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1. Introduction

The AdS/CFT correspondence is a dictionary that relates a
(d+1)-dimensional bulk theory of gravity in anti-de Sitter space-
time (AdS) to a d-dimensional boundary conformal field theory
(CFT). This correspondence is an example of a duality between a
theory that is only partially constructed (AdS gravity), and a theory
for which the full mathematical structure is currently available
(CFT)." It is thus significant as a means toward a quantum theory of
gravity, or minimally, toward a reconciliation between general
relativity and quantum field theory. Philosophers of physics have
not been lax in analyzing the significance of this duality; in
particular, how it might admit a realist interpretation (Le Bihan &
Read, 2018), and how the relation between the bulk theory and
the boundary theory might be understood in terms of emergence
(De Haro, 2017; De Haro, Mayerson, & Butterfield, 2016; Dieks, van
Dongen, & de Haro, 2015; Rickles, 2013; Teh, 2013; Vistarini, 2017).

Recently a proposal to interpret the AdS/CFT correspondence as
an erasure-protection quantum error-correcting code (QECC) has
generated interest (Almheiri, Dong, & Harlow, 2015; Pastawski,
Yoshida, Harlow, & Preskill, 2015; Harlow, 2018; Wolchover,
2019). An erasure-protection QECC is a procedure for encoding
information in the elements of a subspace of a multi-qudit Hilbert
space in such a way that errors due to erasure can be detected and
corrected.” The proposal has elicited the informal claim that
“spacetime is a QECC” (Preskill, 2017; Wolchover, 2019). The goal of

E-mail address: jon.bain@nyu.edu.

T As Le Bihan and Read (2018, pg. 6) point out “... our understanding of the AdS
side of the AdS/CFT duality is inherently perturbative ...“, as opposed to a mathe-
matically exact understanding of the CFT side.

2 A qudit is a state of a d-state quantum system. The d = 2 case is called a qubit.
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the current essay is to assess this claim: What could it mean to say
spacetime is a QECC, and to what extent is this justified by the QECC
interpretation of the AdS/CFT correspondence?

The QECC interpretation was presented in Almbheiri et al. (2015)
as a solution to an apparent problem with the AdS/CFT dictionary
referred to as the “bulk locality paradox”: under reasonable as-
sumptions about locality, a standard way of representing a local
bulk field on the boundary, called the AdS-Rindler representation,
is trivial.® This triviality, together with the redundant nature of the
relation between d-dim boundary operators and (d +1)-dim bulk
fields, is suggestive of characteristics of a QECC. Under Almbheiri
et al.'s proposal, the collection of bulk states with support in a bulk
region called a causal wedge consists of a subset of boundary states
on a corresponding boundary region that forms an erasure-
protection QECC, and this means that these bulk states encode
the information associated with the corresponding boundary states
in a redundant way that protects it against erasure.

A QECC s not the sort of thing associated with a spacetime. Thus
informal claims to the effect that “spacetime is a QECC” appear
perplexing. A QECC can be realized by physical systems which can
possess spatiotemporal properties. In the QECC interpretation of
AdS/CFT, these physical systems are described by the boundary CFT,
and there is a common claim in the physics literature that the bulk
emerges from the boundary. So perhaps the claim that spacetime is
a QECC is better understood as the claim that spacetime in the bulk
emerges from boundary systems that realize the structure of a
QECC. On the other hand, many authors have observed that the

3 Note that this motivation for the QECC interpretation of AdS/CFT is independent
of concerns that stem from the black hole information loss paradox. In that context,
AdS/CFT has been cited as evidence that black hole evaporation is a unitary process
(see, e.g., Wallace, 2018, p. 17).
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duality between the boundary and the bulk is exact and thus
symmetrical; hence to the extent that a notion of emergence re-
quires an asymmetrical relation between a fundamental physical
system and an emergent physical system, it cannot be underwritten
solely by duality (Teh, 2013; Dieks et al. 2015, De Haro et al., 2016a;
De Haro, 2017).

In what follows, I will suggest that this concern can be addressed
by adopting an emergentist view of Pastawski et al.’s (2015) reali-
zation of the QECC interpretation in the form of a discrete system of
qudits on a negatively curved lattice, what they refer to as the
“HaPPY code” (after the authors' initials). One can imagine taking a
continuum limit of this discrete system to recover the AdS/CFT
correspondence, and the claim then is that such a continuum limit
suffices to underwrite a notion of emergence. Thus under what I
will call the HaPPY code interpretation of AdS/CFT, both the
boundary spacetime and the bulk spacetime emerge in a contin-
uum limit from a fundamental discrete lattice system that realizes
the structure of an erasure-protection QECC. Under this view, a
more accurate version of the claim “spacetime is a QECC” might be
“spacetime emerges from a QECC”.

This emergentist understanding of the relation between the
HaPPY code lattice system and the physical systems described by
the AdS/CFT correspondence is not explicitly considered by
Pastawski et al. (2015), and it arguably represents a novel way of
interpreting AdS/CFT, at least with respect to a number of inter-
pretive options that have recently been discussed in the philosophy
of physics literature (Le Bihan & Read, 2018).

The plan of the essay is as follows. In section 2, I describe the
bulk locality paradox, and in section 3, I describe the QECC inter-
pretation as an attempt to address it. In section 4, I discuss
Pastawski et al.’s (2015) realization of the QECC interpretation by
the HaPPY code. In section 5, [ consider two options for under-
standing the claim “spacetime is a QECC”. The first is a proposal by
Van Raamsdonk (2010) under which the degree of entanglement of
boundary states tracks the degree of connectedness of the bulk
spacetime. The second is the HaPPY code interpretation, under
which the spacetime associated “gwith the AdS/CFT correspon-
dence emerges from a discrete system that realizes a QECC. Ulti-
mately, [ will argue that the latter is the best way of understanding
the claim that “spacetime is a QECC”. Finally, I indicate the sense in
which the HaPPY code interpretation is distinct from two realist
interpretive options discussed by Le Bihan and Read (2018) referred
to as “common core” and “overarching theory”.

2. The bulk locality paradox

The QECC interpretation of the AdS/CFT correspondence is a
response to the bulk locality paradox. This stems from the general
problem of representing local bulk degrees of freedom by local
boundary degrees of freedom. The context is as follows: The AdS/
CFT dictionary, as typically presented, provides a means of using
bulk quantities to calculate vacuum expectation values of products
of boundary operators, referred to as correlation functions. These
are typically the observables of interest in a local quantum field
theory. However, some authors have expressed dissatisfaction with
this version of the dictionary, insofar as some bulk observables of
interest cannot be represented by correlation functions on the
boundary. This has motivated a “reconstruction” program that at-
tempts to represent a local bulk field in its entirety on the boundary
(as opposed to only those bulk elements that go into calculating
boundary correlation functions). The bulk locality paradox is a
problem associated with the standard approach to this recon-
struction program, as the remainder of this section attempts to
explain.

