
ORI GIN AL PA PER

CPT Invariance, the Spin-Statistics Connection,
and the Ontology of Relativistic Quantum Field
Theories

Jonathan Bain

Received: 24 June 2011 / Accepted: 16 September 2011 / Published online: 8 October 2011
! Springer Science+Business Media B.V. 2011

Abstract CPT invariance and the spin-statistics connection are typically taken to
be essential properties in relativistic quantum field theories (RQFTs), insofar as the
CPT and Spin-Statistics theorems entail that any state of a physical system char-
acterized by an RQFT must possess these properties. Moreover, in the physics
literature, they are typically taken to be properties of particles. But there is a
Received View among philosophers that RQFTs cannot fundamentally be about
particles. This essay considers what proofs of the CPT and Spin-Statistics theorems
suggest about the ontology of RQFTs, and the extent to which this is compatible
with the Received View. I will argue that such proofs suggest the Received View’s
approach to ontology is flawed.

1 Introduction

This essay is concerned with the ontological status of two properties associated with
relativistic quantum field theories: CPT invariance and the spin-statistics connec-
tion. I will argue that the typical way of viewing these properties in the physics
literature is at odds with a Received View among philosophers, and in this clash, it
is the latter view that should be checked.

CPT invariance is the property of being invariant under the combined
transformations of charge conjugation (C), space inversion (P, for ‘‘parity’’), and
time reversal (T). The spin-statistics connection is the property that holds of a state
just when, if the state obeys Fermi-Dirac statistics, then it possesses half-integer
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spin, and if the state obeys Bose-Einstein statistics, then it possesses integer spin.1 In
the physics literature, these properties are typically taken to be essential properties
in relativistic quantum field theories (RQFTs), insofar as the CPT theorem and the
Spin-Statistics theorem entail that any state of a physical system described by an
RQFT must possess them. Moreover, read literally, these theorems entail that the
fundamental states of an RQFT, i.e., the states that characterize what an RQFT is
about, must possess CPT invariance and the spin-statistics connection. The physics
literature also typically takes the bearers of these properties to be particle states. For
instance, charge conjugation is usually described as a transformation between the
states of particles and antiparticles, and the statistics associated with a state is
usually described in terms of a method for counting the possible arrangements of
particles associated with that state.2 States that obey Bose-Einstein statistics are
such that, if they differ only in the permutation of two or more particles, they are
identical, and similarly for states that obey Fermi-Dirac statistics. In addition, states
that obey Fermi-Dirac statistics are constrained by the Exclusion Principle: no two
particles associated with such a state can have exactly the same (non-spatiotem-
poral) properties. These views are summarized by the following two theses:

(I) CPT invariance and the spin-statistics connection are essential properties of
fundamental states in RQFTs.

(II) CPT invariance and the spin-statistics connection are properties of particle
states.

While Thesis (I), arguably, may be supported by appeals to the CPT and Spin-
Statistics theorems, Thesis (II) is a bit more controversial. In the philosophy of
physics literature, there is a Received View that claims RQFTs cannot be
fundamentally about particles (Clifton and Halvorson 2001; Halvorson and Clifton
2002; Arageorgis et al. 2003; Fraser 2008). This view requires that particles be
localizable and countable, and that these characteristics be given mathematical
expression in the forms of local and unique total number operators. Various results
then indicate that formulations of RQFTs do not support such operators. The
Received View concludes that since the mathematical representations of particles
are not supported by RQFTs, these theories cannot be said to be fundamentally
about particles.

The goal of this essay is to question this Received View. Whereas the Received
View first adopts pre-theoretic intuitions about particles, and then concludes that
RQFTs cannot represent these pre-theoretic intuitions, the present essay suggests
that intuitions about particles should be informed, at least in part, by the theories in

1 Readers who might object to viewing the spin-statistics connection as a property may view it instead as
a principle, law, or disposition in the following discussion. The issue at stake is not so much how to
characterize it, but rather whether it is essential, and what it is predicated of.
2 Typical statements to this effect are found in Peskin and Schroeder (1995): ‘‘This conclusion is part of a
more general result, first derived by Pauli… particles of integer spin obey Bose-Einstein statistics, while
particles of half-odd-integer spin obey Fermi-Dirac statistics ‘‘(pp. 57–58).’’ ‘‘At the same time that we
discuss P and T, it will be convenient to discuss a third (non-spacetime) discrete operation: charge
conjugation, denoted by C. Under this operation, particles and antiparticles are interchanged’’ (p. 64).
See, also, Weinberg (1995, pp. 191, 238), Sterman (1993), Jost (1965, pp. 100, 106).
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which reference to them occurs. In particular, given that CPT invariance and the
spin-statistics connection are essential properties of fundamental states in RQFTs,
we should ask what RQFTs say these fundamental states are states of. This suggests
that we should look to proofs of the CPT and Spin-Statistics theorems in order to
inform the debate over whether the fundamental states of RQFTs describe particles.

Sections 2 and 3 attempt to justify Thesis (I) by reviewing four alternative
approaches to proofs of the CPT Spin-Statistics theorems. These approaches differ
on their assumptions, and in particular, on what they take to be the essential
characteristics of an RQFT. I claim, however, that they should all be interpreted as
supporting (I). Section 4 considers the extent to which these approaches support
Thesis (II). Finally, Sect. 5 considers options for the Received View. I will argue
that the Received View must deny either (I), or (II), or both, and that none of these
options is particularly appealing.

2 Essential Properties: The CPT and Spin-Statistics Theorems

The motivation for Thesis (I) stems from the CPT theorem and the Spin-Statistics
theorem. These theorems argue from basic assumptions about what constitutes an
RQFT to the conclusions that the states of physical systems characterized by these
assumptions must possess CPT invariance and the spin-statistics connection. Thus
in addition to supporting Thesis (I), these theorems also address the question of what
CPT invariance and the spin-statistics connection are properties of; i.e., what the
fundamental states of an RQFT are states of. The answer to the latter is complicated
by the fact that there is no consensus on what the essential characteristics of an
RQFT are. This is manifest in at least four distinct approaches to proofs of the CPT
and Spin-Statistics theorems. These include an axiomatic approach, an approach due
to Steven Weinberg, a textbook Lagrangian approach, and an algebraic approach.
The remainder of this section offers brief accounts of the salient features of these
proofs. The immediate aim is to explicitly identify the assumptions that underlie
each approach in order to facilitate comparison in the following sections.

It will first help to consider two ways that statistics can be encoded in an RQFT.

(i) Statistics can be encoded on creation and annihilation operators a, a! that act
on multiparticle states in a Fock space by requiring,

½aðpÞ; ayðp0Þ$% ¼ dðp' p0Þ ð1Þ

for 3-momenta p, where ‘‘;’’ indicates a commutator/anti-commutator, depending
on whether the particle states are bosonic (i.e., obey Bose-Einstein statistics) or
fermionic (i.e., obey Fermi-Dirac statistics). Creation/annihilation operators that
commute will create/annihilate multi-particle states that are symmetric under
permutation of single-particle substates, whereas creation/annihilation operators that
anti-commute will create/annihilate multi-particle states that are anti-symmetric
under such permutation. In both cases, such multi-particle states are permutation
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invariant.3 In addition, the symmetric case allows, whereas the anti-symmetric case
does not allow, the presence of single-particle substates representing identical
particles (in the sense of agreeing on all their non-spatiotemporal properties).

(ii) Statistics can be encoded on local field operators by requiring,

½/yðxÞ;/ðyÞ$% ¼ 0; for spacelike ðx' yÞ ðLocal CommutativityÞ

where ‘‘;’’ indicates a commutator/anti-commutator, depending on whether the
fields are bosonic or fermionic. This condition is referred to as Local Commutativity.
It guarantees that, when a Fock space formulation is available, the creation/
annihilation operators corresponding to the fields satisfy (1) above. Thus, to say that
a field is bosonic (resp. fermionic), could mean either that, by definition, the field
satisfies Local Commutativity, or that, when a Fock space formulation is available,
the corresponding creation/annihilation operators are associated with particle states
that are bosonic (resp. fermionic).4

Procedure (i) suggests the bearers of statistics are particles, insofar as it encodes
statistics in a way that refers explicitly to the behavior of particle states under
permutations. Procedure (ii) suggests the bearers of statistics are fields, insofar as it
encodes statistics in a way that refers explicitly to the behavior of fields. As we shall
see, with one exception, the approaches reviewed below can be distinguished by
which of (i) or (ii) they adopt.

