concrete and specific model
for separating the kinematic aspects of general relativity from the dynamic
aspects. (Visser, 1998, p. 1790.)

Caution should be urged in evaluating claims like these. First, if the kinematics
of general relativity is identified with Minkowski spacetime, as linear approxima-
tions to solutions to the Einstein equations might suggest, then acoustic spacetimes
cannot be considered kinematical analogues of general relativity. And this is be-
cause, as argued above, the background structure of acoustic spacetimes should be
identified with Neo-Newtonian spacetime and not Minkowski spacetime. More
importantly, just what the kinematics of general relativity consists of is open to
debate, particularly if we look beyond the linear approximation and consider so-
lutions to the Einstein equations in their full generality. Rather than engage in this
debate, I will restrict my comments to two points. First, to the extent that general
solutions to the Einstein equations are background independent, they will obvi-
ously not be modeled effectively by background dependent acoustic spacetimes.
Second, to the extent that the Einstein equations are diffeomorphism invariant,
they will not be modeled effectively by acoustic spacetimes, insofar as the low-
energy EFT (2) is not diffeomorphism invariant.10 Thus, insofar as the kinematics
of general relativity involves either (or both) of the properties of background inde-
pendence and diffeomorphism invariance, acoustic spacetimes cannot be said to
be kinematical analogues of general relativity.

I would thus submit that acoustic spacetimes provide neither dynamical nor
kinematical analogues of general relativity. In fact this sentiment has been ex-
pressed in the literature. Barceló et al. (2004) suggest that acoustic spacetimes
simply demonstrate that some phenomena typically associated with general rela-
tivity really have nothing to do with general relativity:

Some features that one normally thinks of as intrinsically aspects of gravity,
both at the classical and semiclassical levels (such as horizons and Hawking
radiation), can in the context of acoustic manifolds be instead seen to be

10 More precisely, the low-energy EFT (2) does not obey “substantive” (as opposed to “formal”) general covariance in
Earman’s (2006, p. 4) sense; i.e., diffeomorphisms are not a local gauge symmetry of (2).
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rather generic features of curved spacetimes and quantum field theory in
curved spacetimes, that have nothing to do with gravity per se. (Barceló et
al., 2004, p. 3.)

This takes some of the initial bite out of Volovik’s solution to the cosmological
constant problem. If acoustic spacetimes really have nothing to do with general
relativity, their relevance to reconciling the latter with QFT is somewhat dimin-
ished. While they might provide useful analogues for investigating features of
quantum field theory in curved spacetime, extending their use to descriptions
of gravitational effects and problems associated with such effects is perhaps not
warranted. On the other hand, Volovik’s solution to the cosmological constant
problem is meant to carry over to other analogues of general relativity besides
superfluid 4He. In particular, it can be run for the case of the superfluid 3He-A,
which differs significantly from 4He in that fields other than massless scalar fields
arise in the low-energy approximation. The fact that these fields model aspects of
the dynamics of the Standard Model perhaps adds further plausibility to Volovik’s
solution. To investigate further, I now turn to 3He.

3.2 The Standard Model and gravity in superfluid Helium 3-A

The second example of a spacetime analogue in a condensed matter system con-
cerns the Standard Model of particle physics and the A-phase of superfluid He-
lium 3. Since 3He atoms are fermions, they can only condense as a Bose–Einstein
condensate if they group themselves into bosonic pairs. Thus the particle content
of the superfluid consists of pairs of 3He atoms. These pairs are similar to the
electron Cooper pairs described by the standard Bardeen–Cooper–Schrieffer (BCS)
theory of conventional superconductors. 3He Cooper pairs, however, have addi-
tional spin and orbital angular momentum degrees of freedom, and this allows for
a number of distinct superfluid phases. In particular, the A-phase is characterized
by pairs of 3He atoms spinning about anti-parallel axes that are perpendicular to
the plane of their orbit.11

The (second-quantized) Hamiltonian that describes such 3He-A Cooper pairs
takes the following schematic form:

(5)H3He-A = χ†Hχ , H = σ bgb(�p), b = 1, 2, 3,

where the χ ’s are (non-relativistic) 2-spinors that encode creation and annihila-
tion operators for 3He atoms, σ a are Pauli matrices, and gb are three functions
of momentum that encode the kinetic energy and interaction potential for 3He-A
Cooper pairs.12 This Hamiltonian can be diagonalized to obtain the quasiparticle

11 3He Cooper pairs are characterized by spin triplet (S = 1) states with p-wave (l = 1) orbital symmetry. There are
thus nine distinct types of 3He Cooper pairs, characterized by 3 spin (Sz = 0,±1) and 3 orbital (lz = 0,±1) momentum
eigenvalues. In 3He-A Cooper pairs, there are no Sz = 0 substates, and the orbital momentum axis is aligned with the axis
of zero spin.
12 For details consult Volovik (2003, pp. 82, 96). For inquiring minds, g1 = �p · (Δ0/pF)(�σ · d̂)m̂, g2 = �p · (Δ0/pF)(�σ · d̂)n̂, and
g3 = (p2/2m) − μ. In these expressions, the unit vector d encodes the direction of zero spin, the cross product of the unit
vectors m, n encodes the orbital momentum vector, and the constant Δ0 plays the role of a gap in the BCS energy spectrum
for quasiparticle excitations above the Cooper pair condensate. Eq. (5) essentially is a modification of the standard BCS
Hamiltonian to account for the extra degrees of freedom of 3He-A Cooper pairs.
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energy spectrum. One finds that it vanishes in 3-momentum space at two “Fermi
points”, call them p(a)

i , i = 1, 2, 3, a = 1, 2. This is due in particular to the directional
dependence of the Hamiltonian on the orbital momentum degrees of freedom.

The presence of Fermi points in the energy spectrum is significant for two pri-
marily reasons.13 First, they are topologically stable insofar as they define singular-
ities in the one-particle Feynman propagator G = (ip0−H)−1 that are insensitive to
small perturbations. This means pragmatically that the general form of the energy
spectrum remains unchanged even when the system undergoes (small) interac-
tions. Second, near the Fermi points p(a)

μ = (0, p(a)
i ) in 4-momentum space, the form

of the inverse propagator can be expanded as

(6)G−1 = σ beμ

b

(
pμ − p(a)

μ

)
, b = 0, 1, 2, 3

(where the tetrad field eμ

b encodes the linear approximations of the gb functions).
The quasiparticle energy spectrum is given by the poles in the propagator, and
hence takes the general form,

(7)gμν
(
pμ − p(a)

μ

)(
pν − p(a)

μ

) = 0,

where gμν = ηabeμ
a eν

b . Here the parameters gμν and p(a)
μ are dynamical variables

insofar as small perturbations of the system are concerned. Again, such perturba-
tions cannot change the fact that Fermi points exist in the energy spectrum; what
they can change, however, are the positions of the zeros in the energy spectrum,
as given by the values of p(a)

μ , or the slope of the curve of the energy spectrum in
momentum space, as dictated by the values of gμν .14

The Lagrangian corresponding to the energy spectrum (7) can be written as,

(8)L′3He-A = Ψ̄ γ μ(∂μ − q(a)Aμ)Ψ ,

where γ μ = gμν(σν ⊗ σ3) are Dirac γ -matrices, the Ψ ’s are relativistic Dirac 4-
spinors (constructed from pairs of the 2-spinors in (5)), and q(a)Aμ = p(a)

μ . This
describes massless Dirac fermions interacting with a 4-vector potential Aμ in a
curved spacetime with metric gμν . (8) would be formally identical to the La-
grangian for massless quantum electrodynamics (QED), except for the fact that it
does not have a term describing the Maxwell field (i.e., the gauge field associated
with the potential Aμ).