The AdS/CFT dictionary comes in two versions: a “differentiate”
version and an “extrapolate” version (see, e.g., Harlow, 2016, p. 33;
Harlow & Stanford, 2011). The purpose of both versions is to ex-
press boundary correlation functions in terms of bulk quantities. In
the differentiate version (Gubser, Klebanov, & Polyakov, 1998;
Witten, 1998), one identifies the partition functions of the bulk and
boundary theories in the following way:

Zpuik[#o] = Zcrr[¢o] (1)

where, on the left, ¢q is the boundary value of a bulk field ¢(r,x),
while, on the right, it is a source term that couples to a local
boundary operator #(x).* In the path integral formulation of
quantum field theory, correlation functions are calculated by taking
functional derivatives with respect to source terms of the partition
function. In particular, given (1), boundary correlation functions
can be expressed by

L _ _ 0 0
big((x1)...7 (xn))crr = 6¢0(x1)“'6¢>0(xn)zb”"‘[¢0] - (2)

Thus (1) provides a “differentiate” method of calculating
boundary correlation functions in terms of bulk quantities, and this
is important insofar as correlation functions are typically the ob-
servables of interest in a local quantum field theory. Indeed, this
differentiate version of the AdS/CFT dictionary is stressed by much
of the recent philosophy of physics literature (see, e.g., De Haro,
2017; De Haro et al., 2016a; De Haro et al., 2016b; De Haro et al.,
2017; Dieks et al. 2015; Teh, 2013).

An alternative version of the AdS/CFT dictionary is referred to as
the “extrapolate” version, and it is based on identifying a local
boundary operator with the boundary value of a bulk field, given by
the following limit,

Jim r4g(r, x) = #(x) 3)

where A is the scaling dimension of # (Banks, Douglas, Horowitz, &
Martinec, 1998). This identification can then be used to calculate
boundary correlation functions by “extrapolating” bulk correlation
functions to the boundary:

(€ (%1).. (n))crr = M P, 20)... (T, Xn)puie (4)

Harlow and Stanford (2011) showed that (2) and (4) are equiv-
alent methods for calculating boundary correlation functions.
Moreover, Harlow (2018) suggests that (4) can be thought of as
analogous to the LSZ formula that is used in quantum field theory to
describe the results of scattering experiments:

The dictionary we have developed so far is sufficient for dis-
cussing ‘scattering’ experiments where we act with boundary
local operators at some early time, wait for a while, and then
measure some boundary operators to see what comes out
(Harlow, 2018, p. 8).

On the other hand Harlow goes on to suggest that this analogy
has limitations:

Unfortunately it does not seem to be the case that all interesting
experiments in the bulk can be so easily related to local corre-
lation functions in the CFT. The problem is that the output of an
experiment which happens behind a horizon is by definition

4 The bulk field is a function of bulk global coordinates (x,r). In these coordinates,
the boundary is at r— co.
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unable to reach the boundary, at least not if the semiclassical
picture of the spacetime is correct (Harlow, 2018, p. 12).

Insofar as local bulk fields deep within the bulk, and bulk ob-
servables behind, say, the event horizon of a bulk black hole are
interesting, the differentiate and extrapolate dictionaries are of
limited use. This is an important observation. A number of authors
have recently advocated a “common core” interpretation of the
AdS/CFT correspondence, and I will suggest in Section 5 below that
this has been informed, in part, by the differentiate version of the
dictionary.” The QECC interpretation, on the other hand, is moti-
vated by taking these limitations seriously, and, as we'll see in
Sections 3.2 and 5, it speaks against a “common core” under-
standing of AdS/CFT duality.

Taking the limitations of (2) and (4) seriously suggests that “...
we'd like to back off of the extrapolate dictionary” (Harlow, 2018, p.
12). Backing off leads to a research program referred to as “recon-
struction”, the goal of which is to construct a boundary represen-
tation of a bulk field located anywhere in the bulk. This involves
solving the bulk equations of motion with the boundary condition
given by the extrapolate dictionary (3), and results in what is called
the AdS-Rindler representation of a bulk field, defined in the
following way. Let = be the intersection on the boundary with a
bulk time slice, and let R be a subregion of =. Now define the “causal
wedge” C[R] of R by,

CIR] =Jpy1kPbna RV pyipe[Ppna R]] (5)

where Dy,4[R] is the domain of dependence, in the boundary, of R
(i.e., the set of boundary points X such that any inextendible causal
curve through X intersects R), and J;/ , and J;, , are the causal future
and causal past in the bulk.® If one takes the domain of dependence
of R to be the set of points that are causally determined by R, then
C[R] is the set of bulk points that are causally accessible from the
boundary region that is causally determined by R. The AdS-Rindler
representation O, of a bulk field 4(x) localized in C[R] is then
given by smearing a local boundary operator O(X) at boundary
point X over Dy,,4[R]. Formally,

¢(x)|xeC[R]: J K(X;X)O(X)dXEO(d,;R) (6)
Dpnd[R]

where K(x;X) is a smearing function that depends on the type of
bulk field. The AdS-Rindler representation (6) plays a central role in
the following.

Causal Wedge Reconstruction Conjecture: For any boundary
spatial region R, any bulk field in C[R] can be represented by a CFT
operator with support on R.’

The Causal Wedge Reconstruction Conjecture adds a powerful
entry to the AdS/CFT dictionary. Again, in principle, it is meant to
address concerns with the differentiate and extrapolate

5 These authors include Vistarini (2017), De Haro (2019), and De Haro and
Butterfield (2018, 2019). On the other hand, some authors who take the differen-
tiate dictionary to be the statement of AdS/CFT duality do acknowledge its limi-
tations (e.g., De Haro, 2019; Teh, 2013).

6 See, e.g., Harlow (2018, pg. 20). A causal wedge is a slight generalization of an
AdS-Rindler wedge, which is a region in AdS spacetime that corresponds to a
Rindler wedge in Minkowski spacetime. In particular, the bulk region of a causal
wedge is isomorphic to an AdS-Rindler wedge (Morrison, 2014, p. 12).

7 See, e.g., Harlow (2018, pg. 21). The intuition underlying the conjecture is that
as long as a bulk field lies in C[R], it has an AdS-Rindler representation using Hei-
senberg boundary operators with support on Dj,4[R], and these can be evolved to
Schrodinger boundary operators with support on R (Harlow, 2018, p. 19).

dictionaries: it is supposed to provide the tools necessary to extend
the AdS/CFT correspondence to “interesting” bulk observables deep
within the bulk. However, it faces the following complication
(Almheiri et al. 2015, p. 6; Pastawski et al. 2015, p. 18; Harlow, 2018,
p. 22):

Claim: Under reasonable assumptions about locality in the bulk
and on the boundary, the AdS-Rindler representation of a bulk field
must be a multiple of the identity.

A sketch of the proof is as follows: First, one can show that for
any local bulk field ¢(x) and any local boundary operator O(Y) on
the same time slice as ¢(x), there is an AdS-Rindler representation
O4:r) Of ¢(x), such that O(Y) lies in the complement R of R on the
boundary time slice.® One implication of this is that if we assume
local commutativity holds for the CFT, then, since points in R and its
complement are spacelike separated, Ogg and O(Y) must
commute.” Another implication is that a bulk field admits more
than one AdS-Rindler representation Oy, O4r),-.. - In other
words, a given bulk field can lie in more than one causal wedge,
each associated with a different boundary subregion R,R',... .
Moreover, by the previous implication, each of these representa-
tions commutes with some arbitrary boundary operator on the
same time slice. Now suppose all the AdS-Rindler representations
of ¢(x) associated with different boundary subregions are equiva-
lent: O(y.g) = O(g:r) = --- ; L€, suppose for any given bulk field,
there is a unique AdS-Rindler representation. Then it should
commute with all local CFT operators on the same time slice. This is
problematic: according to the time slice axiom for a local quantum
field theory, the algebra of observables generated by operators
within an arbitrarily small time slice coincides with the algebra of
all observables. The latter acts irreducibly on the theory's Hilbert
space of states, and Schur's Lemma entails that any operator that
commutes with all irreducible representations of an algebra is a
multiple of the identity. The upshot then is that the following as-
sumptions entail that the AdS-Rindler representation of a bulk field
must be a multiple of the identity:

(a) The boundary CFT obeys local commutativity (alternatively,
the bulk theory obeys “radial” local commutativity).