2.1 The Wightman Axiomatic Approach

In the axiomatic approach, the CPT theorem was derived originally by Jost (1957)
and the Spin-Statistics theorem by Lüders and Zumino (1958) and Burgoyne (1958).
This approach is based on the fact that an RQFT characterized by a particular set of
axioms can be encoded in the vacuum expectation values of products of its fields, or
Wightman functions Fnðx1; . . .; xnÞ ¼ hXj/ðx1Þ. . ./ðxnÞjXi.5 The fields are charac-

terized by invariance under the restricted Lorentz group L"þ (the subgroup of the

3 Suppose |Ui is a multi-particle state, and let |U0i be a multi-particle state obtained from |Ui by
permuting its single-particle substates. |Ui is symmetric just when |U0i = |Ui. |Ui is anti-symmetric just
when |U0i = -|Ui. |Ui is permutation invariant just when, for any linear operator A representing an
observable quantity, the expectation value of A is the same for |Ui and |U0i: hU|A|Ui = hU0 |A|U0i.
4 Haag (1996, p. 97) takes the first route. Streater and Wightman (2000, p. 147) suggest the second route:
‘‘A natural way to arrive at Bose-Einstein statistics is to describe the system in question by a field which
commutes for space-like separations, while the analogous way for Fermi-Dirac statistics is to use a field
which anti-commutes for space-like separations.’’ The ‘‘natural way’’, evidently, would be to demonstrate
that Local Commutativity entails that Fock space creation/annihilation operators corresponding to the
fields (when they exist) satisfy (1).
5 Here /(x) is intended to represent a generic quantum field of arbitrary spin and |Xi is the corresponding
unique vacuum state. In a more precise formulation, the field would be defined as an operator-valued
distribution, and the corresponding Wightman function as a tempered distribution. Expositions of the CPT
and Spin-Statistics theorems in the axiomatic approach are given in Araki (1999), Haag (1996), and
Streater and Wightman (2000).
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Lorentz group connected to the identity), which consists of Lorentz boosts, but does
not contain parity or time reversal transformations. The fields also obey the
Spectrum Condition:6

The energy of all states is positive ðSpectrum ConditionÞ

The Spectrum Condition and invariance under L"þ entail that Wightman functions
can be analytically extended to complex-analytic functions that are invariant under
the proper complex Lorentz group LþðCÞ, which does contain parity and time
reversal transformations. Moreover, the domain on which such extended Wightman
functions are defined contains real points of analyticity (‘‘Jost points’’), and at these
points the Wightman functions obey the following ‘‘PT’’ invariance property:

Fnðn1; . . .; nn'1Þ ¼ ð'1ÞMFnð'nn'1; . . .;'n1Þ ðPTÞ

where ni = xi?1 - xi, and M encodes the spin of the fields: if M is even, the fields
have integer spin and if M is odd, they have half-integer spin. The invariance
property PT is a special case of invariance under LþðCÞ; namely, it is invariance
under parity and time reversal.7 Now suppose we impose the wrong spin-statistics
connection on PT. To do this, we first encode statistics in the fields by assuming
Local Commutativity (LC). We next assume the wrong spin-statistics connection;
i.e., we assume half-integer-spin fields commute and integer-spin fields anti-
commute. One can then demonstrate that the fields are identically zero (Streater and
Wightman 2000, pp. 148–150). Thus nontrivial fields must possess the spin-
statistics connection.

Now suppose that instead of LC, the fields obey Weak Local Commutativity:

hXj/ðx1Þ. . ./ðxnÞjXi ¼ iKhXj/ðxnÞ. . ./ðx1ÞjXi ðWLCÞ

where K is the number of fermionic fields. Intuitively, WLC requires the fields to
satisfy the appropriate statistics only when they appear in vacuum expectation
values. One can then demonstrate that this guarantees CPT invariance in the sense
of the existence of an antiunitary operator that combines the actions of C, P, and T
transformations on Wightman functions, leaving them invariant (Streater and
Wightman 2000, p. 146).

To recap, in the axiomatic approach, we have the following schematic
entailments:8

A1. [(restricted Lorentz invariance of fields) and (Spectrum Condition)] ) (PT)
A2. (PT & LC) ) (spin-statistics connection)
A3. (PT & WLC) ) (CPT invariance)

6 More precisely, the spectrum of the momentum operator associated with L"þ is confined to the forward
lightcone.
7 As Wightman (1999, p. 744) points out, this is a remarkable fact: ‘‘…although only invariance under

L"þ was assumed for the n-point vacuum expectation values, the associated analytic function is invariant
under space–time inversion.’’
8 One must also assume that the fields have finitely many components to avoid counterexamples of
infinite fields that do not possess the spin-statistics connection or CPT invariance (Streater 1967; Oksak
and Todorov 1968).
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2.2 Weinberg’s Approach

Weinberg’s approach is given in Weinberg (1964, 1995).9 Emphasis is placed on the
S-matrix, which describes scattering interactions involving asymptotic particle
states. One begins with the definition of single-particle states as finite irreducible
representations of the restricted Lorentz group and builds quantum fields out of
them in order to construct an S-matrix with two essential properties. Weinberg
(1964, p. 1318) originally based this approach on three assumptions:

(i) Perturbation Theory. The S-matrix is calculated from Dyson’s perturbative
expansion formula, which depends on time-ordered products of an interac-
tion Hamiltonian density HintðxÞ.

(ii) Restricted Lorentz Invariance of the S-Matrix. The S-matrix is invariant
under restricted Lorentz transformations. A sufficient condition for this is
that HintðxÞ is a Lorentz scalar, and it commutes at spacelike distances:
½HintðxÞ;HintðyÞ$ ¼ 0, for spacelike (x - y).10

(iii) Particle Interpretation. HintðxÞ is constructed out of the creation and
annihilation operators a, a! for free particles.

In Weinberg (1995), (iii) is replaced by an additional constraint on the S-matrix:

(iii0) Cluster Decomposition of the S-matrix. The S-matrix satisfies cluster
decomposition (briefly, scattering experiments in spacelike separated regions
of spacetime do not interfere). A sufficient condition for this is (iii).

The creation and annihilation operators a, a! in (iii) are defined by their actions on
multi-particle states in a Fock space constructed out of single-particle states. This
definition entails that they satisfy the (anti-)commutation relations (1). Weinberg
then demonstrates that a sufficient condition (‘‘the only known way’’ Weinberg
1964, p. 1318) for (iii) to be compatible with (ii) is that HintðxÞ be constructed out of
restricted Lorentz invariant fields wm(x) which are linear combinations of the
creation and annihilation operators and which satisfy Local Commutativity.
Schematically, these fields take the general form (Weinberg 1995, p. 198),

wmðxÞ ¼ jmwþmðxÞ þ kmw'mðxÞ ð2Þ

where wþmðxÞ;w
'
mðxÞ are linear combinations of a, a!, respectively, with coefficients

chosen such that the fields transform appropriately under the restricted Lorentz
group (the index m denotes the particular type of field). The constants jm, km are
chosen so that the fields satisfy Local Commutativity (LC). Weinberg (1995, pp.
202, 223, 238) then demonstrates that the choice of jm and km that guarantees LC
also guarantees that the fields possess the spin-statistics connection. Thus, for
Weinberg, the spin-statistics connection is a property of fields that (a) are built from
creation/annihilation operators that encode particle statistics via (1); (b) transform as

9 Massimi and Redhead (2003) compare Weinberg’s approach to the Spin-Statistics theorem with the
standard textbook approach reviewed in Sect. 2.3 below.
10 The latter commutativity condition guarantees that time-ordered products of HintðxÞ are restricted
Lorentz invariant.
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irreducible representations of the restricted Lorentz group; and (c) satisfy LC.
Moreover, these conditions are all consequences of assumptions (i)–(iii) above.