It turns out that a Maxwell term arises naturally as a vacuum correction to the
coupling between the quasiparticle matter field Ψ and the potential field Aμ. This

13 The following exposition relies on Volovik (2003, pp. 99–101), and the review in Dreyer (2006, pp. 3–4). Fermi points
also occur in the energy spectrum of the sector of the Standard Model above electroweak symmetry breaking (the sector
that contains massless chiral fermions). This leads to a theory of universality classes of fermionic vacua based on momen-
tum space topology (Volovik, 2003, Ch. 8). The significance of this theory for the present essay is that superfluid 3He-A
and the sector of the Standard Model above electroweak symmetry breaking belong to the same universality class, hence
can be expected to exhibit the same low-energy behavior.
14 This suggests interesting interpretations of the electromagnetic potential and the spacetime metric. To the extent that

they can be identified with the objects p(a)
μ and gμν in (7), respectively, the electromagnetic potential “. . . is just the dynam-

ical change in the position of zero in the energy spectrum [of fermionic matter coupled to an electromagnetic field]”, and
the spacetime metric’s role is to change the slope of the energy spectrum (Volovik, 2003, p. 101). The extent to which these
identifications are viable is discussed in the following.
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is demonstrated by applying the low-energy approximation method outlined in
Section 3.1 to the potential field variable: One expands (8) in small fluctuations
in Aμ about its ground state value, and then integrates out the high-energy fluc-
tuations. The result is a term that takes the form of the Maxwell Lagrangian in a
curved spacetime Lmax = (4β)−1√−g gμνgαβFμαFνβ , where Fμν is the gauge field
associated with the potential Aμ, and β is a constant that depends logarithmically
on the cut-off energy.15 Combining this with (8), the effective Lagrangian for 3He-
A then is formally identical to the Lagrangian for massless (3 + 1)-dim QED in a
curved spacetime.

Volovik (2003, pp. 114–115) now indicates how this can be extended to include
SU(2) gauge fields, and, in principle, the relevant gauge fields of the Standard
Model. The trick is to exploit an additional degree of freedom associated with the
quasiparticles described by (8). In addition to their charge, such quasiparticles are
also characterized by the two values ±1 of their spin projection onto the axis of
zero spin of the underlying 3He-A Cooper pairs. This two-valuedness can be in-
terpreted as a quasiparticle SU(2) isospin symmetry and incorporated explicitly
into (8) by coupling Ψ to a new effective field Wi

μ identified as an SU(2) potential
field (analogous to the potential for the weak force). Expanding this modified La-
grangian density in small fluctuations in the W-field about the ground state then
produces a Yang–Mills term. The general moral is that discrete degeneracies in
the Fermi point structure of the energy spectrum induce local symmetries in the
low-energy sector of the background liquid (Volovik, 2003, p. 116). For the discrete
two-fold (Z2) symmetry associated with the zero spin axis projection, we obtain
a low-energy SU(2) local symmetry; and in principle for larger discrete symme-
tries ZN, we should obtain larger local SU(N) symmetry groups. In this way the
complete local symmetry structure of the Standard Model could be obtained in the
low-energy limit of an appropriate condensed matter system.

Limitations
There are complications to the above procedure, however. The Standard Model
has gauge symmetry SU(3) ⊗ SU(2) ⊗ U(1) with the electroweak sector given by
SU(2) ⊗ U(1). The electroweak gauge fields belong to non-factorizable represen-
tations of SU(2) ⊗ U(1), and hence cannot be simply reconstructed from repre-
sentations of the two separate groups.16 This suggests that the low-energy EFT of
3He-A does not completely reproduce all aspects of the Standard Model. In fact,
it can be demonstrated explicitly that the 3He-A EFT is formally identical only to
the sector of the Standard Model above electroweak symmetry breaking, given
that both have in common the same Fermi point momentum space topology (see
footnote 13).

Moreover, it turns out that general relativity is not fully recovered either.
A low-energy treatment of the 3He-A effective metric does not produce the
Einstein–Hilbert Lagrangian of general relativity. Under this treatment, one ex-
pands the Lagrangian density in small fluctuations in the effective metric gμν

15 See, e.g., Volovik (2003, p. 112). A detailed derivation is given in Dziarmaga (2002). This method of obtaining the
Maxwell term as the second order vacuum correction to the coupling between fermions and a potential field was proposed
by Zeldovich (1967).
16 Thanks to an anonymous referee for making this point explicit.
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about the ground state and then integrates out the high-energy terms. This fol-
lows the procedure of what is known as “induced gravity”, after Sakharov’s
(1967) derivation of the Einstein–Hilbert Lagrangian density as a vacuum correc-
tion to the coupling between quantum matter fields and the spacetime metric.
In Sakharov’s original derivation, the metric was taken to be Lorentzian, and the
result included terms proportional to the cosmological constant and the Einstein–
Hilbert Lagrangian density (as well as higher-order terms). In the case of the
3He-A effective metric, the result contains higher-order terms dependent on the
superfluid velocity vi, and these terms dominate the Einstein–Hilbert term.17 To
suppress these terms, Volovik (2003, pp. 130–132) considers the limit in which the
mass of the constituent 3He-A atoms goes to infinity (since the superfluid velocity
is inversely proportional to this mass, this entails that vi → 0). In such an “inert
vacuum”, the Einstein–Hilbert term can be recovered. Since this limit involves no
superflow, Volovik’s (2003, p. 113) conclusion is that our physical vacuum cannot
be completely modeled by a superfluid. This is suggestive of the formal proper-
ties a condensed matter system must possess in order to better model the Standard
Model and gravity. In particular, it must possess Fermi points that do not arise via
symmetry breaking (as the Fermi points of superfluid 3He-A do). From a physical
point of view, however, it remains unclear what kind of condensate could possess
the property of having infinitely massive constituent particles.

3.3 Interpretation

As has been seen, both of the examples of spacetime analogues in superfluid He-
lium have their limitations, primarily when it comes to reproducing the relevant
physics. To the extent to which they fail to do this, one might question the rele-
vance such examples have to debates over the ontological status of spacetime. On
the other hand, both of the above examples, to varying degrees, can be seen to
fall within the auspices of a condensed matter approach to quantum gravity. This
is explicitly acknowledged by Volovik’s (2003) analysis of superfluid 3He-A, and
to a lesser extent by the researchers engaged in the acoustic spacetime program
(see, e.g., Liberati et al., 2006). This quantum gravity research programme seeks
to determine the appropriate condensed matter system that reproduces the mat-
ter, gauge and metric fields of current physics in its low-energy approximation,
thereby providing a common origin for both quantum field theory and general
relativity.18 Given that all current approaches to quantum gravity are incomplete
in one sense or another, the incompleteness of the above examples may thus per-
haps be excused. Furthermore, given that philosophers of spacetime should be

17 See, e.g., Volovik (2003, p. 113). Sakharov’s original procedure results in a version of semiclassical quantum gravity,
insofar as it describes quantum fields interacting with a classical, unquantized spacetime metric. In the condensed matter
context, the background metric is not a classical background spacetime, but rather arises as low-energy degrees of freedom
of a quantized non-relativistic system (the superfluid). Hence one could argue this condensed matter version of induced
gravity is not semiclassical.
18 See, e.g., Smolin (2003, pp. 57–58). Thus, to be more precise, the condensed matter programme is an approach to
reconciling general relativity and quantum theory, as opposed to an approach to a quantum theory of gravity. Ultimately it
suggests gravity need not be quantized, since it claims that gravity emerges in the low energy limit of an already quantized
system.
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FIGURE 16.1 The relation between the initial Lagrangian and the effective Lagrangian for
superfluid Helium.

interested in concepts of spacetime associated with approaches to quantum grav-
ity, they should be interested in concepts of spacetime associated with the above
examples, incomplete though they might be. With this attitude in mind, I will now
consider what such concepts might look like.