(b) The boundary CFT obeys the time slice axiom.

(c) The AdS-Rindler representation of a bulk field is unique.

Thus, if we've adopted the AdS-Rindler representation as a way
of adding interesting bulk observables (that cannot be computed
using correlation functions) to the AdS/CFT dictionary, then we're in
trouble. Unless, that is, we can come up with a way of under-
standing how uniqueness (c) might fail.'® Various authors suggest
uniqueness is a reasonable assumption to make. Almheiri et al.
(2015, pg. 7) indicate that “... in the bulk theory it seems that the
[representations] are equivalent”; the intuition being that they all
represent the same bulk field. Harlow (2018, pg. 22) concurs: “From
the bulk side we expect these different representations to be
equivalent, technically since they are just different Bogoliubov
representations of the same field ...“. Almheiri et al.'s QECC

8 Form an open neighborhood Sy surrounding the boundary point Y, and then
take R to be the complement of Sy on the boundary time slice containing Y. For Sy
sufficiently small, it will be the case that the bulk point x lies in C[R]; hence an AdS-
Rindler representation of ¢(x) can be constructed.

9 This boundary locality assumption is made by Almheiri et al. (2015, pg. 6).
Alternatively Harlow (2018, pg. 21) assumes “radial locality” for the bulk field; i.e.,
commutativity follows from x and Y being spacelike separated.

10" Alternatively, we might drop the locality assumptions (a) and (b), but locality of
the CFT is one of the essential characteristics of the boundary theory that is sup-
posed to inform us, under the AdS/CFT Correspondence, about the mysterious bulk.
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interpretation is intended to address these concerns: it is an
attempt to understand the non-uniqueness of the AdS-Rindler
representation of a bulk field in terms of the redundancy of an
erasure-protection QECC.

3. Resolution: the boundary as a QECC

Suppose we want to encode k “logical” qudits in n > k “physical”
qudits in such a way that we can recover the former if we only have
access to some set R of m<n of the latter; suppose, in particular,
that the (n —m) qudits in the complement R of R are erased. The goal
of an erasure-protection QECC is to devise an encoding that is
sufficiently redundant to protect against erasure. To accomplish
this, one first defines the physical Hilbert space as an n-qudit

product space 7™ — 7" & 7‘/}%"”“), where 7" and 7/’%""")
are m-qudit and (n — m)-qudit Hilbert spaces of qudits with sup-
port in R and R, respectively. The logical qudits are then encoded in
the physical qudit elements of a subspace 7.7, called the
“codespace”. One can show that an erasure-protection encoding is
possible if and only if the set R can be decomposed into sets R; and
R,, with k and (m —k) qudits, respectively, in such a way that

i) = Ur([Dr, ® [X)p,z) @

where [i) is an n-qudit basis state of .7, |i)g, is a k-qudit state on Ry,
|X>Rz§ is an (n — k)-qudit state on R,UR, and Uy is a unitary trans-
formation that acts nontrivially only on R (Harlow, 2018, p. 29)."
One can further show that the existence of an encoding (7) is
equivalent to all of the following conditions (Almbheiri et al. 2015,
pp. 1011, 13):

(a) QECC Condition. Within 7#¢, any (n — m)-qudit operator Og
with support on R is a multiple of the identity:

(ilog1) = cdy;, for constant c.

(b) Erasure-Protection Condition. Any n-qudit operator O that acts
on 7 ¢ (called an “encoded logical operator”) can be repre-
sented by an m-qudit operator Og = UgOp, U; with support
on R, in the sense that:

Okly ) =O),  Od)=01y),  forall fre 7c

(c) Within /7, any n-qudit encoded logical operator O com-
mutes with all (n — m)-qudit operators Oy with support on R:

(il[0, Og]lj) = 0.

Condition (a) is typically referred to as the QECC condition in the
more general context in which errors are not necessarily due to
erasure.'” In the general case, a QECC protects against errors if and
only if any local operator that detects and corrects an error acts as a
multiple of the identity on the codespace. Condition (b) captures
the sense in which an erasure-protection QECC protects

' In expression (7), i=0,...,d — 1, where d is the dimension of the qudits. An
example of (7) is the three qutrit code for which d =3, k=1,n= 3, and m= 2
(Harlow, 2018, p. 24; Almheiri et al. 2015, p. 7). In this code, a single logical qutrit is
encoded in three physical qutrits in such a way that it can be recovered if access is
limited to only two of the physical qutrits.

12 See, e.g., Terhal (2015, pg. 317).

information in a redundant way: the information associated with
m-qudit observables (with support on R) is encoded redundantly in
Z c in n-qudit observables, where n > m. This protects against the
erasure of up to (n—m) qudits. Finally, condition (c) is a further
characterization of an erasure-protection QECC that, as we'll now
see, helps to clarify the bulk locality paradox.

First note that Condition (a) is suggestive of the claim under-
writing the bulk locality paradox that the AdS-Rindler represen-
tation of a bulk field is a multiple of the identity. Condition (b) is
suggestive of the Causal Wedge Reconstruction Conjecture; i.e., the
claim that any bulk field in the causal wedge of a boundary spatial
subregion R can be expressed by a boundary operator on R. These
suggestions can be made more explicit in the following way: Sup-
pose the boundary CFT is characterized by a product Hilbert space
X = 'R ® Z'p where Ris a subregion of a boundary time slice (as
in the AdS-Rindler representation), and #x and 73 consist of

states of boundary subsystems localized in R and its complement R.
Suppose further that the states of bulk subsystems localized in the
causal wedge C[R] of R form a subspace .7 - c 77 of boundary states.
An operator O that acts on .7 ¢ then corresponds to a bulk field
operator with support in C[R], and the Causal Wedge Reconstruc-
tion Conjecture entails the bulk field operator can be represented
by a boundary operator with support on R, which is a statement of
the Erasure-Protection Condition (b). This is equivalent to Condi-
tion (c), which can now be interpreted as stating that the bulk field
operator O that admits an AdS-Rindler representation Og with
support on R commutes with all local boundary operators Oy with

support on R, when restricted to the causal wedge C[R]. This ad-
dresses the bulk locality paradox in the sense that the AdS-Rindler
boundary representation of a local bulk field only commutes with
all local boundary operators with support on the codespace, and
this does not entail that it must be trivial when acting on other
states outside the codespace. Finally, we can now appeal to the
QECC Condition (a) to understand the limited sense in which lo-
cality in the bulk and on the boundary entails triviality of certain
boundary operators, and only when acting on the code subspace. In
particular, boundary operators Oy with support on R act on code
states like multiples of the identity.

To recap so far, Almheiri et al.'s QECC interpretation of the AdS/
CFT correspondence can be thought of as a dictionary between
structural aspects of an erasure-protection QECC and structural
aspects of the AdS/CFT correspondence.'®> According to this QECC
dictionary, for every decomposition 7' = 7r ® 7y of the boundary
CFT Hilbert space, where R is a boundary spatial subregion with
complement R, there is a collection of bulk states of subsystems
localized in the causal wedge C[R] of R that forms a subspace
W cc.7,and a collection of local bulk fields with support on C[R]
that act on 7. The subspace .7 forms an erasure-protection
QECC codespace that encodes boundary states in a redundant
way that protects them against erasure. More precisely, the CFT
Hilbert space represents a “physical” Hilbert space of qudits, and
the CFT states in the “codespace” /7 represent “encoded logical
qudits”, these corresponding to bulk states in a causal wedge. The
“logical” qudits that are encoded in the bulk states in C[R] evidently
are boundary degrees of freedom associated with a subset (indi-
cated by R, above) of the boundary region R. Thus, according to the
QECC interpretation, the bulk AdS theory of gravity is a way of
encoding boundary CFT degrees of freedom localized in a boundary

3 One initial concern with this dictionary is that in order to identify the full
Hilbert space of the boundary CFT with a physical qudit space of a QECC, the former
has to be finite-dimensional. Harlow (2018, pg. 45) suggests this can be addressed
by regulating the CFT at a high energy scale.
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subregion R (or more precisely, R; ) against the erasure of boundary
degrees of freedom localized in its complement R.