Weinberg (1995, pp. 198–199) further demonstrates that if the fields carry a non-
zero value of a conserved charge, then to every particle state there must correspond
an antiparticle state.11 Note that this is not quite a demonstration of CPT invariance.
To prove the latter, from Weinberg’s point of view, requires an explicit
demonstration that the full Hamiltonian density is invariant with respect to the
composition of C, P, and T operators (Weinberg 1995, pp. 244–246). The
demonstration ultimately rests on the transformation properties of the creation and
annihilation operators a, a! under C, P, and T separately, which determine how the
fields (2) transform, and hence how the Hamiltonian density transforms. The P and
T transformations follow from the behavior of a, a! under restricted-Lorentz
transformations, while the C transformation is posited to hold between a, a! on the
one hand, and antiparticle operators ac, ac! on the other, where the existence of the
latter is entailed by the existence of antiparticles.

To recap, in Weinberg’s approach, we have the following schematic entailments:

B1. [(restricted Lorentz invariance of S-matrix) & (cluster decomposition of S-
matrix)] ) (LC)

B2. (LC) ) (spin-statistics connection)
B3. [(restricted Lorentz invariance of S-matrix) and (cluster decomposition of S-

matrix) & (existence of conserved charges)] ) (CPT invariance)

2.3 The Textbook Lagrangian Approach

In Weinberg’s approach, one begins with the definition of single-particle states as
irreducible representations of the restricted Lorentz group, and then constructs
quantum fields out of them. In textbook accounts of RQFTs, one begins with a
classical Lagrangian field theory, and then ‘‘second quantizes’’ the fields to obtain
quantum fields. Second quantization involves the construction of a Fock space from
the properties of the solution space of a classical field equation. Part of this process
involves positing Local Commutativity (LC) for the fields, which then entails the
appropriate commutation relations (1) for the Fock space creation and annihilation
operators. So far, this is a reversal of Weinberg’s procedure, in which LC is
derivative, in part, of (1). To derive the spin-statistics connection, however, the
textbook approach takes a slightly different tack. Following Fierz (1939) and
Pauli (1940), it introduces a causality constraint (sometimes referred to as
‘‘microcausality’’):

11 The existence of a conserved charge entails that HintðxÞ must commute with the charge operator Q.
This entails that HintðxÞ must be formed out of fields wm that have simple commutation relations with Q.

To accomplish this, it suffices to construct wm as a sum wm ¼ wþmðxÞ þ wþcy
m ðxÞ, where wþmðxÞ and wþc

m ðxÞ
are linear combinations of creation/annihilation operators a, ac for particle states with the same mass and
spin, but opposite charge; i.e., wm is a sum of fields associated with particles and their antiparticles.
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The observable quantities associated with an RQFT commute at spacelike distances:

ðCausalityÞ
Pauli (1940, p. 721) justifies this constraint in the following manner:

We shall, however, expressively postulate in the following that all physical
quantities at finite distances exterior to the light cone (for |x0

0 – x0
00| \ |x0 – x00|) are

commutable… The justification for our postulate lies in the fact that measure-
ments at two space points with a space-like distance can never disturb each other,
since no signals can be transmitted with velocities greater than that of light.

Note that Causality is distinct from Local Commutativity (LC); in particular,
Causality only requires commutativity, and it does not explicitly refer to statistics
(i.e., fermions and bosons). Moreover, it suggests that fermionic fields that anti-
commute according to LC are not observable quantities. Sterman (1993, p. 167)
provides the standard explanation in the specific case of spin-1/2 Dirac fields:

If the commutators of Dirac fields do not vanish at spacelike distances, what
becomes of causality? We recall, however, that spinors are double-valued
representations of the rotation group. As such, a spinor is not itself directly
observable, since a rotation by 2p changes its sign. On the other hand,
operators that are bilinear in the field—such as components of the energy–
momentum tensor—do not change sign, and are observables. More generally,

we may consider any operator of the form BiðxÞ ¼ !wðxÞOiwðxÞ, where Oi is
some matrix, possibly combined with differential operators. We can easily
show that equal-time commutators between the Bi vanish, if the fields obey
[anti-commutation relations].

This suggests that the observable quantities that Causality refers to be identified
either with bosonic fields or bilinears in fermionic fields. The textbook approach
then demonstrates that imposing anti-commutators on the creation/annihilation
operators of a restricted Lorentz invariant integer spin field (i.e., ‘‘second
quantizing’’ the field with the ‘‘wrong statistics’’) violates Causality; and imposing
commutators on the creation/annihilation operators of a restricted Lorentz invariant
half-integer spin field violates either Causality or the Spectrum Condition (see, e.g.,
Kaku 1993, pp. 87, 90; Peskin and Schroeder 1995, pp. 52–58).

In the textbook approach, CPT invariance requires a demonstration that the
Hamiltonian density associated with the Lagrangian density of an RQFT is invariant
under the operation CPT. As Kaku (1993, pp. 120–123) outlines, this requires two
assumptions:

(i) The Lagrangian density LðxÞ is a local, Hermitian Lorentz scalar.
(ii) The spin-statistics connection holds for the fields that appear in LðxÞ.

Assumption (i) is necessary and sufficient for LðxÞ to be CPT invariant, and
assumption (ii) is necessary and sufficient to subsequently show that the
Hamiltonian density derived from LðxÞ is CPT invariant.12

12 This assumes there is a corresponding Hamiltonian density.
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To recap, in the standard textbook Lagrangian approach, we have the following
schematic entailments:

C1. [(restricted Lorentz invariance of fields) and (Spectrum Condition) and
(Causality)] ) (spin-statistics connection for fermions)

C2. [(restricted Lorentz invariance of fields) and (Causality)] ) (spin-statistics
connection for bosons)

C3. [(spin-statistics connection) and (restricted Lorentz invariance of fields) and
(local Hermitian Lagrangian)] ) (CPT invariance)

2.4 The Algebraic Approach

A final formulation of the CPT and Spin-Statistics Theorems was given by Guido
and Longo (1995) in the context of algebraic quantum field theory. The basic object
in this approach is a net of von Neumann algebras, O7!<ðOÞ, that assigns a local
algebra of observables <ðOÞ to every double-cone region O of Minkowski
spacetime (a double-cone region is the intersection of the causal future of a point
with the causal past of another point to the future of the first). The local algebras are
required to satisfy isotony: if O1 ) O2, then <ðO1Þ ) <ðO2Þ; and this entails that
they generate a quasi-local algebra <. The elements of < can be represented as
bounded linear operators that act on a separable Hilbert space H0 with a cyclic and
separating vacuum vector X.13 Three additional assumptions are then required. The
first is the algebraic analog of Causality, call it Microcausality, which requires
observables associated with spacelike separated regions to commute:

For A1 2 <ðO1Þ;A2 2 <ðO2Þ; and O1;O2 spacelike separated; ½A1;A2$ ¼ 0:

ðMicrocausalityÞ

The second assumption is Weak Additivity, which requires that the quasilocal
algebra < be generated by the local algebras associated with regions obtained by
arbitrary translations from any given double-cone O:

< ¼
[

x
<ðOþ xÞ: ðWeak AdditivityÞ

The third assumption is what Guido and Longo call Modular Covariance (MC).
This requires that, for any wedge region W of Minkowski spacetime, the modular

operator Dit
W of the local algebra <ðWÞ of the wedge implements Lorentz boosts on

<.14 Formally, for any wedge W and any double-cone O,

13 X is cyclic for < just when fAX : A 2 <g is dense inH0. X is separating for < just when AX = 0 and
A 2 < entails A = 0.
14 A wedge region in Minkowski spacetime M is any Poincaré transformation of the region
fx 2 M : x1 [ jx0jg, where (x1, x2, x3, x0) is an inertial coordinate system. That a modular operator
exists is entailed by the Tomita-Takesaki theorem (see, e.g., Halvorson and Müger 2006, p. 738; Haag
1996, p. 217). The latter demonstrates that a von Neumann algebra < of bounded linear operators on a
Hilbert space H with a cyclic and separating vacuum vector X possesses a modular operator D and a

modular conjugate operator J such that JX ¼ X ¼ DX; Dit<D'it ¼ <, and J<J ¼ <0, where <0 is the
commutant of < (i.e., the set of bounded linear operators that commute with all elements of <).
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Dit
W<ðOÞD

'it
W ¼ <ðKWðtÞOÞ ðModular CovarianceÞ

where KW(t) is the one-parameter group of Lorentz boosts that leave W invariant.
MC is motivated by a theorem due to Bisognano and Wichmann (1976) which
demonstrates that for a von Neumann algebra generated by local polynomial
algebras of Wightman fields, the modular operator of the local algebra of any wedge
implements Lorentz boosts, and the modular conjugate operator is given by the CPT
operator that leaves the Wightman fields invariant.