The condensed matter approach to quantum gravity is a background depen-
dent approach to general relativity and the standard model. Under a literal in-
terpretation, it is characterized by the following. First, it suggests that the vac-
uum of current physics is the Galilei-invariant ground state of a condensate. The
Galilei-invariant spatiotemporal structure of the condensate is thus literally in-
terpreted as background spacetime structure. Low-energy collective excitations
above the ground state, in the form of fermionic and bosonic quasiparticles, are
interpreted as matter, potential, and metric field quanta, respectively; and induced
vacuum corrections to the interactions between matter and potential fields are in-
terpreted as gauge fields (the electromagnetic field, the gravitational field, etc.).
Note in particular how this picture views violations of Lorentz invariance. It sug-
gests such violations occur at low energies, relative to the vacuum; i.e., they occur
as one decreases the energy from the realm of the Lorentz-invariant EFT to the
Galilei-invariant ground state. Violations of Lorentz-invariance also occur at high
energies, relative to the vacuum: they occur as one increases the energy from the
realm of the relativistic low-energy EFT to the realm of typical excited states of
the condensate. In the example of superfluid Helium, for instance, typical excited
superfluid states for temperatures below the critical temperature Tc, will be de-
scribed by the Galilei-invariant Lagrangian (1). When the energy is increased even
more, we eventually pass through the phase transition at Tc and back to the nor-
mal liquid state, which, again, is described by the Galilei-invariant Lagrangian (1)
(see Figure 16.1).

How this literal interpretation is further qualified; in particular, how one in-
terprets the spatiotemporal structure of the condensate and the nature of, for
instance, the low-energy excitation corresponding to the metric field, will depend
on one’s proclivities, be they relationalist or substantivalist. Let’s consider how
these further qualifications could play themselves out.

First, any relationalist interpretation should award ontological status just to
the condensate: relationalists will not countenance interpretations in which the
condensate exists in a background spacetime, for instance. A relationalist inter-
pretation might then be based on the following claims:
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(1) The background structure consists of the (Galilei-invariant) spatiotemporal re-
lations between the parts of the ground state of the condensate.

(2) Physical fields (matter, gauge, and metric) are low-energy collective excitations
of the condensate.

(3) Relativistic spacetime structure consists of the spatiotemporal properties of
low-energy excitations.

How Claim (3) gets further qualified may depend on the convictions one pos-
sesses on how best to model spacetime in the relativistic context. For instance, if
one is convinced that relativistic spacetime is best modeled by the spatiotemporal
properties of the ground state for quantum field theories, then one might identify
the relativistic spacetime structure of Claim (3) with the spatiotemporal proper-
ties of all low-energy excitations identified with physical fields. Such convictions
underlie a view, common among string theorists, of the relation between general
relativity and quantum field theory that prioritizes the latter and Lorentz sym-
metries. On the other hand, if one is convinced that relativistic spacetime is best
modeled by (some aspect of) the solutions to the Einstein equations in general rel-
ativity, then the relativistic spacetime structure of Claim (3) might be identified
solely with the spatiotemporal properties of that particular low-energy excitation
of the condensate identified as the metric field. Convictions of this sort underlie
the canonical loop approach to quantum gravity, for which Rovelli (2006) offers
a typical relationalist interpretation. Note that having a condensate at the base
of everything would make the life of relationalists of the latter stripe a bit more
easy. Such relationalists must provide stories that allow them to treat the metric
field on par, ontologically, with the other physical fields in nature, and such sto-
ries tend to be difficult in the telling (issues such as the non-local nature of the
energy associated with the metric field prevent a complete analogy between it and
other physical fields, for instance). If there is a condensate substrate common to
all physical fields, including the metric field, presumably the latter obtains just as
much ontological underpinning from it as the other fields.

Substantivalists of any stripe should award ontological status to both the con-
densate and spacetime. One can imagine various ways of doing so. A conserva-
tive substantivalist, for instance, might adopt the relationalist’s Claims (2) and (3)
while replacing Claim (1) with

(1′) The background structure consists of the properties of a substantival Neo-
Newtonian spacetime.

How Claim (3) gets cashed out by a conservative substantivalist might follow the
same maneuvers as the relationalist above. A more intrepid substantivalist might
insist on maintaining an ontological distinction between matter and spacetime at
all energy scales. One way to do this is to adopt Claims (1′) and (2), but replace (3)
with

(3′) Relativistic spacetime structure consists of the properties of a low-energy
emergent substantival spacetime.

The full explication of (3′) would require fleshing out a notion of “low-energy
emergence”. In fact, the examples of low-energy EFTs in superfluid Helium above
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(as well as the example in quantum Hall liquids below) have suggested to some
authors that novel phenomena including fields, particles, symmetries, twistors,
and spacetime, emerge in the low-energy sector of certain condensed matter sys-
tems.19 Doing justice to this notion of low-energy emergence is perhaps best left to
another essay; however, one thing that should be said is that it is distinct from typ-
ical notions of emergence associated with phase transitions in condensed matter
systems. As Figure 16.1 suggests, typical superfluids can be described by a single
Lagrangian that encodes both the normal liquid phase and the superfluid phase, as
well as the phase transition between the two. This Lagrangian is formally distinct
from the effective Lagrangian of the low-energy sector of the superfluid (when
it exists analytically). Thus to the extent that these distinct Lagrangians encode
different theories, low-energy emergence can be thought of as a relation between
theories, as opposed to a particular interpretation of a single theory (as typical no-
tions of emergence associated with symmetry-breaking phase transitions appear
to be).

At this point, it might be appropriate to consider possible motivations for the
above substantivalist interpretations. It might not be clear how the roles that typ-
ical substantivalists require spacetime to play are accomplished in the condensed
matter context. One such role is to provide the ontological substrate for physi-
cal fields. Typical substantivalist interpretations of general relativity, for instance,
are motivated by a literal interpretation of the representations of physical fields
as tensor fields that quantify over the points (or regions) of a differentiable mani-
fold. In the condensed matter context, this intuition might be applied to the field
representations of the constituent particles of the condensate as quantifying over
the points or regions of Neo-Newtonian spacetime. A conservative substantival-
ist might claim that, in order to support the condensate, we must postulate the
existence of a substantival Neo-Newtonian spacetime. In the case of an intre-
pid substantivalist, this intuition might be extended to the effective fields of the
EFT and the low-energy emergent substantival spacetime; however, it will only
do work if the notion of low-energy emergence is cashed out in such a way
that the effective fields (and the emergent relativistic spacetime) are sufficiently
ontologically distinct from the condensate. Otherwise, relationalists might claim
the condensate itself provides the necessary ontological support for the effective
fields.