Note that there are two senses of redundancy associated with
the AdS-Rindler representation:

1. Bulk redundancy. A bulk field in a given causal wedge C[R]
redundantly represents a boundary operator with less degrees
of freedom on R.

2. Boundary redundancy. A bulk field can be localized in different
causal wedges C[R], C[R'], etc., and hence can be redundantly
represented by different boundary operators on R, R, etc.

Under the QECC interpretation, bulk redundancy corresponds to
the redundancy associated with a QECC in which encoded logical
qudits redundantly represent logical qudits. Boundary redundancy
is due to the non-uniqueness of the AdS-Rindler representation of a
bulk field, and it is a type of redundancy over and above that of a
QECC. Thus, it is important to keep these senses of redundancy
distinct. One way some authors have sought to understand the
second sense is by viewing the codespace as a space of low-energy
CFT states (Almheiri et al. 2015, p. 19). The action on this codespace
by a bulk field can be realized by distinct boundary CFT operators if
the latter are interpreted as acting on high-energy CFT states
differently.

3.1. The QECC interpretation and the Ryu-Takayanagi formula

There is another entry in the QECC dictionary that should be
mentioned at this point, since, as we'll see in Section 5, it un-
derwrites one attempt to understand the claim that “spacetime is a
QECC”. This entry is due to Harlow (2018, 2017) and takes the form
of an equivalence between the Erasure-Protection Condition (b)
and a finite-dimensional version of the Ryu-Takayanagi (RT) for-
mula, the latter being a generalization of the Bekenstein-Hawking
black hole entropy. To state this equivalence first requires an
extension of the notion of a causal wedge to what is called an
“entanglement wedge”. Let R be a boundary spatial subregion as in
section 2, let y; be the minimal bulk spatial hypersurface with the
same boundary as R, and let Hg be the bulk hypersurface bounded
by yRuR.14 The entanglement wedge W/(R] of R is defined as the bulk
domain of dependence of Hg '

WIR] = Dy [Hg] (8)

For simple boundary regions R, one can show that WIR] co-
incides with the causal wedge C[R], but there can be regions for
which W(R] is larger than C[R] (one example is when R is the union
of two disjoint regions). Thus in general, C[R]c W[R] and this sug-
gests an extension of the Causal Wedge Reconstruction Conjecture
to:

Entanglement Wedge Reconstruction Conjecture: For any bound-
ary spatial region R, any bulk field in W[R] can be represented by a
CFT operator with support on R.

WIR] is intimately related to the Ryu-Takayanagi (RT) formula.
The latter states that, for a boundary spatial subregion R and the
density operator p for a boundary CFT state, the von Neumann
entropy of the reduced density operator pg of a subsystem localized
in R is given by

14 yp is the smallest bulk hypersurface that separates R from its complement R
(see, e.g., Jaksland, 2018, p. 10).

15 The entanglement wedge was introduced in Headrick, Hubeny, Lawrence, and
Rangamani (2014) where it got its name from its connection to the entanglement
entropy associated with the boundary region R (as discussed below).

S(pr) =tr(pLR) +S(pn,) (9)

where “gr=Area(yg)/4G is a bulk operator, G is the Newtonian
gravitational constant, and py, is the reduced density operator for a
subsystem localized on Hg.'® This formula has been proven to hold
for the von Neumann algebra of observables on W[R] (Harlow, 2018,
p. 45). It can be understood in the following way: Let the boundary
CFT system be decomposable into two subsystems with product
Hilbert space 7 = 7 ® Z#%. Then S(pg) is the entanglement en-
tropy of the subsystem associated with #."” The term tr(p~) is
the expectation value of the “area” operator Zr when the system is
in the state p. The term S(py,) is the entanglement entropy of p on
the algebra of observables on W(R]. Thus the RT formula equates the
entanglement entropy of a CFT subsystem on a boundary subregion
R, to the entanglement entropy of the subsystem on the bulk sub-
region W/R], plus a term that depends on the area of the boundary
g between the bulk region W(R] and its bulk complement.
Harlow (2018, pg. 44; 2017, pg. 884) has shown that the Erasure-
Protection Condition (b) of an erasure-protection QECC is equiva-
lent to the following finite-dimensional version of the RT formula

(9):

S(pr) =tr(pLr) +S(p) (10)

(n—m

where 7 is a state on 7 cc 7™ = 7" 7 ), and Z is an
operator in the center of the (finite-dim) von Neumann algebra on
77 .8 This equivalence between a feature (9) of the AdS/CFT cor-
respondence and a feature (10) of an erasure-protection QECC is an
additional entry in the QECC dictionary.

According to Harlow (2018), this entry in the QECC dictionary
establishes the Entanglement Wedge Reconstruction Conjecture in
the following sense: The Entanglement Wedge Reconstruction
Conjecture is underwritten by a correspondence between a sub-
region R of the boundary, and a subregion W|R] of the bulk. Harlow
(2018, pg. 38) refers to this correspondence as “subregion duality”,
and views the Erasure-Protection Condition (b) as a statement of it:
“it says that all entanglement wedge operators can be represented
in R”. Thus:

Since the Ryu-Takayanai formula has been independently
established ..., theorem (5.2) [i.e., the equivalence between the
Erasure-Protection Condition (b) and (10)] establishes subregion
duality in the entanglement wedge once and for all: we now
know precisely which bulk subregion is dual to any boundary
subregion. So far this is probably the biggest achievement of the
quantum error correction perspective on holography (Harlow,
2018, p. 45.).

16 See, e.g., Harlow (2018, pg. 40). This is a modification, due to Faulkner,
Lewkowycz, and Maldacena (2013), of the original formula given by Ryu and
Takayanagi (2006) that adds a “quantum correction” to the latter.

17" Recall that for a bipartite system AB with density operator p,g, the entanglement
entropy Sp of subsystem A is defined to be the von Neumann entropy S,y of ps:
Sa=S,n(pa) = tr(palogp,). One can show that if |¥) is a pure state of AB, then it is
entangled if and only if S,x(pag) — Sun(pa) <O (Nielsen & Chuang, 2010; pg. 514).
Thus, at least when a bipartite system is in a pure state, S4 is a measure of the
degree to which its subsystems are entangled.

18 Strictly speaking, Harlow proves a slightly stronger claim; namely, an equiva-
lence between the Erasure-Protection Condition (b) applied to operators with
support on both R and R, on the one hand, and the finite-dim version of the RT
entropy for reduced states p and py on the other hand.
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Table 1
QECC structure, the HaPPY code realization, and the AdS/CFT correspondence.
QECC structure HaPPY Code AdS/CFT
Physical Hilbert space 7™ = 7™ g 7™ Hilbert space 7 = 7g ® 7%, for boundary CFT Hilbert space 7 = 7g ® #7, for boundary
R subregion R. subregion R.
Codespace 7 cc.7™, Subspace 7' .7 of states in #[R]. Subspace 7 < 7 of CFT states that represent bulk
states in WIR].