Under the above three assumptions, Guido and Longo were able to show that
CPT invariance holds for a particular type of representation of <, what are called
DHR representations; and that the spin-statistics connection holds for a subset of
such representations. DHR representations were defined by Doplicher et al. (1971,
p. 200) in the following way,

DHR Representation: Let ðH0; p0Þ be the vacuum representation of < generated
by the vacuum state x0.15 Then a DHR representation with respect to x0 is a
representation ðH; pÞ such that pj<ðO0Þ is unitarily equivalent to p0j<ðO0Þ: for any

double cone O.
A DHR representation is unitary equivalent to the vacuum representation except

for some bounded region of spacetime O (where O0 is the causal complement of O).
Thus the states associated with DHR representations are supposed to represent
localized states in so far as they differ from the vacuum only in some bounded
region of spacetime. Doplicher et al. (1971) showed that DHR representations
possess conjugates (which can be interpreted as representing antimatter), and admit
representations of the permutation group (thus they can be characterized in terms of
statistics). DHR representations that admit finite representations of the permutation
group are referred to as possessing finite statistics.

Guido and Longo’s (1995, pp. 530–531) derivation of the spin-statistics
connection and CPT invariance then takes the following schematic form: For a
von Neumann algebra < of local observables with a cyclic vacuum representation,

D1. [(Microcausality) & (Weak Additivity) & MC] ) (CPT invariance for DHR
representations)

D2. [(Microcausality) & (Weak Additivity) & MC] ) (spin-statistics connection
for irreducible, restricted Poincaré-invariant DHR representations with finite
statistics and masses)

In D1, CPT invariance refers to the existence of an anti-unitary operator H that
implements parity and time reversal transformations on < (i.e., H<ðOÞ
H ¼ <ð'OÞ), maps DHR representations to their conjugates, and is given,
essentially, by the modular conjugate operator of the algebra of any wedge.16 In D2,

15 In general, a representation of < consists of a pair ðH; pÞ where H is a Hilbert space and p is a map
that takes elements of < to bounded linear operators on H. A state x on < is a linear map that takes
elements of < to complex numbers. The GNS theorem entails that any state can be associated with a
unique representation (Araki 1999, p. 34; Halvorson and Müger 2006, p. 734).
16 More precisely, H = JWRW, where JW is the modular conjugate operator of < restricted to the wedge
W, and RW implements rotations that leave W invariant.
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restricted Poincaré invariance refers to invariance under the universal covering of
the restricted Poincaré group, which includes Lorentz boosts and translations.17

3 Comparison

At this point it is informative to summarize some of the differences between the
above alternative approaches to the CPT and Spin-Statistics theorems.

1. First, the approaches can be categorized in terms of how they treat interactions.
The primary empirical evidence for RQFTs comes in the form of scattering
experiments involving interactions, thus if one is concerned with the question of
what the world would be like if RQFTs were true, one should look to interacting
RQFTs for the answer. The method for treating interactions, typified by Weinberg’s
approach and the textbook Lagrangian approach, is to employ perturbation theory.
Infamously, perturbative series expansions of physical quantities like scattering
cross-sections typically are ill-defined mathematically: they involve infinities and
require the apparatus of renormalization theory. This is part of the motivation for the
axiomatic and algebraic formalisms, which attempt to provide mathematically
rigorous foundations for RQFTs. Currently, however, they are incomplete: no non-
trivial interacting RQFTs can be formulated in these approaches. We thus are faced
with the following dilemma:18

(A) The Weinberg and textbook Lagrangian formalisms are complete but typically
mathematically ill-formed.

(B) The axiomatic and algebraic formalisms are incomplete but mathematically
well-formed.

Pragmatists who adopt (A) may claim that CPT invariance and the spin-statistics
connection are properties of both interacting and non-interacting states in RQFTs.
On the other hand, such pragmatism comes with a price. In practice, in the
Weinberg and textbook Lagrangian approaches, interactions are treated by
employing the LSZ reduction formula to calculate the S-matrix in terms of time-
ordered vacuum expectation values of interpolating fields (see, e.g., Bain 2000).
These fields interpolate between asymptotic particle states that are taken to be free

17 Doplicher et al. (1974) derived the spin-statistics connection for irreducible, restricted Poincaré-
invariant DHR representations with finite statistics, positive masses, and finitely many components, under
the assumptions of Microcausality, Haag Duality, and Property B (for definitions of the latter, see Araki
1999, pp. 163–64, or Halvorson and Müger 2006, p. 784). Guido and Longo recover this result in the
following way: They first demonstrate that Microcausality, Weak Additivity, and MC entail Essential
Duality, which is a weaker form of Haag Duality that still allows Doplicher, Haag and Robert’s analysis
to go through. They further demonstrate that Microcausality, Weak Additivity, and MC entail the
existence of a unique unitary representation of the restricted Poincaré group that acts on < and satisfies
the Spectrum Condition. This has two consequences. First, the uniqueness of this representation rules out
counterexamples to the spin-statistics theorem of fields with infinitely many components (Guido and
Longo 1995, p. 519). Second, Microcausality, the Spectrum Condition, and Weak Additivity entail
Property B (Halvorson and Müger 2006, p. 748).
18 For defenses of positions associated with (A) and (B), see Wallace (2011) and Fraser (2011),
respectively.

CPT Invariance, the Spin-Statistics Connection 807

123



at asymptotic times (t ? ±?). The rigor of this formalism, however, is made
problematic due to the consequences of Haag’s theorem, which indicates that the
Hilbert spaces for interacting and free states cannot be the same, thus a unitary S-
matrix operator that transforms free states into interacting states does not exist (see.,
e.g., Earman and Fraser 2006).19

Purists who adopt (B) may be hard put in explaining how CPT invariance and the
spin-statistics connection can be said to be properties of interacting states. They may
find partial solace in an extension of the axiomatic approach known as Haag-Ruelle
scattering theory. Briefly, under the assumption that the Hilbert space H of an
interacting RQFT contains a single-particle subspace, this approach demonstrates the
existence of ‘‘in’’ and ‘‘out’’ states in H which can be interpreted as free particle
states at asymptotic times (Haag 1996, pp. 88–89). Assuming the subspacesHin;Hout

spanned by these states satisfy Asymptotic Completeness: Hin ¼ Hout ¼ H, one can
show that the in and out states are related by a unitary S-matrix operator, and one can
then employ the apparatus of the LSZ formalism to calculate S-matrix elements.
Moreover, the in and out states are also restricted Lorentz invariant and possess both
CPT invariance and the spin-statistics connection. Thus, on the basis of Haag-Ruelle
scattering theory, purists may argue that asymptotic states in an interacting RQFT
possess CPT invariance and the spin-statistics connection. On the other hand, again,
none of the current empirically confirmed interacting RQFTs in particle physics
admit formulations in terms of Haag-Ruelle scattering theory.