A different type of substantivalist motivation comes from a desire to explain in-
ertial motion in terms of background spacetime structure. A substantivalist might
suggest that the coordinated behavior of test particles undergoing inertial motion
is mysterious, since such particles have no inertial “antennae” to detect each other,
and is explained if we posit a substantival spacetime endowed with an affine con-

19 In their review of models of analogue gravity, Barceló et al. (2005) speak of “emergent gravitational features in con-
densed matter systems” (p. 84), and ”emergent spacetime symmetries” (p. 89); Dziarmaga (2002, p. 274) describes how
“. . . an effective electrodynamics emerges from an underlying fermionic condensed matter system”; Volovik (2003) in the
preface to his text on low-energy properties of superfluid helium, lists ”emergent relativistic quantum field theory and
gravity” and ”emergent non-trivial spacetimes” as topics to be discussed within; Zhang (2004) provides “examples of
emergence in condensed matter physics”, including the 4-dim quantum Hall effect; and Zhang and Hu (2001, p. 825)
speak of the “emergence of relativity” at the edge of 2-dim and 4-dim quantum Hall liquids.
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nection that singles out the privileged inertial trajectories.20 I now want to argue
that this motivation for substantivalism fails in the condensed matter context. Note
first that it will not do work for a conservative substantivalist. For such a substan-
tivalist, the condensate exists in Neo-Newtonian spacetime, and fields and test
particles are low-energy ripples in the condensate. However, the relativistic iner-
tial structure experienced by the ripples is not that possessed by Neo-Newtonian
spacetime: According to Claim (3), it consists of the properties of the ripples them-
selves.21 An intrepid substantivalist may on first glance fare a bit better: Claim (3′)
guarantees that there are substantival privileged inertial trajectories in the rela-
tivistic context. In fact, an intrepid substantivalist might even claim to be able
to address a key criticism of this motivation; namely, that to explain the origin
of inertial motion by referring to privileged inertial trajectories in a substantival
spacetime is simply to replace mysterious inertial antennae with mysterious space-
time “feelers” (Brown and Pooley, 2006, p. 72). An intrepid substantivalist might
claim to have the basis for an explanation of these feelers: Low-energy ripples of
the condensate, viewed as low-energy emergent phenomena, might be expected to
coordinate themselves with a low-energy emergent substantival spacetime, given
the common origin of the two. Again, whether this basis can be fleshed out into a
legitimate explanation will depend on how the notion of low-energy emergence is
cashed out. But even if a legitimate explanation in terms of low-energy emergence
is forthcoming, it will do no work in distinguishing an intrepid substantivalist
from a conservative substantivalist, and hence, in distinguishing substantivalism
from relationalism in this context. Note first, that for any notion of low-energy
emergence that the intrepid substantivalist adopts, a conservative substantivalist
may appropriate it to flesh out Claim (2) and the origin of physical fields. She will
then be able to explain the mysterious inertial antennae of such fields in terms
of their common substrate origin, to the same degree that the intrepid substanti-
valist can explain the mysterious spacetime feelers of physical fields in terms of
their common origin with (relativistic) spacetime itself. In other words, any legit-
imate intrepid substantivalist explanation of spacetime feelers will map onto an
equally legitimate conservative substantivalist explanation of inertial antennae.
And, obviously, a relationalist may engage in the same practice as the conserva-
tive substantivalist in this context.

Thus, of the two standard motivations for substantivalism, only the motivation
from fields is relevant in the condensed matter context, and intrepid substantival-
ists will be fairly hard-pressed to make it work for them. Of course this is not to
say there may be other motivations for intrepid substantivalism (again, an insis-
tence on a separation between matter and spacetime at all energy scales may be
one).22

20 In other words, spacetime has privileged ”ruts” along which test particles are constrained to move in the absence of
external forces. See, e.g., Brown and Pooley (2006), where this motivation is identified and critiqued.
21 Note that the “Newtonian limit”, v/c → 0, for these relativistic low-energy ripples will consist of non-relativistic low-
energy ripples that do experience Neo-Newtonian inertial structure, but again, given the nature of Claim (3), according
to a conservative substantivalist, this structure is not to be attributed to the container Neo-Newtonian spacetime, but to
properties of the ripples.
22 For the sake of completeness, two further substantivalist positions can be identified. A super substantivalist might
interpret spacetime simply as the condensate itself, with matter fields and gauge fields identified as low-energy aspects of
spacetime. Arguably, such a super substantivalist would be hard-pressed to distinguish herself from the relationalist. Both
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One might now compare the above notions of spacetime with notions of space-
time associated with other approaches to quantum gravity. Rather than explicitly
doing so, the remainder of this section will simply indicate how the condensed
matter approach compares conceptually with the two most popular approaches;
namely, the background independent canonical loop approach, and background
dependent approaches like string theory. The intent is to distinguish these ap-
proaches in terms of how they deal with the issues of prior spacetime structure
and the nature and status of spacetime symmetries.

(a) The condensed matter approach is distinct from the canonical loop ap-
proach, insofar as it is background-dependent, the background being the spatiotem-
poral structure of the condensate. Moreover, while both the condensed matter ap-
proach and the loop approach predict violations of Lorentz invariance, these pre-
dictions differ in their details. First, as indicated above (see, e.g., Figure 16.1), the
condensed matter approach predicts such violations both at low energies (as we
approach the ground state), and at high energies (as we approach typical excited
states of the condensate and beyond). The loop approach predicts violations only
at high energies (scales smaller than the Planck scale) at which it predicts space-
time becomes discrete. Second, the condensed matter approach explains the vio-
lation of Lorentz invariance in terms of the existence of a preferred frame; namely
the frame defined by the spatiotemporal properties of the condensate, whereas the
loop approach explains the violation in terms of background-independence: at the
Planck scale, there are no frames, whether Lorentzian or otherwise.23

(b) The condensed matter approach differs from background-dependent ap-
proaches like string theory in three general respects. First, as is evident in the
previous sections, the condensed matter approach differs from string theory in
that the structure it attributes to the background is not Minkowskian: Given that
the fundamental condensate is a non-relativistic quantum liquid, the background
will be Neo-Newtonian. Second, while background-dependent approaches that
are ultimately motivated by quantum field theory (as string theory is) typically
view QFTs as low-energy EFTs of a more fundamental theory, such approaches
view the latter as a theory of high-energy phenomena (strings, for example). The
phenomena of experience, as described by current QFTs, are then interpreted as
emerging via a process of symmetry breaking. The condensed matter approach,
on the other hand, views QFTs and general relativity as EFTs of a more funda-
mental low-energy theory (relative to the vacuum), and the process by which the
former arise is a low-energy emergent process that is not to be associated with
symmetry breaking. Finally, in general, the condensed matter approach can be
characterized by placing less ontological significance on the notion of symmetry
than background-dependent approaches in at least two major respects.