Erasure-Protection Condition: Any n-qudit operator
on ¢ can be expressed as an m-qudit operator
onR.

QECC Condition: Any (n — m)-qudit operator on R
acts as a multiple of the identity on 7.

Finite-dim RT Formula: S(pg) = tr(p-<g) + S(p), for
state p on 7.

operator on R.

on bulk states in #[R].

Any operator on Z[R] can be pushed out to an

Any operator on R acts as a multiple of the identity

Lattice RT Formula: S(pg) = |Yg|-

Subregion Duality: Any bulk field in W[R] can be
expressed as a CFT operator on R.

Any CFT operator on R acts as a multiple of the
identity on bulk states in W[R]

RT Formula: S(pg) = tr(p<r) + S(pp,), for CFT state
p.

3.2. Ontological implications

The first and third columns in Table 1 summarize the QECC
interpretation of the AdS/CFT correspondence. Under this inter-
pretation, the Hilbert space of the boundary CFT is interpreted as a
physical qudit Hilbert space decomposable into two factor spaces
comprised of the states of subsystems localized in a boundary
spatial subregion R and its complement R. The states of bulk sys-
tems in the entanglement wedge WI[R] of R form an erasure-
protection QECC codespace 7 that satisfies the QECC Condition
and the Erasure-Protection Condition: the former entails that any
local CFT operator with support on R acts as a multiple of the
identity on /7, and the latter entails that any local bulk operator
with support on W|R] can be expressed as a boundary CFT operator
with support on R, and this is an expression of Harlow’s (2018)
subregion duality (or, equivalently, the Entanglement Wedge
Reconstruction Conjecture). Finally, the additional “finite-dim RT
Formula” property (9) of an erasure-protection QECC entails that
the RT formula holds for the states of CFT boundary subsystems
localized in R.

Under this QECC interpretation, the AdS/CFT correspondence is a
correspondence between one aspect of the boundary CFT with
another: the bulk theory describes a particular aspect of the
boundary theory, insofar as bulk states are interpreted as a subset
of boundary states. Thus the QECC interpretation appears to onto-
logically prioritize the boundary theory, in the sense that, under it,
the bulk theory describes one aspect of the ontology of the
boundary theory. In the terminology of Le Bihan and Read (2018, pg.
3), it thus appears that the QECC interpretation adopts the realist
option of “discrimination”.!® Under this option, when faced with
dual theories (i.e., the boundary CFT and the bulk gravity theory),
the realist claims that only one describes a candidate for the actual
world.

How, then, should we make sense of the claim that, according to
the QECC interpretation, “spacetime is a QECC”? This claim has
appeared in talks (e.g., Preskill, 2017) and in a recent popularized
account of Almheiri et al. (2015) and Pastawski et al. (2015), in
which these and other authors make comments to this effect
(Wolchover, 2019). Note first that in the AdS/CFT correspondence,
there are two spacetimes: the boundary spacetime (assumedly the
conformal Lorentzian spacetime of the boundary CFT), and the bulk
AdS spacetime. The general view of the AdS/CFT correspondence is
that the spacetime of experience is the bulk, and it and bulk gravity
can be understood in terms of the duality between the inexact bulk

19 Section 5 will argue that this is not the case for a variant of the QECC inter-
pretation I refer to as the HaPPY code interpretation.

theory and the exact boundary CFT. Thus, assumedly, the spacetime
identified with a QECC is the bulk AdS spacetime. But this seems
problematic: As suggested above, under the QECC interpretation,
the bulk theory does not describe a legitimate actual world
candidate, and neither, in particular, does the bulk spacetime. The
only other candidate spacetime that might be identified with a
QECC s the boundary spacetime (a conformal Lorentzian manifold).
But it still is unclear how a spacetime, regardless of which one,
could literally be a quantum error-correcting code. The latter is a
finite-dimensional Hilbert space of qudits characterized by a sub-
space that forms a codespace, and an encoding procedure that
encodes qudits in the subspace in a way that protects them against
errors. No reference to spatiotemporal properties is needed in this
abstract description. Of course, a QECC can be realized as a concrete
physical system that instantiates qudits, and a concrete physical
system can possess spatiotemporal properties and hence be asso-
ciated with a spacetime. I take it this is the intended sense of the
claim that spacetime is a QECC; namely, the bulk spacetime in the
AdS/CFT correspondence encodes the spatiotemporal properties of
physical systems (bulk fields) whose states form a code subspace of
an erasure-protection QECC of boundary states. But lingering con-
cerns remain:

(i) The bulk spacetime itself is not a QECC; rather, the states of
some physical systems that possess bulk spatiotemporal
properties form a codespace for a QECC.

(ii) Moreover, the spacetime abstracted from those physical
systems that realize a QECC is not identical to the entire bulk
AdS spacetime; rather, it is the spacetime region defined by
the entanglement wedge W/[R] in which the relevant physical
systems are localized. So it is not the case that the entire bulk
spacetime is a QECC. Rather, only certain regions in the bulk
spacetime (entanglement wedges) can be associated with
physical systems whose states form the codespace of a QECC.

Given the informal nature of the claim “spacetime is a QECC”
(i.e., the informal venues in which it has been made), perhaps these
concerns are not that pressing. On the other hand, there is a more
precise way of understanding the meaning of this claim; namely, in
terms of the entanglement structure of a QECC, on the one hand,
and the entanglement structure of boundary CFT states, as encoded
in the RT formula (9), on the other. I will examine this in Section 5
below, but before I do so, I'd like to consider a concrete realization
of the QECC interpretation, as embodied in Pastawski et al.’s (2015)
“HaPPY code”. Ultimately, [ will claim that a literal interpretation of
the HaPPY code is the best route towards understanding the
meaning of “spacetime is a QECC”.
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4. The HaPPY code realization

The HaPPY code is a realization of the QECC interpretation of the
AdS/CFT correspondence discussed in Section 3.2C In this section I
outline its key features and how they relate to the QECC dictio-
nary by explaining the entries in the second column of Table 1. I
leave it to Section 5 to discuss how the HaPPY code might under-
write an understanding of the claim “spacetime is a QECC”.

The HaPPY code makes use of yet another equivalent way of
representing the encoding map of an erasure-protection QECC, this
time in terms of what is called a “perfect” tensor. Form a k-indexed

state [j{f.jk> as the tensor product of k codespace basis states
defined by the encoding (7). Now take its inner product with the n-
qudit basis state |iy...in). This defines an (n +k)-indexed tensor:

Gir-inlj i =Ti i i (11)

One can show that (11) encodes the unitary transformation Uy
in (7). The general claim is that any erasure-protection encoding (7)
defines a tensor (11); and vice-versa: any “perfect” tensor defines an
erasure-protection encoding, where a perfect tensor is an even-
indexed tensor such that any bipartition of its indices defines a
unitary transformation.

The HaPPY code is a realization of an erasure-protection QECC
that encodes one logical qudit in five physical qudits in such a way
to protect the former against the erasure of any two of the latter.
The corresponding perfect tensor thus has six indices. The reali-
zation takes the form of a uniform tiling of the 2-dim hyperbolic
plane by pentagons, with four pentagons per vertex. On this
negatively curved lattice, each face (pentagon) is associated with a
6-index perfect tensor with five indices contracted with indices of
neighboring tensors and the sixth index free. The resulting tensor
network is thus characterized by some number of uncontracted
bulk indices, representing logical qudits, and some number of un-
contracted boundary indices, representing physical qudits.’!
Pastawski et al. (2015) showed that this lattice system has the
following properties:

(a) For any lattice boundary subregion R, there is a discrete
version of the entanglement wedge of R in the lattice bulk,
called the “greedy entanglement wedge” &[R].?> Any bulk
operator with support on &[R] can be pushed through the
tensor network to the boundary subregion R.