2. A second way in which the approaches in Sect. 2 differ is over the assumption of
restricted Lorentz invariance. While much could (and should) be said about the role of
relativity in the CPT and Spin-Statistics theorems in general, for present purposes I
will restrict discussion to the following brief comments. Restricted Lorentz invariance
is an explicit assumption in all approaches except the algebraic approach.20 For the
latter, first note that the operative property is invariance under the restricted Poincaré

group P"þ which consists of Lorentz boosts and translations. In the algebraic context,
this is referred to as Poincaré covariance. Note also that under Guido and Longo’s
(1995) analysis, it is the states associated with DHR representations that possess the
properties of CPT invariance and the spin-statistics connection. Thus one needs to
distinguish between Poincaré covariance of the von Neumann algebra<, and Poincaré
covariance of its DHR representations ðH; pÞ.21 Three things can now be said:’

19 Pragmatists may respond to the consequences of Haag’s theorem by adopting what Wallace (2011)
refers to as ‘‘conventional’’, or ‘‘cutoff’’ QFT. See Sect. 5.1 below for a discussion.
20 In the axiomatic approach, the relation between restricted Lorentz invariance and CPT invariance is
tighter in an interacting theory, appropriately construed, than a free theory. In the LSZ formalism, time-
ordered Wightman functions (or ‘‘s-functions’’) are used to calculate the elements of the S-matrix of an
interacting theory. Greenberg (2002) demonstrates that violation of CPT invariance of any Wightman
function entails that the corresponding s-function is not restricted Lorentz invariant. Thus, ‘‘[i]f CPT
invariance is violated in an interacting quantum field theory, then that theory also violates Lorentz
invariance’’ (pp. 231602-1, 231602-2), where Greenberg takes Lorentz invariance as the condition that
both Wightman and s-functions be restricted Lorentz invariant.
21 Taken as a subset < ) BðH0Þ of the concrete algebra of bounded linear operators on the vacuum

Hilbert space H0;< is Poincaré covariant just when there is a unitary representation U0 : P"þ ! BðH0Þ
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(a) Poincaré covariance of either < or its DHR representations is not necessary to
show that DHR representations can be classified in terms of their statistics, and
that they admit conjugates (Halvorson and Müger 2006, p. 784).

(b) Poincaré covariance of either < or its DHR representations is not necessary to
demonstrate CPT invariance of the latter.

(c) Poincaré covariance of the DHR representations of < is necessary to
demonstrate that states of the latter possess the spin-statistics connection.

With respect to (b) and (c), the assumption of Modular Covariance (MC) in Guido
and Longo’s approach provides the heavy lifting accomplished by Lorentz
invariance in the other approaches. Now certainly Lorentz invariance is a well-
motivated assumption for RQFTs, but the extent to which MC is likewise well-
motivated is a matter of some debate. Recall from Sect. 2.4 that MC is the
assumption that the actions of the modular operator of the wedge algebra <ðWÞ can
be geometrically interpreted as Lorentz boosts. If < is generated by Wightman
fields, then MC follows from the Bisognano–Wichmann theorem, but it’s not
entirely clear what its status is in the more general algebraic case. It can be shown
that the conjunction of MC, Microcausality, and Weak Additivity entails Poincaré
covariance of < (Guido and Longo 1995, p. 530).22 Moreover, the conjunction of
Microcausality, Additivity, and conformal invariance of < entails MC (Brunetti
et al. 1993, p. 212).23 This indicates that MC is a weaker constraint than Lorentz
invariance. Furthermore, if one assumes < is Poincaré covariant, then MC follows
under the additional assumptions of Wedge Duality and a Reality Condition (for
definitions of the latter see Borchers 2000, pp. 29, 31–32).24

Physically, Guido and Longo (1995, p. 520) suggest MC may be motivated by
appeal to the Unruh effect. Briefly, the Unruh effect occurs when an observer, in
constant acceleration with respect to the Minkowski vacuum, experiences the latter
as a thermal state.25 A standard explanation runs as follows: The modular operator
of the wedge algebra <ðWÞ generates a one-parameter group of automorphisms
(called the modular group). One can show that the restriction x0j< Wð Þ of the

Minkowski vacuum state x0 to the wedge is a Kubo–Martin–Schwinger (KMS)

Footnote 21 continued

such that U0ðgÞ<ðOÞU0ðgÞ* ¼ <ðgOÞ; g 2 P"þ. A DHR representation ðH;pÞ of < is unitarily equivalent
to a localized morphism q : < ! BðH0Þ defined by qðAÞ ¼ VpðAÞV*, for unitary map V : H! H0. A
DHR representation is then said to be Poincaré covariant just when there is a unitary representation

Uq : ~P"þ ! BðH0Þ of the universal covering ~P"þof the restricted Poincaré group such that

UqðhÞqðAÞUqðhÞ* ¼ qðU0ðrðhÞÞAU0ðrðhÞÞ*Þ, where h 2 ~P"þ, and r : ~P"þ ! P"þ, is the covering map.
22 If < is Poincaré covariant, so are its DHR representations, but the converse is not true: Guido and
Longo (1992, p. 534) show that every DHR representation with finite statistics is Poincaré covariant with
positive energy, provided < has a certain regularity property.
23 Additivity (as opposed to Weak Additivity) is the requirement < ¼

S
i <ðOiÞ.

24 This result, combined with Guido and Longo’s analysis, suggests another version of an algebraic CPT
theorem; namely, for a von Neumann algebra of local observables with a cyclic vacuum representation,
the conjunction of Poincaré Covariance, Weak Additivity, Wedge Duality, and the Reality Condition
entails CPT invariance (Borchers 2000, p. 32).
25 This is typically interpreted as a thermalized multi-particle state, although Earman (2011) and
Arageorgis et al. (2003) argue that this unjustified.
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state with respect to the modular group (for a definition of the KMS condition, see
Haag 1996, p. 218). Now suppose KMS states are identified as thermalized states;
i.e., equilibrium states at some finite temperature (for motivation, see Earman 2011,
pp. 82–83). MC then entails that x0j< Wð Þ is a thermalized state with respect to

Lorentz boosts on W. Since the orbits of the latter are worldlines of constant
acceleration, one concludes that an observer in constant acceleration experiences
x0j< Wð Þ as a thermalized state. Guido and Longo (1995, p. 520) go on to suggest,

…[T]he equivalence principle in Relativity Theory then allows an interpre-
tation of the thermal outcome as a gravitational effect. On this basis Haag has
proposed long ago to derive the Bisognano–Wichmann theorem [and thus MC].

The suggestion, evidently, is that MC coupled with the equivalence principle entails
that a gravitational field thermalizes the vacuum state of a von Neumann algebra of
observables. The extent to which this constitutes a motivation for MC may initially
depend on one’s attitudes towards explanation and/or confirmation. For instance, to
the extent that explanation requires derivation from first principles, MC might be
claimed (in part) to explain the Unruh effect; and to the extent that confirmation
requires derivation of evidence from hypothesis, evidence for the Unruh effect might
be claimed to be evidence for MC. However, these considerations don’t stand up to
further scrutiny. Apart from questions concerning the feasibility of applying the
equivalence principle in the context of flat Minkowksi spacetime, one may also
question the cogency of the modular theory derivation of the Unruh effect. Earman
(2011, pp. 87–88) raises the following concerns. First, the relevant KMS state is the
restriction x0j< Wð Þ of the Minkowski vacuum state to the wedge algebra <ðWÞ. This

is the vacuum state experienced by an observer in perpetual constant acceleration
who has access only to<ðWÞ. On the other hand, an observer who maintains constant
acceleration for any finite stretch of proper time s, no matter how long, but is
unaccelerated either at s = ? ? or s = –?, will have access to the full quasi-local
algebra < and the corresponding Minkowski vacuum state x0, for which the KMS
result does not hold. This suggests that whether or not an observer experiences the
Unruh effect cannot be determined by facts about any finite portion of her history,
and ‘‘[t]his makes it mysterious how to mesh the deliverances of modular theory with
the registrations of laboratory instruments’’ (Earman 2011, p. 88). Second, to argue
that the KMS states associated with the modular group of <ðWÞ are thermal states
depends on an analogy between KMS states and Gibbs states in quantum statistical
mechanics. In the first instance, this requires an assumption that the modular group
parameter can be interpreted as inverse temperature. In some contexts, the
justification for this assumption is based on systems characterized by KMS states
and obtained by taking appropriate thermodynamic limits of ordinary thermody-
namic systems. But no such limiting procedures are associated with the restriction of
the Minkowski vacuum state to<ðWÞ. Moreover, even if this assumption is accepted,
one is still faced with the task of explaining, in the context of RQFT, how
thermodynamic effects physically arise for accelerating observers. Assumedly such
an explanation would require an account of how the vacuum state couples to
accelerating observers, an account that modular theory by itself does not furnish.
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The upshot of the above discussion is that it is still an open question as to whether
Modular Covariance is a physically reasonable assumption. This consequently
places a degree of doubt on any attempt to use the algebraic approach to the CPT
and Spin-Statistics theorems to inform an answer to the question of what CPT
invariance and the spin-statistics connection are properties of.