First, background-dependent approaches that view QFTs as EFTs describe the
phenomena of experience as obeying “imperfect” (gauge) symmetries that result

make the same ontological Claims (1)–(3) and differ only on terminology. A hybrid substantivalist might adopt Claims (1),
(2) and (3′); but such a beast would also be hard to motivate: Hybrids cannot consistently appeal to the motivation from
fields, given that Claim (1) entails they reject it at the level of the condensate.
23 Smolin (2003, p. 20) indicates that current experimental data on the violation of Lorentz invariance place very restric-
tive bounds on preferred frame approaches. Nevertheless he suggests the condensed matter approach may provide key
information on the way spacetime might emerge in other scenarios; spin foams, for instance.
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from a process of symmetry breaking of a “more perfect” fundamental symmetry.
Mathematically, the more perfect fundamental symmetry is hypothesized as hav-
ing the structure of a single compact Lie group with a minimum of parameters.
This is then broken into imperfect symmetries that are characterized by prod-
uct group structure and relatively many parameters. In particular, the gauge field
group structure of the Standard Model, below electroweak symmetry breaking, is
given by U(1)⊗SU(2)⊗SU(3). In the condensed matter approach, the fundamental
condensate is not expected to have symmetries described by a single compact Lie
group. In the case of superfluid Helium 3, for instance, the “fundamental” symme-
tries already have a “messy” product group structure U(1)⊗SO(3)⊗SO(3), reflect-
ing the spin and orbital angular momentum degrees of freedom of 3He Cooper
pairs. Moreover, in terms of spacetime symmetries in the condensed matter ap-
proach, there are also senses in which the low-energy relativistic (viz., Lorentz)
symmetries are more perfect than the fundamental Galilean symmetries of the con-
densate. Note first that the Lorentz group can be characterized as leaving invariant
a single Lorentzian spacetime metric, whereas the Galilei group cannot; the latter
leaves separate spatial and temporal metrics invariant. Moreover, the Galilei group
does not admit unitary representations, whereas the Lorentz group does.24

The second way in which the condensed matter approach de-emphasizes the
ontological status of symmetries involves viewing it as an alternative logic of
nature to the logic of the Gauge Argument, which typically finds adherents in
quantum field theory. According to the Gauge Argument, matter fields are funda-
mental and imposing local gauge invariance on a matter Lagrangian requires the
introduction of interactions with potential gauge fields. The emphasis here is on
the fundamental role of local symmetries in explaining the origins of gauge fields
(see Martin (2002) for a critique of this argument). According to the condensed
matter approach, symmetries, both local and global, as well as matter and poten-
tial fields, are low-energy emergent phenomena of the fundamental condensate. In
particular, local symmetries do not play a fundamental role in the origin of gauge
fields.

4. SPACETIME ANALOGUE IN QUANTUM HALL LIQUIDS

A final example of a spacetime analogue in a condensed matter system concerns
the twistor formalism and 4-dimensional quantum Hall liquids. In this example,
the low-energy EFT of the edge of the system is formally identical to a theory
describing massless relativistic (3 + 1)-dim fields of all helicities. The question of
how such a model provides an analogue of spacetime is answered by twistor the-
ory, the goal of which is to reconstruct general relativity and quantum field theory
from the conformal properties of twistors. This example is thus similar in spirit
with the Helium examples insofar as it, too, can be associated with an approach

24 Of course these senses depend on a more nuanced characterization of “perfection” in group-theoretic terms than in
the case of gauge symmetries. Technically, the second sense is based on the fact that the Galilei group has non-trivial
exponents, whereas the Lorentz group does not. Unitary representations of the Galilei group up to a phase factor can be
constructed (so-called projective representations). The importance of unitary representations comes with implementing
spacetime symmetries in the context of quantum theory.
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to quantum gravity. Moreover, just as with the Helium examples, this example
faces limitations of two types. The first involves the extent to which the model re-
produces the “appropriate physics” (which in this case is twistor theory), and the
second involves the convictions associated with twistor theory as to how best to
represent spacetime (in this case, as derivative of twistors). We’ll see that the latter
limitation is the most severe: twistor theory faces its own problems in reproducing
the appropriate physics (general relativity and quantum field theory). These prob-
lems will be discussed in Section 4.4. Section 4.1 describes the context in which
2-dim quantum Hall liquids arise, Section 4.2 indicates how this can be extended
to four dimensions, and Section 4.3 explains what twistors are and how they are
intended to fit into the picture.

4.1 2-dim quantum Hall liquids

Quantum Hall liquids initially arose in explanations of the 2-dimensional quan-
tum Hall effect (QHE). The set-up consists of current flowing in a 2-dim conductor
in the presence of an external magnetic field perpendicular to its surface. The clas-
sical Hall effect occurs as the electrons in the current are deflected towards the
edge by the magnetic field, thus inducing a transverse voltage. In the steady state,
the force due to the magnetic field is balanced by the force due to the induced
electric field and the Hall conductivity σH is given by the ratio of current density to
induced electric field. The quantum Hall effect occurs in the presence of a strong
magnetic field, in which σH becomes quantized in units of the ratio of the square
of the electron charge e to the Planck constant h:

(9)σH = ν × (e2/h),

where ν is a constant. The Integer Quantum Hall Effect (IQHE) is characterized
by integer values of ν, and the Fractional Quantum Hall Effect (FQHE) is charac-
terized by values of ν given by odd-denominator fractions. Two properties exper-
imentally characterize the system at such quantized values: The current flowing
in the conductor becomes dissipationless, as in a superconductor; and the system
becomes incompressible.

These effects can be modeled by a condensate referred to as a quantum Hall
(QH) liquid. In one formulation, its constituent particles are represented by “com-
posite” bosons: bosons with p quanta of magnetic flux attached to them, where
p is an odd integer.25 The effect of this coupling is to mimic the Fermi–Dirac sta-
tistics of the original electrons. One can show that the total magnetic field felt by
the composite bosons vanishes when the constant ν in (9) is given by 1/p, cor-
responding to the FQHE. At such values, the bosons feel no net magnetic field,
and hence can form a condensate at zero temperature. This condensate, consisting
of charged bosons, forms the QH liquid, and can be considered to have the same
properties as a superconductor; namely, dissipationless current flow and the ex-
pulsion of magnetic fields from its interior. The latter property entails there is no

25 Technically this is achieved by coupling bosons in the presence of a magnetic field to an additional Chern–Simons
field. For details, consult Zhang (1992, p. 32).
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net internal magnetic field in a QH liquid, and this entails that the particle density
is constant.26 Thus a QH liquid is incompressible.

The fact that a QH liquid is incompressible entails that there is a finite energy
gap between the ground state of the condensate and the first allowable energy
states. This means a low-energy approximation cannot be constructed; thus there
is no low-energy EFT for the bulk liquid. A low-energy EFT can, however, be con-
structed for the 1-dim edge of the liquid. Wen (1990) assumed edge excitations
take the form of low-energy surface waves and demonstrated that the effective
Lagrangian for the edge states describes massless chiral fermion fields in (1 + 1)-
dim Minkowski spacetime:

(10)L′edge = iψ†(∂t − v∂x)ψ ,

where v is the electron drift velocity.

4.2 4-dim quantum Hall liquids

The (1+1)-dim edge Lagrangian (10) tells us little about the ontology of (3+1)-dim
spacetime. However, it suggests that (3+1)-dim massless relativistic fields may be
obtainable from the edge states of a 4-dim QH liquid, and this is in fact borne out.
Zhang and Hu (2001) provided the first extension of the 2-dimensional QHE to 4-
dimensions. In rough outline, they replaced the 2-dim quantum Hall liquid with a
4-dim quantum Hall liquid and then demonstrated that the EFT of the 3-dim edge
describes massless fields in (3+ 1)-dim Minkowski spacetime.

In slightly more detail, Zhang and Hu made use of a formulation of the 2-dim
QHE in terms of spherical geometry first given by Haldane (1983). Haldane con-
sidered an electron gas on the surface of a 2-sphere S2 with a U(1) Dirac magnetic
monopole at its center. The radial monopole field serves as the external magnetic
field of the original setup. By taking an appropriate thermodynamic limit, the 2-
dim QHE on the 2-plane is recovered.27 Zhang and Hu’s extension to 4-dimensions
is based on the geometric fact that a Dirac monopole can be formulated as a U(1)
connection on a principle fiber bundle S3 → S2, consisting of base space S2 and
bundle space S3 with typical fiber S1 ∼= U(1) (see, e.g., Nabor, 1997). This fiber
bundle is known as the 1st Hopf bundle and is essentially a way of mapping the
3-sphere onto the 2-sphere by viewing S3 as a collection of “fibers”, all isomor-
phic to a “typical fiber” S1, and parameterized by the points of S2. There is also
a 2nd Hopf bundle S7 → S4, consisting of the 4-sphere S4 as base space, and the
7-sphere S7 as bundle space with typical fiber S3 ∼= SU(2). The SU(2) connection
on this bundle is referred to as a Yang monopole. Zhang and Hu’s 4-dim QHE then
consists of taking the appropriate thermodynamic limit of an electron gas on the
surface of a 4-sphere with an SU(2) Yang monopole at its center.