(b) For any lattice boundary subregion R, there is a minimal
length bulk cut vy, called a “greedy geodesic”, with the same

20 The HaPPY code is named after its authors: Harlow, Pastawski, Preskill, and
Yoshida (Pastawski et al. 2015).

2! To demonstrate that this tensor network defines a 6-index perfect tensor,
Pastawski et al. (2015, pg. 6) argue in the following way: The tensors can be ar-
ranged in layers, starting from the center, with each tensor having at most 2 legs
contracted with tensors in the previous layer. Thus each tensor has at most 3 inputs
(including the logical input); hence each tensor can be regarded as having 3 inputs
and 3 outputs, which defines a unitary isometry, and the product of all these
isometries is itself an isometry.

22 #[R] is defined as the set of lattice bulk points reached by applying the
following “greedy” algorithm to all connected components of R simultaneously
(Pastawski et al. 2015, p. 9): Consider a sequence of cuts {c,} through the tensor
network, each with the same boundary as R, and a corresponding sequence of
perfect tensors {P,}, such that each cut in the sequence is obtained from the
previous one by the following: Begin with the “trivial” cut identified with R; then
identify a perfect tensor with at least half of its legs contracted with P, and
construct P, ; by adding this perfect tensor to P,. Continue until the length of the
cut is minimum in the sense that no single tensor can be added or removed which
reduces the cut's length.

23 vy is obtained by means of the greedy algorithm of the previous footnote.

boundary as R%* A lattice RT formula holds for R and vg;
namely, Sg = |yg| where |yg| is the length of yg.

The codespace of the HaPPY code QECC is provided by the
greedy entanglement wedge #/R] of property (a), which also pro-
vides a lattice version of the Entanglement Wedge Reconstruction
Conjecture. Property (b) establishes a lattice version of the RT for-
mula. These relations are summarized in the second column of
Table 1.

5. Spacetime as a QECC?

I'd now like to return to the suggestion, considered at the end of
Section 3, that the QECC interpretation of the AdS/CFT correspon-
dence entails that “spacetime is a QECC”. On the surface, it's not
clear what this could mean. In the QECC interpretation, the focus is
on the state space of the boundary CFT. The claim is that this state
space instantiates the structure of a QECC, with boundary states
comprising physical states, and bulk states localized in the entan-
glement wedge of a given boundary subregion comprising encoded
logical states in the codespace. Spacetime, either in the bulk or at
the boundary, plays no explicit role in this structure. In this section,
I will consider two options for understanding how spacetime might
be associated with the QECC interpretation. The first involves a
proposal made by Van Raamsdonk (2010) in which the degree of
entanglement of boundary states tracks the degree of connected-
ness of the bulk spacetime. The link to the QECC interpretation is
provided by the fact that elements of the codespace of a QECC are
maximally entangled states with respect to a relevant decomposi-
tion of the physical state space. The second option is to interpret the
HaPPY code literally as describing a fundamental discrete system of
spins, from which both the boundary and the bulk emerge in an
appropriate continuum limit. Ultimately, it is the latter option that I
think best makes sense of the claim “spacetime is a QECC”.

5.1. Boundary entanglement as bulk connectivity

Van Raamsdonk (2010) has suggested there is a relation be-
tween entanglement on the boundary and spacetime connected-
ness in the bulk. This is based on interpreting the RT formula (9) as
encoding the connectivity property of a bulk spacetime in the
entanglement entropy of a boundary state. Suppose the CFT Hilbert
space can be decomposed as .7 = 7' ® 7, for boundary spatial
subregion R and complement R. A CFT boundary state entangled
over these regions can then be expressed as

W) = plvdewR) (12)
ij

where \\//f) and |1//jﬁ) are bases for 7 and 7%, and the p;; are
constants. Consider the connected bulk time slice that has bound-
ary RUR and that consists of the union of the region Hg with its

complement Hg, separated by the minimal surface yg.>* The RT
formula (9) entails that as the entanglement entropy of the state

(12) decreases, so does the area of v, and in the limit as S(pg) goes

24 Recall from Section 3 that yg is the minimal bulk spatial surface with the same
boundary as R, and Hg is the bulk surface bounded by ygUR.
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to zero, v becomes a point.?® In this limit, the bulk spatial region
HgUHg, splits into two disconnected pieces, Hg and Hg.?® In this way,
the degree of entanglement of the boundary state (12), as encoded
in its entanglement entropy, tracks the connectedness of the cor-
responding bulk region HrUHR.

For the purposes of this essay, van Raamsdonk’s interpretation
of the RT formula raises two questions:

(i) For given boundary subregions R and R, under what condi-
tions should we expect a CFT boundary state to be entangled
with respect to the decomposition 7' = 7r ® 73?

(ii) What does this relation between boundary entanglement
and bulk connectedness suggest about the nature of space-
time in general, and the claim that “spacetime is a QECC”, in
particular?

Arguably, the QECC interpretation provides a precise answer to
the first question, and a vague hint at the second. The answer to the
first question rests on the fact that, in an erasure-protection QECC
characterized by an n-qudit physical Hilbert space that protects
against the erasure of (n —m) qudits, a state in the corresponding
codespace is maximally entangled with respect to the decomposi-
tion 7" = 7™ ® 7™ 27 In the QECC interpretation of the
AdS/CFT correspondence, the CFT Hilbert space is assumed to admit
a decomposition 7™ = 7 ® 7% in which the set R is interpreted

as containing m qudits and the set R is interpreted as containing
(n—m) qudits. Hence a state in the codespace is maximally
entangled with respect to 7 ® 77%; i.e, it takes the general form
(12). Thus the QECC answer to question (i) is that we should expect
CFT boundary states to be entangled with respect to 7 ® 7%, for
any given boundary spatial subregion R, since states associated
with such an R form the codespace of a QECC.

Note that this QECC way of answering question (i) does not
require one to view the relation between an entangled boundary
state and a connected bulk region as a duality relation.”® Indeed,
the relevant duality relation in the context of the QECC interpre-
tation is between the states of boundary subsystems localized in R
and the states of bulk subsystems localized in WIR] (i.e., Harlow’s,
2018, pg. 38, “subregion duality”). In any event, suppose we allow
that, in the QECC interpretation, one might say that the connec-
tivity property of the bulk spacetime arises from the entanglement
structure of a subset of physical qudits on the boundary; namely,
those that form the codespace. At best this is vaguely suggestive of
the claim “spacetime is a QECC”. At worst, the latter claim seems a
bit misleading. Rather than spacetime being a QECC, what van
Raamsdonk's proposal suggests is that the connectivity property of
spacetime in the bulk is related to the entanglement structure of
the codespace of a boundary CFT, under the QECC interpretation of
the latter.

25 Van Raamsdonk (2010) uses Ryu and Takayanagi's (2006) original formula,
which does not include Faulkner et al’s (2013) “quantum correction”; i.e., the
second term on the right in expression (9).

26 The partition of the bulk spacetime into Hz and Hg separated by v is a partition
into the union of a closed set Hg and an open set Hg; hence, under this partition, the
bulk spacetime is connected. In the limit in which the area of vy is zero, the sets Hg
and Hy are disjoint open sets; hence their union is a disconnected space.

27 This is a consequence of a result derived by Preskill (1999, pp. 1516).

28 Van Raamsdonk (2010, pg. 2324) suggests that doing so generalizes a result due
to Maldacena (2003) who showed that an entangled CFT thermofield double state
is dual to the (connected) maximally extended AdS-Schwarzschild black hole
spacetime.