3. A third and final way in which the approaches in Sect. 2 differ is over whether
they identify Local Commutativity (LC) or Causality/Microcausality as a funda-
mental assumption for the spin-statistics connection. The axiomatic approach alone
adopts LC.26 The textbook Lagrangian and algebraic approaches adopt the
Causality/Microcausality criterion. In Weinberg’s approach, neither LC nor
Causality is an explicit assumption. For Weinberg, LC is a derived condition from
more fundamental assumptions related to properties of the S-matrix. However, one
of these properties (Weinberg’s assumption (ii)) might be construed as requiring
Causality to hold of the interacting Hamiltonian.

4 Particle Properties?

To what extent do the approaches to the CPT and Spin-Statistics theorems reviewed
in Sect. 2 support Thesis (II), the claim that CPT invariance and the spin-statistics
connection are properties of particle states? Consider first the pragmatist of Sect. 3
who adopts either Weinberg’s approach or the textbook Lagrangian approach. In
both of these cases, statistics are encoded in the (anti-)commutation relations (1) of
creation and annihilation operators that act on (free) particle states in a Fock space.
This suggests that the spin-statistics connection in these approaches is a property of
particles. Weinberg makes this explicit in his assumption (iii) (see Sect. 2.2) and his
instrumentalist interpretation of fields: ‘‘This article treats a quantum field as a mere
artifact to be used in the construction of an invariant S-matrix’’ (p. B1319).
Moreover, Weinberg’s proof of the CPT theorem requires demonstrating that
creation and annihilation operators are invariant under C, P, and T transformations;
and the textbook Lagrangian’s proof of the CPT theorem requires the spin-statistics
connection to hold. This suggests that in both approaches, CPT invariance is also a
property of particles.

On the surface, Thesis (II) also seems to be supported by a purist who adopts the
algebraic approach, insofar as CPT invariance and the spin-statistics connection are
derived for (a subset of) DHR states interpreted as localized particle states. This
reference to particle states is explicit in Doplicher et al. (1974) version of the Spin-
Statistics Theorem: ‘‘We did not treat in Doplicher et al. (1971) any of the particle
aspects of the theory. This will be the essential objective of the present paper’’ (p.
50). Whether this amounts to naiveté in light of the analysis of the Received View
will be considered in the next section.

26 Greenberg (2006) demonstrates that restricted Lorentz invariance of s-functions (see footnote 20)
evaluated at Jost points entails LC. Thus, ‘‘…if we take Lorentz covariance of time-ordered products as
the condition of Lorentz covariance of the field theory, then… local commutativity is not an independent
assumption of the theory’’ (p. 087701-1).
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It may not be as evident that Thesis (II) can be supported by purists who adopt
the axiomatic approach. In particular, in the axiomatic approach, statistics are
encoded in the Local Commutativity constraint on fields, which suggests that fields
are the bearers of the spin-statistics connection. Recall, however, that purists, of
either the axiomatic or algebraic variety, face the problem of incompleteness: no
empirically successful RQFT admits a purist formulation. And recall, too, that a
conciliatory axiomatic purist willing to adopt Haag-Ruelle scattering theory as a
method of extending her approach to encompass interactions may take (well-
defined) Haag-Ruelle asymptotic states to be the objects that bear CPT invariance
and the spin-statistics connection. The question for this type of purist then becomes,
What are the asymptotic states that bear the properties of CPT invariance and the
spin-statistics connection states of?

Greenberg (1998) indicates one form a purist response might take. Recall that the
approaches in Sect. 2 differ on whether they adopt Local Commutativity or
Causality as a fundamental assumption in the Spin-Statistics theorem. Greenberg
suggests that these are ontologically distinct assumptions, the former associated
with fields and the latter associated with particles. In particular, he distinguishes
between two theorems: The ‘‘Spin-Statistics’’ theorem, which states that ‘‘…par-
ticles that obey Bose statistics must have integer spin and particles that obey Fermi
statistics must have odd half-integer spin’’, and the ‘‘Spin-Locality’’ theorem, which
states that ‘‘…fields that commute at spacelike separation must have integer spin
and fields that anticommute at spacelike separation must have odd half-integer spin’’
(Greenberg 1998, p. 144). Greenberg identifies the Spin-Statistics theorem with the
proofs due to Fierz (1939) and Pauli (1940) that inform the textbook Lagrangian
approach,27 and takes the Causality assumption to be the requirement that ‘‘…the
bilinears constructed from the (free) asymptotic fields [i.e., the in- and out-fields of
Haag-Ruelle scattering theory] commute at spacelike separation’’ (p. 145). He
identifies the Spin-Locality theorem with the proofs due to Lüders and Zumino
(1958) and Burgoyne (1958) that inform the axiomatic approach, and distinguishes
it from the Spin-Statistics theorem solely on its replacement of Causality with Local
Commutativity.

This is a distinction that makes a difference, insofar as a field can violate the
Spin-Statistics theorem (and thus have non-local observables) while satisfying the
Spin-Locality theorem (and thus not vanish identically). Jost (1965, pp. 103–104)
provides an example of a non-vanishing spin-0 scalar field solution / to the Klein-
Gordon equation that obeys Fermi-Dirac statistics in the sense that its corresponding

27 Greenberg (1998, p. 145) also associates the ‘‘Spin-Statistics’’ theorem with Weinberg’s approach:
‘‘[Fierz and Pauli] used locality of observables as the crucial condition for integer-spin particles and
positivity of the energy as the crucial condition for the odd half-integer case. Weinberg showed that one
can use the locality of observables for both cases if one requires positive-frequency modes to be
associated with annihilation operators and negative-frequency modes to be associated with creation
operators.’’ However, for Weinberg, ‘‘locality of observables’’ (i.e., commutativity at spacelike separated
distances) is only imposed on the interacting Hamiltonian density HintðxÞ and only to formally secure
Lorentz invariance of the S-matrix (see Sect. 2.2). For Weinberg, ‘‘causality’’ as applied to observable
quantities other than the S-matrix is explicitly renounced: ‘‘The point of view taken here is that [LC] is
needed for the Lorentz invariance of the S-matrix, without any ancillary assumptions about measurability
or causality’’ (Weinberg 1995, p. 198).
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creation/annihilation operators anti-commute. This entails that / does not anti-
commute at spacelike separated distances; hence it does not violate the Spin-
Locality theorem (such a violation would occur if / anti-commuted). The field
violates Causality, however; in particular, it possesses a non-local energy density
(Greenberg 1998, p. 148). Moreover, it can be shown that, while / does not satisfy
Local Commutativity, it does satisfy Weak Local Commutativity; hence it possesses
CPT invariance.

Thus, for Greenberg, the following three properties should be made distinct: the
spin-statistics connection, the spin-locality connection, and CPT invariance. The
spin-statistics connection is a property of particles: it holds just when bosons
(particles that obey Bose-Einstein statistics) possess integer spin, and fermions
(particles that obey Fermi-Dirac statistics) possess half-integer spin. The spin-
locality connection is a property of fields: it holds just when fields that commute at
spacelike distances possess integer spin, and fields that anti-commute possess half-
integer spin. Finally, CPT invariance may be taken to be a property of both fields
and particles. In this way Thesis (II) can be upheld for purists who adopt the
axiomatic approach. The question remains, however, which property is more
fundamental: the spin-statistics connection, or the spin-locality connection. To see
how Thesis (I) might be upheld in this context, recall that we are considering Haag-
Ruelle scattering theory as an extension of the axiomatic approach. One could argue
that the fields, in their role as interpolating fields for the S-matrix, are unobservable,
purely mathematical constructs that serve to interpolate between more fundamental
in- and out- asymptotic particle states. In fact, a theorem due to Borchers
demonstrates that to every asymptotic particle state there corresponds an equiva-
lence class of interpolating fields (Haag 1996, p. 103).