26 Technically this is due to the fact that the Chern–Simons field is determined by the particle density.
27 The thermodynamic limit involves taking N → ∞, I → ∞, R → ∞, while holding I/R2 constant (Haldane, 1983,
p. 606; see also Meng, 2003, p. 9415). Here I labels representations of U(1) (and is associated with the Dirac monopole field
strength), N is the number of states, which in the lowest energy level is given by 2I+ 1, and R is the radius of the 2-sphere.
In the lowest energy level, the ratio I/R2 is proportional to the density of states N/4πR2, which must be held constant to
recover an incompressible liquid.
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Some authors have imbued the interplay between algebra and geometry in the
construction of the 4-dim QHE with ontological significance. These authors note
that there are only four normed division algebras: the real numbers R, the complex
numbers C, the quaternions H, and the octonions O.28 It is then observed that
these may be associated with the four Hopf bundles, S1 → S1, S3 → S2, S7 → S4,
S15 → S8, insofar as the base spaces of these fiber bundles are the compactifications
of the respective division algebra spaces R1, R2, R4, R8. Finally, one notes that the
typical fibers of these Hopf bundles are Z2, U(1) ∼= S1, SU(2) ∼= S3, and SO(8) ∼= S7,
respectively. These patterns are then linked with the existence of QH liquids:

One, two, and four dimensional spaces have the unique mathematical
property that boundaries of these spaces are isomorphic to mathematical
groups, namely the groups Z2, U(1) and SU(2). No other spaces have this
property. (Zhang and Hu, 2001, p. 827.)

The four sets of numbers [viz., R, C, H, O] are mathematically known as
division algebras. The octonions are the last division algebra, no further
generalization being consistent with the laws of mathematics. . . Strikingly,
in physics, some of the division algebras are realized as fundamental struc-
tures of the quantum Hall effect. (Bernevig et al., 2003, p. 236803-1.)

Our work shows that QH liquids work only in certain magic dimensions
exactly related to the division algebras. . . (Zhang, 2004, p. 688.)

These comments have philosophical import to the extent that QH liquids play
a fundamental role in physics. They suggest, for instance, an explanation for the
dimensionality of space. In particular, if spacetime arises from the edge of a QH
liquid, and if the latter only exist in the “magic” dimensions one, two and four,
then the spatial dimensions of spacetime are restricted to zero, one, or three, re-
spectively (insofar as the edge would have one less spatial dimension than the
bulk). Admittedly, these are big “ifs”. The extent to which spacetime arises from
the edge of a QH liquid will be dealt with in Sections 4.3 and 4.4 below. The fol-
lowing briefly addresses the extent to which QH liquids can be seen as existing
only in a limited number of “magic” dimensions.

Note first that Zhang and Hu’s statement should be restricted to the compact-
ifications of the spaces R1, R

2, R
4, and should include the compactification of R

8

as well, the boundary of the latter being isomorphic to the group SO(8). Further-
more, the statements of Bernevig et al. and Zhang should refer to normed division
algebras. Baez (2001, p. 149) carefully distinguishes between R, C, H, O as the
only normed division algebras, and division algebras in general, of which there
are other examples. Baez (2001, pp. 153–156) indicates how the sequence R, C, H,
O can in principle be extended indefinitely by means of the Cayley–Dickson con-
struction. Starting from an n-dim ∗-algebra A (i.e., an algebra A equipped with a
conjugation map ∗), the construction gives a new 2n-dim ∗-algebra A′. The next
member of the sequence after O is a 16-dim ∗-algebra referred to as the “sede-
nions”. The point here is that the sedenions and all subsequent higher-dimensional
28 A normed division algebra A is a normed vector space, equipped with multiplication and unit element, such that, for
all a, b ∈ A, if ab = 0, then a = 0 or b = 0. R, C, and H are associative, whereas O is non-associative (see, e.g., Baez, 2001,
p. 149).
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constructions do not form division algebras; in particular, they have zero divisors.
The question therefore should be whether the absence of zero divisors in a normed
∗-algebra has physical significance when it comes to constructing QH liquids.

Zhang (2004, p. 687) implicitly suggests it does. He identifies various quantum
liquids with each Hopf bundle: 1-dim Luttinger liquids29 with S1 → S1, 2-dim QH
liquids with S3 → S2, and 4-dim QH liquids with S7 → S4. Bernevig et al. (2003)
complete the pattern by constructing an 8-dim QH liquid as a fermionic gas on
S15 with an SO(8) monopole at its center. But whether this pattern is physically
significant remains to be seen. It is not entirely clear, for example, how the bundle
S1 → S1, and the trivial Z2 monopole associated with it, is essential in the construc-
tion of Luttinger liquids in general. Moreover, while Luttinger liquids arise at the
edge of 2-dim QH liquids, this pattern does not carry over to higher dimensions:
it is not the case that 2-dim QH liquids arise at the edge of 4-dim QH liquids, nor
is it the case that 4-dim QH liquids arise at the edge of 8-dim QH liquids. Further-
more, and more importantly, Meng (2003) demonstrates that higher-dimensional
QH liquids can in principle be constructed for any even dimension, and concludes
that the existence of division algebras is not a crucial aspect of such constructions
(see also Karabali and Nair, 2002). Hence, while the relation between Hopf bun-
dles and normed division algebras on the one hand, and quantum liquids on the
other, is suggestive, it perhaps should not be interpreted too literally.

4.3 Edge states for 4-dim QH liquids and twistors

The low-energy edge states of a 2-dim QH liquid take the form of (1 + 1)-dim
relativistic massless fields described by (10). These edge excitations can also be
viewed as particle-hole dipoles formed by the removal of a fermion from the bulk
to outside the QH droplet, leaving behind a hole (see, e.g., Stone, 1990). If the
particle-hole separation remains small, such dipoles can be considered single lo-
calized bosonic particle states. The stability of such localized states is affected by
the uncertainty principle: a stable separation distance entails a corresponding un-
certainty in relative momentum, which presumably would disrupt the separation
distance. In 1-dim it turns out that the kinetic energy of such dipoles is approxi-
mately independent of their relative momentum, hence they are stable. In the case
of the 3-dim edge of the 4-dim QH liquid, Zhang and Hu (2001) determined that
there is a subset of dipole states for which the isospin degrees of freedom asso-
ciated with the SU(2) monopole counteract the uncertainty principle. Their main
result was to establish that these stable edge states satisfy the (3+ 1)-dim zero rest
mass field equations for all helicities, and hence can be interpreted as zero rest
mass relativistic fields (see also Hu and Zhang, 2002). These include, for instance,
spin-1 Maxwell fields and spin-2 graviton fields satisfying the vacuum linearized
Einstein equations, as well as massless fields of all higher helicities. Given that
there currently is no evidence for the existence of particles with helicities less than