5.2. The HaPPY code interpretation

As argued above, under the QECC interpretation of the AdS/CFT
correspondence, spacetime (whether in the bulk or on the
boundary) cannot literally be a QECC. Rather, a QECC can be realized
by physical systems which can possess spatiotemporal properties.
In the QECC interpretation, these physical systems are described by
the boundary CFT, and there is a common claim in the physics
literature that the bulk emerges from the boundary. So perhaps the
claim that spacetime is a QECC is better understood as the claim
that spacetime in the bulk emerges from boundary systems that
realize the structure of a QECC. On the other hand, many authors
have observed that the duality between the boundary and the bulk
is exact and thus symmetrical; hence to the extent that a notion of
emergence requires an asymmetrical relation between a funda-
mental physical system and an emergent physical system, it cannot
be underwritten solely by duality.?° This is where the HaPPY code
realization of the QECC interpretation can help; namely, by sup-
plying the missing asymmetrical relation. The resulting picture in
which both the boundary CFT and the bulk AdS theory of gravity
emerge from a more fundamental discrete system that instantiates
the HaPPY code is what I will call the HaPPY code interpretation of
the AdS/CFT correspondence.

The HaPPY code tensor network described in Section 4 can be
realized as a system of spins, one “logical” spin for each free bulk
index, and one “physical” spin for each free uncontracted boundary
index. The result is a composite system on a negatively curved
lattice made up of a finite number of spin subsystems, with each
lattice cell containing one spin, and the rest sprinkled along the
lattice boundary. For a given boundary region R, the states of bulk
spins localized in the corresponding greedy entanglement wedge
ZR] form an erasure-protection QECC codespace .7 ¢ such that any
local boundary operator with support on R acts as a multiple of the
identity on /7 ¢ (QECC condition), and any local bulk operator with
support on Z[R] can be expressed as a boundary operator with
support on R (Erasure-Protection condition). One can now imagine
taking a continuum limit of this discrete lattice system (e.g., take
the lattice cell area A—0 and the number of spins N— c while
keeping N/A constant). Provided this limit preserves the relevant
QECC structure, it should produce the AdS/CFT correspondence. To
establish this, one would have to show that the essential conditions
(a), (b), (c) of Section 3 that define QECC structure are preserved.
That they should be preserved is suggested by the HaPPY code
dictionary. (One would have to show in particular that a discrete
greedy entanglement wedge is mapped to a continuum entangle-
ment wedge, and a discrete cut vy is mapped to a minimal spatial
surface.) Under such a limit, the degrees of freedom of the lattice
bulk become AdS degrees of freedom, with the hyperbolic lattice
becoming AdS spacetime. The degrees of freedom of the lattice
boundary become CFT degrees of freedom, including spatiotem-
poral degrees of freedom. In this scenario, both the CFT boundary
spacetime and the AdS bulk spacetime emerge in the continuum
limit of a fundamental discrete HaPPY code lattice system.

Table 2 indicates how the boundary CFT and the bulk AdS theory
can both be considered to emerge in the continuum limit of a more
fundamental HaPPY code lattice system of spins. According to this
HaPPY code interpretation, the asymmetrical relation of emergence
is underwritten by a continuum limit that preserves the relevant
aspects of the underlying QECC structure. This QECC structure is
characterized by a physical qudit state space that is realized in the

29 See, e.g., Teh (2013), Dieks et al. (2015), De Haro et al. (2016a) and De Haro
(2017). Some authors have suggested that emergence can be supported in those
cases in which only an approximate duality holds between boundary and bulk.
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Table 2

The HaPPY code lattice interpretation of AdS/CFT.
CFT AdS AdS/CFT
T 1 1

continuum limit continuum limit emergence of spacetime

boundary spins bulk spins HaPPY code lattice
T T 1

realization realization realization

\ | \

physical state space codespace QECC structure

HaPPY code by the collection of boundary spin states, and a code-
space that is realized in the HaPPY code by a collection of bulk spin
states. In the QECC structure-preserving continuum limit, a
boundary CFT emerges from the boundary spins, and a bulk AdS
theory of gravity emerges from the bulk spins. Spacetime, either at
the boundary or in the bulk, can be viewed as emerging from the
fundamental discrete spin system. Moreover, the AdS/CFT duality
relation can be considered an exact symmetrical relation between
the boundary CFT and the bulk AdS theory; a relation that emerges
from the fundamental lattice system that itself does not exhibit it.

5.3. Common core or overarching structure?

In Section 3.2, | suggested that the QECC interpretation is best
understood in terms of Le Bihan and Read’s (2018, pg. 3)
“discrimination” realist interpretive option, under which, when
faced with dual theories, the realist claims that only one describes
an actual world candidate. Under the QECC interpretation, the
boundary CFT is the primary system, with bulk states consisting of a
subset of boundary states. On the other hand, the HaPPY code
interpretation is at odds with “discrimination” insofar as it claims
that both boundary and bulk theories describe legitimate, al beit
emergent, actual world candidates. Le Bihan and Read (2018, pp. 2,
8) describe two additional realist alternatives to “discrimination”,
what they refer to as “common core”, which claims that dual the-
ories share a common mathematical core, and “overarching the-
ory”, which claims that dual theories can be embedded in an
overarching theory. The HaPPY code interpretation is at odds with
these options, too, as I shall now argue.

5.3.1. Common core

Under Le Bihan and Read’s (2018, pg. 3) “common core” inter-
pretative option, one identifies the mathematical structure com-
mon to solutions to two dual theories and interprets it as
representing a legitimate actual world candidate. In the HaPPY
code interpretation, there is a mathematical structure that un-
derlies both dual theories, but it is not common to both; rather,
both emerge from different aspects of it. Again, this underlying
structure consists of a Hilbert space of qudits, and a codespace
subspace spanned by a set of maximally entangled qudits. The role
of the HaPPY code is to provide a realization of this structure, and to
serve as a fundamental physical system from which emerge, in the
continuum limit, both the boundary CFT and the bulk AdS theory of
gravity.

The “common core” interpretative option has recently been
advocated by De Haro (2019) and De Haro and Butterfield (2018,
2019). These authors claim that duality in general is an isomor-
phism between two theories (or “models” in their sense) that share
a common core “bare theory”:

... there is a bare theory—the common core of the two given
theories—which has various models, among which are the two
given theories. The duality then consists in the fact that these
two models are isomorphic as regards the structure and notions
given in the bare theory (De Haro & Butterfield, 2018; pg. 372).
The two theories share a common core; the common core itself
is a theory, which we call the bare theory ... The two given
theories are isomorphic models of this common core, the bare
theory (De Haro & Butterfield, 2019; pg. 2).

De Haro (2019, pg. 18) identifies the common core of the AdS/
CFT duality as a triple (7, @, &) of states, quantities, and dynamics,
informed by the differentiate AdS/CFT dictionary (1). This account
is eminently reasonable, insofar as the differentiate dictionary
suggests a commonality of observables (correlation functions),
based on a commonality of states and dynamics. For instance,
Harlow observes that.

... the Hilbert space of physical states of the bulk is by definition
identical to the CFT Hilbert space. Moreover, symmetry gener-
ators of SO(d, 2) in the CFT are identical with the corresponding
bulk symmetry generators of asymptotically AdS space. In
particular the Hamiltonian is the same on both sides. Quantities
which only depend on the space of states and the Hamiltonian,
for example the thermal partition function or the free energy at
finite temperatures, are thus computed by their CFT expressions
by definition (Harlow, 2016, p. 33).