At this point, all I have suggested is that Thesis (II) is compatible with the
approaches to the CPT and Spin-Statistics Theorems reviewed in Sect. 2, at least if
we take them at their face values. This is not to say that these approaches entail
Thesis (II). In fact, many philosophers of physics claim that RQFTs cannot be given
a particle interpretation. It’s now time to address this view.

5 The Received View

According to a Received View among philosophers (Clifton and Halvorson 2001;
Halvorson and Clifton 2002; Arageorgis et al. 2003; Fraser 2008), in order to admit
a particle interpretation, a quantum field theory (QFT) must satisfy the following
two conditions.

(a) The QFT must admit a Fock space formulation in which local number
operators appear that can be interpreted as acting on a state of the system
associated with a bounded region of spacetime and returning the number of
particles in that region.

(b) The QFT must admit a unique Fock space formulation in which a total number
operator appears that can be interpreted as acting on a state of the system and
returning the total number of particles in that state.
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These conditions are supposed to encode two pre-theoretic intuitions about
particles; namely, that they possess the characteristics of localizability and
countability, respectively. These intuitions require that, for a system of particles
distributed over various regions of space, an adequate theory must be able to
(a) identify the number of particles located in each region;28 and (b) identify a
unique value for the total number of particles, counted over all regions.

One can now demonstrate that Conditions (a) and (b) fail in RQFTs (see Bain
2011 for details). Briefly, failure of Condition (a) is a consequence of the fact that
there can be no non-trivial operators associated with a bounded region of
Minkowski spacetime that annihilate the vacuum.29 Failure of Condition (b) is a
consequence of the existence of unitarily inequivalent Fock space representations of
the canonical (anti-) commutation relations of an RQFT. For a non-interacting
RQFT, this entails there is no unique total number operator. Moreover, as noted in
Sect. 3 above, Haag’s theorem entails that a Fock space representation of interacting
particles cannot be adopted from the corresponding non-interacting theory.

I’d now like to consider how the Received View fairs with respect to Theses
(I) and (II). On the surface (I) and (II) entail that particles are fundamental states in
RQFTs: If, by (II), particles are the bearers of CPT invariance and the spin-statistics
connection, and if, by (I), these are essential properties born by fundamental states
in RQFTs, then particle states must be fundamental in RQFTs. Thus if one accepts
the Received View on particles, one must either reject (I), or reject (II), or reject
both (I) and (II). In the following, I will call these Options A, B, and C, respectively.

5.1 Option A: Accept Thesis (II)

Consider first Option A, which claims that CPT invariance and the spin-statistics
connection are properties of particles; but particles are not fundamental. Arguably,
this is the view expressed by Wallace (2009) in an article on the concept of
antimatter. On the one hand, he claims that RQFTs are not fundamentally about
particles; rather, ‘‘particles are emergent phenomena, which emerge in domains
where the underlying quantum field can be treated as approximately linear’’
(Wallace 2009, p. 219). On the other hand, he takes the charge conjugation
transformation, C, to be a transformation between particle and antiparticle states
(Wallace 2009, p. 218), and this suggests CPT is a property possessed by particles.

On the surface, this view appears to reject Thesis (I): If CPT invariance (and,
assumedly, the spin-statistics connection) are properties of particles, and the latter
are emergent or approximate states in an RQFT, then it seems to follow that CPT
invariance and the spin-statistics connection are not essential properties of
fundamental states. In fact Wallace (2011, 2006) defends a version of the
Lagrangian formalism in which a momentum cutoff is imposed to address the

28 This follows the intuitions of Halvorson and Clifton (2002, pp. 17–18). This aspect of the Received
View should thus be made distinct from concepts of localized particles that require the existence of
position operators and/or localized states.
29 Streater and Wightman (2000, p. 139). This, in turn, is a consequence of the Reeh-Schlieder theorem
and Local Commutativity.
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problems associated with the perturbative description of interactions (this version is
referred to as ‘‘conventional’’ or ‘‘cutoff’’ quantum field theory, CQFT). In this
approach, the cutoff is used to regularize the ultraviolet divergences that appear in
perturbative calculations, and is interpreted realistically, thus it is not taken to
infinity at the end of such calculations (as it is in typical renormalization schemes).
This method of regularization is analogous to placing a high-energy continuum
theory on a discrete lattice. It thus results in an effective field theory that violates
restricted Lorentz invariance. As a consequence, the CPT and Spin-Statistics
theorems fail (recall the Lagrangian approach to these theorems requires restricted
Lorentz invariance), and we thus lose the primary motivation for Thesis (I).

In this version of Option A, the CPT and Spin-Statistics theorems might be
viewed as limited to idealized, linear, non-interacting RQFTs. This suggests a
modified version of Thesis (I); namely,

(I0) CPT invariance and the spin-statistics connection are essential properties of
fundamental states in idealized, linear, non-interacting RQFTs.

Thesis (I0) suggests that CPT invariance and the spin-statistics connection are
idealized, approximate properties. On the one hand, this is consistent with Wallace’s
(2006) attitude towards quantum field theories: ‘‘QFTs as a whole are to be regarded
only as approximate descriptions of some as-yet-unknown deeper theory, which
gives a mathematically self-contained description of the short-distance physics’’
(2006, p. 45). On the other hand, Thesis (I0) also suggests that CPT invariance and
the spin-statistics connection do not hold in interacting RQFTs.

This view seems problematic, in so far as the evidence for CPT invariance and
the spin-statistics connection is typically taken to come from interacting RQFTs.
Note, further, that Wallace’s view is supposed to warrant taking interacting RQFTs
seriously in the sense that, within the domain specified by its cutoff, an interacting
RQFT is well-behaved and offers an approximation of the ontology of an as yet
unknown ‘‘deeper’’ theory. But, under Thesis (I0), CPT invariance and the spin-
statistics connection are not properties of states associated with such an approx-
imation; rather, it appears that they must be viewed as properties of states associated
with an approximation of such an approximation: under Thesis (I0), they hold of
states in non-interacting RQFTs, which are approximations of interacting RQFTs,
which themselves are approximations of some underlying deeper theory. This seems
a bit odd, given the central role that CPT invariance and the spin-statistics
connection play in typical depictions of RQFTs.

Note, finally, that one can impose a cutoff on interacting Lagrangian RQFTs and
interpret it realistically, as Wallace suggests, but avoid violating restricted Lorentz
invariance. This can be done by replacing momentum cutoff regularization with
dimensional regularization as the method of taming divergent integrals in
perturbative calculations. Realistically interpreting the cutoff in renormalization
schemes that employ dimensional regularization results in what Georgi (1993)
refers to as a ‘‘continuum effective field theory’’. Such a theory is manifestly
restricted Lorentz invariant, and thus (assumedly) admits formulations of the CPT
and Spin-Statistics theorems. Adopting such an approach would allow a pragmatist
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to consistently uphold both Theses (I) and (II) (al beit at the expense of the
Received View).

To recap, the version of Option A for the Received View considered above
interpreted CPT invariance and the spin-statistics connection as idealized properties
that do not hold in interacting RQFTs. In principle there may be other ways to adopt
Option A; but all such versions will be faced with the difficult task of interpreting
the CPT and Spin-Statistics Theorems in RQFTs in such a way that the properties of
CPT invariance and the spin-statistics connection come out as non-essential in
RQFTs.

5.2 Option B: Reject Thesis (II)

Now consider Option B for the Received View. This is the claim that CPT
invariance and the spin-statistics connection are not properties of particles; but are
properties of fundamental states in RQFTs. This view is suggested by Baker and
Halvorson (2010) who defend the concept of antimatter against a particle
interpretation.30 In the context of algebraic quantum field theory, they suggest that
DHR states and their conjugates be interpreted as representing matter and antimatter
states. Moreover, they argue that DHR states are more general than the particle
states of the Received View on particles: they cite the example of a 2-dimensional
RQFT of charged fermions and neutral bosons interacting via a Yukawa potential as
a theory that possesses states that satisfy the DHR criteria but do not satisfy the
Received View’s conditions of adequacy for particles (pp. 116–117).