29 Wen’s (1990) EFT (10) identifies the edge of a 2-dim QH liquid as a Luttinger liquid. A Luttinger liquid is comprised of
electrons, but differs from a standard Fermi liquid mathematically in the form of the electron propagator. See Wen (2004,
pp. 314–315) for details.
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2, the latter fact was recognized by Zhang and Hu (2001, p. 827) as an “embarrass-
ment of riches”, and a major difficulty of their model.30

By itself, this recovery of (3+1)-dim relativistic zero rest mass fields has limited
applicability when it comes to questions concerning spacetime ontology. As with
the examples in superfluid Helium, we would like to recover general relativity
and the Standard Model in their full glory. This is where twistor theory makes its
appearance, the goal of which is to recover general relativity and quantum field
theory from the structure of zero rest mass fields. Sparling’s (2002) insight was to
see that Zhang and Hu’s stable dipole states correspond to twistor representations
of zero rest mass fields. In particular, Sparling demonstrated that the edge of a
4-dim QH liquid can be identified with a particular region of twistor space T.
T is the carrying space for matrix representations of SU(2, 2) which is the double
covering group of SO(2, 4). Elements Zα of T are called twistors and are thus spinor
representations of SO(2, 4). T contains a Hermitian 2-form

∑
αβ (a “metric”) which

splits the space into three regions, T
+, T

−, N, consisting of twistors Zα satisfying∑
αβ ZαZβ > 0,

∑
αβ ZαZβ < 0, and

∑
αβ ZαZβ = 0, respectively. The connection to

spacetime is based on the fact that SO(2, 4) is the double covering group of C(1, 3),
the conformal group of Minkowski spacetime. This allows a correspondence to
be constructed under which elements of N, “null” twistors, correspond to null
geodesics in Minkowski spacetime, and 1-dim subspaces of N (i.e., twistor “lines”)
correspond to Minkowski spacetime points.31

To make the identification of the edge of a 4-dim QH liquid with N plausible,
note that the symmetry group of the edge is SO(4) (which is isomorphic to the 3-
sphere S3) and that of the bulk is SO(5) (which is isomorphic to the 4-sphere S4).
The twistor group SO(2, 4) contains both SO(4) and SO(5). Intuitively, the restric-
tion of SO(2, 4) to SO(4) can be induced by a restriction of twistor space T to N.32

With the edge identified as N, edge excitations are identified as deformations of N

(in analogy with Wenn’s treatment of the edge in the 2-dim case). In twistor theory,
such deformations take the form of elements of the first cohomology group of pro-
jective null twistor space PN, and these are in fact solutions to the zero rest mass
field equations of all helicities in Minkowski spacetime (Sparling, 2002, p. 25).

Limitations
The complete recovery of twistors from the edge of a 4-dim QH liquid faces a
technical hitch concerning the nature of the thermodynamic limit. In the spher-
ical formulations of the QHE, this limit serves to transform the 2-sphere (resp.
4-sphere) into the 2-plane (resp. 4-plane), while reproducing an incompressible
QH liquid (footnote 27). In the 4-dim case, this led to Zhang and Hu’s “embar-
rassment of riches” problem: the thermodynamic limit requires taking the isospin
30 Hu and Zhang (2002, p. 125301-8) consider possible ways to address this problem. A mechanism is needed under
which the higher helicity fermionic states acquire masses (i.e., become “gapped”) at low energies and thus decouple from
observable interactions.
31 More precisely, the correspondence is between PN, the space of null twistors up to a complex constant (i.e., “projective”
null twistors), and compactified Minkowski spacetime (i.e., Minkowski spacetime with a null cone at infinity). This is a par-
ticular restriction of a general correspondence between projective twistor space PT and complex compactified Minkowski
spacetime. For a brief review, see Bain (2006, pp. 41–42).
32 Technically, this restriction corresponds to a foliation of the 4-sphere with the level surfaces of the SO(4)-invariant
function f (Zα ) = ∑

αβ ZαZβ . These surfaces are planes spanned by null twistors (Sparling, 2002, pp. 18–19, 22).
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degrees of freedom associated with the Yang monopole to infinity, allowing for
(3+ 1)-dim massless fields of all helicities. In the twistor formulation, it is unclear
what this limit corresponds to. One way to see this is to note that the twistor for-
mulation does away with the Yang monopole field. In twistor theory, a general
result due to Ward allows one to map the dynamics of anti-self-dual Yang–Mills
gauge fields (of which the Yang monopole is a particular example) onto purely
geometric structures defined on an appropriate twistor space (see, e.g., Bain, 2006,
p. 44, for a brief account). Thus in the twistor formulation, there is no explicit
isospin space on which to define a limiting procedure. Assumedly, the isospin
limit should have a geometrical interpretation in the twistor formulation, but just
what it is, is open to speculation (see Sparling, 2002, pp. 27–28 for discussion).

4.4 Interpretation

Even granted that the 4-dim QHE admits a thoroughly twistorial formulation
down to the thermodynamic limit, there is still the question of whether spacetime
as currently described by general relativity and quantum field theory can be re-
covered. While Minkowski spacetime can be reconstructed from the space of null
twistors, as well as a limited number of field theories, it turns out that no consis-
tent twistor descriptions have been given for massive fields, or for field theories in
generally curved spacetimes with matter content. In general, only conformally in-
variant field theory, and those general relativistic spacetimes that are conformally
flat, can be completely recovered in the twistor formalism (see, e.g., Bain, 2006,
pp. 45–46 for further discussion). As in the examples of superfluid Helium, one
might thus question the relevance that the twistor formulation of the 4-dim QHE
has to the ontological status of spacetime. On the other hand, just as with the He-
lium examples, this twistor example can be viewed as an approach to quantum
gravity, and for this reason should be given due consideration.

With this in mind, we may ask what the QH liquid example suggests about the
ontological status of spacetime. Taken literally, it suggests that we award funda-
mental ontological status to a 4-spatial-dimensional quantum Hall liquid. Twistors
are then identified as low-energy excitations of the 3-spatial-dimensional edge of
this liquid. We then apply the standard practice (and envisioned extensions) of
twistor theory to these low-energy excitations to reconstruct spacetime and its
contents. On first blush, this interpretation is similar to the superfluid Helium
examples in Section 3.3, with twistor theory simply seen as the method for re-
producing the relevant physics in the case where the condensed matter system
is a QH liquid. Seen in this light, the QH liquid example might be thought to fit
within the bounds of Section 3.3’s condensed matter approach to quantum gravity.
However, the fit is not exact, and consequently how a literal interpretation of the
QH liquid example might be further qualified in terms of relationalist and sub-
stantivalist options is a bit more nuanced than the superfluid Helium examples.
In particular, there are three main differences between the QH liquid example and
the superfluid Helium examples.

1. Note first that in the QH liquid example, there is a distinction between the
bulk liquid and its edge. Again, spacetime and relativistic field theory are in-
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FIGURE 16.2 The relation between theories for a 4-dim quantum Hall liquid.

terpreted as properties, or constructs, of low-energy excitations of the edge (i.e.,
properties or constructs of twistors), and not of the bulk liquid itself.

2. Second, unlike the superfluid Helium examples, the QH liquid example is
not background dependent, at least under one sense of the term. Technically, the
theory of a QH liquid is a topological quantum field theory involving a Chern–
Simons gauge field.33 In such a theory, the spacetime metric does not explicitly
appear in the term describing the Chern–Simons field (as it does in the Maxwell
term in electrodynamics, for instance). Hence the Chern–Simons field does not
obey the symmetries of the spacetime metric. Thus, to the extent that background
dependence of a theory entails invariance of the theory under the symmetries as-
sociated with a particular spatiotemporal structure as encoded in a metric (or set
of metrics as in the Galilei case), the theory of a QH liquid is not background de-
pendent. Intuitively, there is no prior metrical geometric structure associated with
the theory (although there is topological/differentiable structure).