However, there are two concerns with identifying the common
core of AdS/CFT in this way. The first is with the limitations of the
differentiate dictionary mentioned above in Section 2; namely, it
cannot account for all interesting bulk observables. These limita-
tions motivate the “reconstruction” program and the AdS-Rindler
representation of a bulk field, which, in turn, motivate the QECC
and HaPPY code interpretations. To be sure, some authors who
adopt the common core interpretation are aware of the limitations
of the differentiate dictionary. De Haro, Teh, and Butterfield (2017,
pp. 75), for instance, stress that the differentiate dictionary is not in
the business of “... calculating correlation functions of bulk oper-
ators”; rather, it defines “boundary correlation functions ... as
functional derivatives with respect to the asymptotic boundary
values of (boundary conditions on) the bulk fields”. I take it these
are the same concerns indicated in Section 2 above: the differen-
tiate dictionary only establishes a correspondence between
boundary quantities and bulk quantities near the boundary. In
particular, it does not address “interesting” bulk observables deep
in the bulk, or non-local bulk observables like Wilson loops, as De
Haro (2019, pg. 20) also acknowledges: “There is no claim here
that my description contains all of the information about the CFT.
Nonlocal operators, such as Wilson loops (and perhaps additional
states), also need to be compared.” The question for advocates of a
common core interpretation then is, are the limitations of the
differentiate dictionary significant enough to resist interpreting it
in terms of a common core? QECC and HaPPY code advocates will
say “yes”.

A second more minor concern is with identifying the common
core as a theory with a dynamics. The QECC and HaPPY code in-
terpretations suggest there is a mathematical core at the basis of
AdS/CFT, but, under a common understanding of the distinction
between kinematics and dynamics, this core does not appear to be
dynamical. Suppose the kinematics of a theory is encoded in the
space of possible states that a physical system described by the
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theory can be in; or, alternatively, in the set of possible observables
that the system can exhibit. Suppose further that the dynamics of a
theory is encoded in the form of a map that time-evolves states
and/or observables (perhaps in the explicit form of a dynamical
equation of motion, or in the implicit form of a Hamiltonian). Then,
to the extent that the entries in Table 1 encode constraints on states
and observables, and make no reference to a dynamical map or a
Hamiltonian, these entries encode kinematical, as opposed to
dynamical, constraints. Thus to the extent that these entries encode
the mathematical core common to a QECC, the HaPPY code, and
AdS/CFT, one might claim that this common core is not dynamical.
The claim here is that the structure of an erasure-protection QECC,
as given by a finite-dimensional Hilbert space, characterized by a
codespace subspace and an encoding map, is purely kinematical;
i.e, it is associated with kinematically possible, as opposed to
dynamically possible, states of a physical system.>°

5.3.2. Overarching structure

In addition to “common core”, Le Bihan and Read (2018, pg. 8)
also identify another realist interpretative option they refer to as
“overarching theory”. Under this option, given two dual theories,
one identifies the solution space of an overarching theory in which
the solution spaces of the dual theories can be embedded; and one
then interprets the solutions of the overarching theory as repre-
senting legitimate actual world candidates. The problem with un-
derstanding the HaPPY code interpretation in terms of this view
involves identifying the “overarching theory”. One option is to
identify it with the theory that describes a system of spins on a
HaPPY code lattice: one might claim that solutions to the boundary
CFT and the bulk AdS theory of gravity can be embedded in the
solution space of the lattice spin theory. What makes this prob-
lematic is that it is not clear how a dynamics for a system of finite
spins can be mapped onto either the dynamics of a conformal field
theory or the dynamics of a bulk theory of gravity. Recall that the
HaPPY code interpretation relies on the existence of a continuum
limit that maps a HaPPY code lattice theory onto AdS/CFT, but all
that is required of this map is that it preserve relevant kinematical,
as opposed to dynamical, features of the former.

Another option is to identify the overarching theory with a
QECC, but this also seems problematic. As emphasized above, a
QECC is not a dynamical theory; in particular, it does not possess a
dynamics with an associated space of solutions. A QECC, rather, is a
specification of a space of kinematically, as opposed to dynamically,
possible states. The underlying QECC structure in the HaPPY code
interpretation ultimately imposes a constraint on the kinematically
possible states of both the boundary CFT and the bulk AdS theory of
gravity; it does not impose constraints on their dynamics.

These problems suggest a modification of the “overarching
theory” interpretation to an “overarching structure” interpretation,
in which the overarching structure need not be dynamical. Under
an “overarching structure” interpretation, the spaces of kinemati-
cally possible states of the dual theories are embeddable in a larger
space of kinematically possible states. But note that under the
HaPPY code interpretation, it is not the case that the kinematically
possible states of the boundary CFT and the bulk gravity theory are
embedded in a larger space of kinematically possible states. Rather,
both the kinematically possible states of the boundary and bulk
theories emerge in a continuum limit from kinematically possible
states that characterize a HaPPY code discrete system, and these
latter are embeddable in the structure of a QECC. Thus the

30 De Haro and Butterfield (2019, pg. 10) allow that the common core associated
with a duality need not be a dynamical theory, but they claim that the interesting
cases of duality are associated with a dynamical theory.

fundamental overarching structure is that of a QECC, but the
boundary CFT and the bulk AdS gravity are not embedded in it;
rather, they emerge as different aspects of a realization of it.

Again, under this understanding of the HaPPY code interpreta-
tion, one might claim that the kinematical degrees of freedom of
the AdS/CFT correspondence emerge in an appropriate continuum
limit from a HaPPY code lattice system that realizes the (kine-
matical) structure of a QECC. In particular, under the HaPPY code
interpretation of AdS/CFT, the fundamental physical system is a
finite dimensional system of spins on a lattice that possesses both
kinematical and dynamical degrees of freedom; and the physical
systems described by AdS/CFT emerge from this fundamental lat-
tice system in an appropriate continuum limit under which the
kinematical degrees of freedom of the latter emerge from the
kinematical degrees of freedom of the former. But, as noted above,
itis less clear how the dynamical degrees of freedom of the physical
systems described by AdS/CFT arise (i.e., certainly not simply from
the dynamics of a system of spins on a lattice). Of course this un-
derstanding of the HaPPY code interpretation assumes that a clear
distinction between kinematics and dynamics can be made, and
this is complicated by the fact that, ultimately, the theory of gravity
that the AdS bulk theory is supposed to encode is general relativity,
in which such a distinction is hard to establish. But one might claim
that this may be asking too much of the HaPPY code interpretation:
it's function is simply to explain, in the first instance, how the
spatiotemporal degrees of freedom of the physical systems
described by AdS/CFT arise from the structure of a QECC (i.e., it
explains the sense in which “spacetime is a QECC’); and faulting it
for being unable to provide an account of the dynamical degrees of
freedom of these systems may be asking too much.!

6. Conclusion

Is spacetime a quantum error-correcting code? The QECC
interpretation of the AdS/CFT correspondence suggests that local
bulk degrees of freedom encode boundary degrees of freedom in a
redundant way, but this by itself does not say anything about the
nature of the bulk spacetime and its relation to the boundary. In
this essay I've argued that one way of connecting spacetime to the
QECC interpretation is through its realization by the HaPPY code,
what ['ve called the HaPPY code interpretation of the AdS/CFT
correspondence. According to this interpretation, spacetime in the
bulk emerges in a continuum limit from a discrete system of spins
that realizes the kinematical structure of a QECC. Moreover, this
structure is not common to the boundary and the bulk theories, nor
are they embeddable in it; rather, the physical systems that the
boundary and bulk theories describe emerge from a physical sys-
tem that realizes it.
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