An advocate of Option B might thus attempt to justify Thesis (I) by arguing that
(i) DHR states are the fundamental physically possible states in RQFTs; (ii) DHR
states possess the properties of CPT invariance and the spin-statistics connection;
and (iii) DHR states are more general than particle states, under the Received View.
The following concerns suggest this approach to Option B is problematic:

(a) First, recall that in Guido and Longo’s algebraic derivation of the Spin-
Statistics theorem, the bearers of the spin-statistics connection are massive,
Poincaré-invariant DHR states with finite statistics. This excludes nonlocal
electromagnetic states (which do not satisfy the DHR criterion in general), as
well as the states of massless gauge bosons; and both of these types of states
are considered as physically possible in the Standard Model.

(b) Second, Guido and Longo’s derivation requires the assumption of Modular
Covariance, and, as Sect. 3 indicates, one might question whether this is a
physically reasonable assumption.

(c) Finally, Baker and Halvorson’s example none withstanding, the algebraic
approach is incomplete in the sense of Sect. 3. In particular, 2-dimensional

30 Note that Baker and Halvorson are not expressly concerned with Thesis (I), even restricted to the
concept of antimatter. Rather, they are only concerned with divorcing the concept of antimatter from the
concept of particle: ‘‘[T]here may be a fundamental matter–antimatter distinction to be drawn in QFT.
Whether there is does not depend on whether particles play any part in the theory’s fundamental
ontology’’ (p. 94).
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Yukawa theory is a far cry from the interacting RQFTs employed in the
Standard Model.

In the absence of alternative algebraic formulations of the CPT and Spin-Statistics
theorems, these considerations might motivate an Option B’er to abandon the
algebraic approach for the axiomatic approach. One might claim that CPT
invariance and the spin-statistics connection (or spin-locality connection) are
properties of fundamental fields. One might be motivated to do this by recalling that
the axiomatic approach encodes statistics in the form of the Local Commutativity
constraint on fields, and the key ingredient to the proof of the CPT theorem is the
Weak Local Commutativity constraint, imposed on vacuum expectation values of
fields. But is a field interpretation consistent with the Received View; in particular,
with its denial of a particle interpretation? Baker (2009) argues that it is not. In
particular, Baker observes that the Hilbert space of wavefunctional states typically
associated with field interpretations is unitarily equivalent to the Fock space of
particle states that the Received View requires for particle interpretations (the
former is constructed from the space of solutions to a classical field theory, the latter
is constructed from single-particle states identified as finite irreducible represen-
tations of the restricted Lorentz group).31 Thus, to the extent that unitary
equivalence entails translational equivalence, the arguments that the Received
View mounts against particle interpretations are equally effective against field
interpretations that employ a Hilbert space of wavefunctional states.

In a bit more detail, Baker demonstrates that just as there are unitarily
inequivalent representations of the canonical (anti-) commutation relations of an
RQFT that undermine the ascription of a unique particle state to a physical system,
similarly there are unitarily inequivalent representations that undermine the
ascription of a unique field configuration state to a physical system. Moreover,
Haag’s theorem indicates there is no Fock space for an interacting RQFT, and thus
no wavefunctional space. Hence, under the same assumptions that indicate there are
no particle states for an interacting RQFT, there are also no field configuration
states. Of course the option remains for an advocate of the Received View on
particles to build a field interpretation on mathematical structures that do not require
a wavefunctional space. As Baker (2009, p. 606) points out, in the axiomatic
approach it is possible to define field operators in the absence of a wavefunctional
space; but exactly how to interpret them in terms of fields is unclear.

This suggests that an axiomatic Option B’er cannot succeed on a field interpretation
of RQFT without further ado, but this leaves the door open to alternative
interpretations of the axiomatic approach of neither the particle nor the field type.
Baker (2009, p. 607), for instance, suggests seeking the fundamental quantities of an
RQFT in its algebra of observables, either as represented by a concrete von Neumann
algebra of operators, or as represented by an abstract Weyl algebra. The task for the
Option B’er in this context is to resolve the tension between Thesis (I), on the one hand,

31 A wavefunctional state W[v] is a probability distribution over classical field configurations v(x) (see,

e.g., Wallace 2006, pp. 40–41). A field operator /̂ðxÞ (distinguished here with a hat) acts on W[v] and
produces the field configuration v(x).
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and a literal construal of the CPT and Spin-Statistics theorems on the other, where the
latter, at least on the surface, suggests either a particle ontology or a field ontology.

5.3 Option C: Reject Theses (I) and (II)

An advocate of the Received View may also adopt Option C and reject both Theses
(I) and (II). The CPT and Spin-Statistics theorems in RQFTs suggest that rejecting
Thesis (I) (or Thesis (I0)) will be problematic. But there may be precedent for this:
there is a large body of literature that attempts to construct derivations of CPT
invariance and the spin-statistics connection outside the framework of RQFTs.
Some authors have attempted to construct non-relativistic derivations of the spin-
statistics connection,32 while other authors have presented classical (i.e., non-
quantum–mechanical) derivations of the spin-statistics connection (Morgan 2004)
and CPT invariance (Bell 1955; Greaves 2010). An advocate of Option C might thus
claim that CPT invariance and the spin-statistics connection are not unique to
RQFTs, and thus proofs in RQFTs do not necessarily inform us about the
fundamental ontology of RQFTs. On the other hand, one might take this literature to
imply that the reason why CPT invariance and the spin-statistics connection are
fundamental properties in RQFTs has yet to be made clear. The task for the Option
C’er is to sort through this literature to determine the extent to which it supports the
former as opposed to the latter claim.

6 Conclusion

I have argued that the Received View against particle interpretations of RQFTs must
either

(A) reject Thesis (I); i.e., the claim that CPT invariance and the spin-statistics
connection are essential properties of fundamental states in RQFTs; or

(B) reject Thesis (II); i.e., the claim that the bearers of these properties are particle
states; or

(C) reject both Theses (I) and (II).

Options (A) and (C) are made problematic by the CPT and Spin-Statistics theorems
in RQFTs. These theorems suggest that deniers of Thesis (I) may have to view CPT
invariance and the spin-statistics connection as idealized properties that do not hold
in interacting RQFTs. But this is problematic insofar as the evidence for CPT
invariance and the spin-statistics connection invariably comes from interacting
RQFTs. Alternatively, deniers of Thesis (I) may pin their hopes on proofs of CPT
and the Spin-Statistics theorems outside the purview of the RQFT framework, but
work needs to be done in evaluating these proofs.

Option (B) is made problematic by the fact that the Received View’s argument
against particle interpretations is equally effective against the standard approach to
field interpretations. Given the nature of the extant approaches to proofs of the CPT

32 The literature on this is vast. A partial survey is given in Duck and Sudarshan (1997).
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and Spin-Statistics theorems, it’s not immediately clear what the alternatives to
Thesis (II) could be. Read literally, these approaches suggest that CPT invaraince
and the spin-statistics connection are properties either of particles or of fields. The
Received View must therefore either provide a non-standard field interpretation, or
explain how the CPT and Spin-Statistics theorems can be interpreted in a non-
standard way.

This is not to say this constitutes a sound argument against the Received View, nor
does it suggest that rejecting the Received View by adopting Theses (I) and (II) is
unproblematic. To do so would require offering an alternative account of particles, or
perhaps an account of why it may be appropriate to talk about particle fundamentality
in the context of the CPT and Spin-Statistics theorems, but not in other contexts.33

What this essay does suggest is that the Received View’s approach to ontology is
flawed. What we take RQFTs to be about should depend, in part, on what we take the
essential properties of RQFTs to be. And what we take the essential properties of
RQFTs to be should depend, in part, on results internal to RQFTs, like the CPT and
Spin-Statistics Theorems. In analyzing such theorems, pre-theoretic intuitions that
a priori militate against particle interpretations may be misleading.
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