3. A third way in which the QH liquid example differs from the superfluid
Helium examples concerns the number of theories involved. In the superfluid He-
lium example, a single theory describes both the normal liquid and the condensate,
and this theory is formally distinct from the low-energy EFT (see Figure 16.1). In
the QH liquid example, it turns out that the normal state and the condensate are
described by different theories, both of which are distinct from the low-energy
EFT of the edge (see Figure 16.2). Briefly, the normal liquid is described by a
Galilei-invariant theory of electrons moving in a 4-dim conductor, the QH liquid
is described by a 4-dim topological theory, and the low-energy EFT of the edge is,
in the first instance, a (3+ 1)-dim Lorentz-invariant theory of massless fields of all
helicities.34

With these qualifications in mind, one can now imagine relationalist and sub-
stantivalist interpretations of the QH liquid example. Relationalists should award
ontological status just to the QH liquid and may claim:

(1) Physical fields are properties or constructs of low-energy excitations of the
edge of the QH liquid.

33 For the Chern–Simons theory of a 2-dim QH liquid, see Zhang (1992). For the Chern–Simons theory of a 4-dim QH
liquid, see Bernevig et al. (2002).
34 This difference between the two examples is due to the nature of their phase transitions. In the superfluid Helium
case, the phase transition is between systems that possess different (internal) symmetries and is characterized by a broken
symmetry. In the QH liquid case, the phase transition is between systems that possess different topological orders and is
not characterized by a broken symmetry. For a discussion of the notion of topological order, see Wen (2004, Ch. 8).
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(2) Relativistic spacetime structure consists of properties or constructs of low-
energy excitations of the edge of the QH liquid.

Unlike the superfluid Helium examples, there is no need to further qualify Claim
(2), given the convictions of the twistor theorist about the status of relativistic
spacetime; i.e., that it’s best modeled by twistors, and not by quantum field theory
or general relativity.

Substantivalists should award ontological status to both the QH liquid and
spacetime. If a substantivalist seeks to ontologically ground the fields that appear
in the theory of a QH liquid, she may reify the 4-spatial-dimensional space asso-
ciated with the liquid. Before the thermodynamic limit is taken, this is a 4-sphere
(conceived, not as a metric space, but as a differentiable manifold). Thus a conser-
vative substantivalist might adopt the relationalist’s Claims (1) and (2) and add

(3) Spacetime consists of the properties of a substantival differentiable manifold
diffeomorphic to the 4-sphere.

An intrepid substantivalist might adopt Claims (1) and (3), qualifying the latter
with a restriction to the appropriate energy scale, and replace (2) with

(2′) Relativistic spacetime structure consists of the properties of a low-energy
emergent substantival spacetime.

As in the superfluid Helium examples, this would require fleshing out a notion of
low-energy emergence. Note that there is still a distinction between the low-energy
relativistic EFT of the edge, and the topological theory of the ground state of the
edge (see Figure 16.2); hence low-energy emergence might still be considered as
a relation between distinct theories. However, the work done by this concept for
an intrepid substantivalist in the QH liquid case will be a bit different from the
superfluid Helium examples.

Note first that the reasoning in Section 3.3 concerning the typical motivations
for substantivalism applies in the QH liquid example as well: The motivation from
fields has the potential to do work, whereas that from inertial motion does not.
In the case of an intrepid substantivalist in the superfluid Helium examples, the
motivation from fields has to be supplemented with an account of low-energy
emergence that allows enough of an ontological distinction between emergent
fields and spacetime on the one hand, and the underlying condensate on the other
to justify the intrepid’s claim that (emergent) fields require the existence of (emer-
gent) spacetime for their ontological support. Moreover, low-energy emergence in
this context is associated with the low-energy approximation procedure applied
directly to the (theory of the) condensate. In the QH liquid example, there is an ex-
tra layer of theoretical structure between the condensate and the emergent fields
and spacetime; namely, twistors. Thus the emergence associated with spacetime in
Claim (2′) above will have to be predicated on the twistor methods that produce
spacetime, and at most, only indirectly on the low-energy approximation meth-
ods that produce twistors. Thus, again, the intrepid substantivalist has her work
cut out for her.



J. Bain 327

5. CONCLUSION

Interpreting spacetime as a phenomenon that emerges in the low-energy limit of
a quantum liquid is problematic for two reasons. First, it depends on the viabil-
ity of condensed matter analogues of spacetime, and this was seen to be limited
in the examples canvassed in this essay. These limitations manifest themselves in
a failure to reproduce all aspects of the appropriate physics. For instance, an in-
terpretation of spacetime as emergent in superfluid Helium 4 might be motivated
by a desire to model spacetime as (some aspect of) the solutions to the Einstein
equations in general relativity. In Section 3.1, we saw that the effective Lagrangian
for superfluid Helium 4 lacks both the dynamics associated with general relativ-
ity and, arguably, the kinematics. An interpretation of spacetime as emergent in
superfluid Helium 3-A might be motivated by a desire to model spacetime as the
ground state for quantum field theories of matter, gauge, and metric fields. In Sec-
tion 3.2, we saw that, while the effective Lagrangian for superfluid 3He-A does
reproduce aspects of the Standard Model, it does not reproduce all aspects; nor
does it fully recover general relativity. Finally, an interpretation of spacetime as
emergent from the edge of a 4-dimensional quantum Hall liquid might be moti-
vated by a desire to derive spacetime using twistor-theoretic techniques. Here the
prospects as noted in Section 4.4 are limited primarily by the limitations of twistor
theory: Twistor formulations of general solutions to the Einstein equations, and
massive interacting quantum fields, have yet to be constructed.

The second way in which interpretations of spacetime as a low-energy emer-
gent phenomenon are problematic has to do with the notion of low-energy emer-
gence itself; in particular, any such interpretation must provide an account of what
low-energy emergence is in the condensed matter context. Section 3.3 offered some
initial suggestions, however a full account will require significant work. More-
over, we saw in Sections 3.3 and 4.4 that any such notion by itself is compatible
with both relationalism and substantivalism. For a relationalist, it would underlie
the claim that spatiotemporal structure consists in the spatiotemporal properties
of low-energy emergent physical fields; for a substantivalist, it would underlie
the claim that spatiotemporal structure consists in the properties of an emergent
substantival spacetime. While this latter view might be the most literal way to con-
ceive spacetime as a low-energy emergent phenomenon, arguably it is the hardest
to motivate, as Sections 3.3 and 4.4 indicated.

These results suggest that currently an interpretation of spacetime as a low-
energy emergent phenomenon cannot be fully justified. However, this essay also
argued that such an interpretation should nevertheless still be of interest to
philosophers of spacetime. Each of the examples above may be considered part
of a general research programme in condensed matter physics; namely, to deter-
mine the appropriate condensed matter system that produces the relevant matter,
gauge and metric fields of current physics in its low-energy approximation, thus
reconciling quantum field theory with general relativity. This research programme
may be seen as one path to quantum gravity in competition, for instance, with the
background-independent canonical loop approach, and background-dependent
approaches like string theory. Thus to the extent that philosophers of spacetime
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should consider notions of spacetime associated with approaches to quantum
gravity, they should be willing to consider low-energy emergentist interpretations
of spacetime.
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