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TOPOLOGICAL ORDER AND EMERGENCE 
Jonathan Bain 

ABSTRACT 

 
Topologically ordered systems play a prominent role in current research in 
condensed matter physics; examples include systems that exhibit the quantum 
Hall effect, topological insulators, and topological superconductors.  These 
systems possess properties that are characterized by topological invariants, 
exhibit phase transitions that cannot be characterized by spontaneous 
symmetry breaking, and exhibit order that cannot be characterized in terms of 
a local order parameter.  They thus fall outside the scope of the Landau–Ginsburg 
theory of phase transitions, which, arguably, has informed much of the 
discussion, in both the physics and philosophy literature, of emergence in 
condensed matter systems.  Nevertheless, some authors have claimed that 
topologically ordered systems exhibit emergence.  This essay offers a critical 
assessment of this claim.  In particular, it identifies two types of topological 
order and observes that, whereas the alleged mechanisms underwriting these 
types differ, they nevertheless share certain features; in particular, the low-
energy behavior of such systems can be described by effective topological 
quantum field theories.  This suggests that a unified account of the emergence 
of topological order should look to a law-centric, as opposed to a mechanism-
centric, view of emergence. 
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1. Introduction 
Topologically ordered systems play a prominent role in current research 
in condensed matter physics; examples include systems that exhibit the 
quantum Hall effect, topological insulators, and topological 
superconductors (Bernevig and Hughes 2013; Hasan and Kane 2010; Wen 
2013).  These systems possess properties that are characterized by 
topological invariants, undergo phase transitions that cannot be 
characterized by spontaneous symmetry breaking, and exhibit order that 
cannot be characterized in terms of a local order parameter.  They thus 
fall outside the scope of the Landau–Ginsberg theory of phase transitions, 
which, arguably, has informed much of the discussion, in both the 
physics and philosophy literature, of emergence in condensed matter 
systems.  Nevertheless, some authors have claimed that topologically 
ordered systems exhibit emergence (Chen et al. 2010; Lancaster and 
Pexton 2015; Wen 2013).  This essay offers a critical assessment of this 
claim.  In particular, it identifies two types of topological order—
symmetry-protected topological order, and intrinsic topological order—
and observes that, whereas the alleged mechanisms underwriting these 
types differ (“short-range entanglement” versus “long-range 
entanglement”), they nevertheless share certain features; in particular, 
the low-energy behavior of such systems can be described by effective 
topological quantum field theories (Qi and Zhang 2011; Qi et al. 2008).  
This suggests that a unified account of the emergence of topological 
order should look to a law-centric, as opposed to a mechanism-centric, 
view of emergence.  Under a law-centric view, the novelty exhibited by 
an emergent system with respect to a fundamental system is 
characterized by distinct laws, as opposed to an underlying mechanism. 

In Section 2, I review the Landau–Ginsburg theory of phase transitions 
and identify three characteristics it attributes to systems that have 
motivated various authors to describe the latter as exhibiting emergence:  
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(a) a phase transition, (b) a mechanism (spontaneous symmetry 
breaking) responsible for this transition, and (c) an effective field theory 
(EFT) that characterizes the system in the vicinity of a critical point, and 
that is distinct from the theory that characterizes the system away from 
this critical point.  In Section 3, I consider how topological order differs 
from Landau–Ginsburg order, and identify two distinct types:  symmetry-
protected topological order, and intrinsic topological order.1  Section 4 
considers whether systems exhibiting such order can be said to exhibit 
emergence.  My strategy will be to consider the extent to which both 
types of topologically ordered system exhibit those characteristics that 
systems described by the Landau–Ginsburg theory exhibit and that have 
been associated with emergence.  Thus, insofar as both types of 
topologically ordered system exhibit (a) phase transitions, (b) an alleged 
mechanism responsible for these transitions, and (c) can be 
characterized by EFTs in the vicinity of their critical points, I claim that 
they exhibit emergence, at least to the same extent that Landau–
Ginsburg systems exhibit emergence.  Section 5 then considers two 
general accounts of emergence, law-centric and mechanism-centric, and 
suggests that, if emergence is to be attributed to topologically ordered 
systems, then it is best described by the law-centric view. 

 
                                                             
1 There is no consensus on the terminology used to make this distinction.  Some 
authors make it in terms of "non-interacting" versus "interacting" topological 
orders, others make it in terms of an "IQHE paradigm" versus a "FQHE 
paradigm", or "short-range entangled" states versus "long-range entangled" 
states (Neupert et al. 2014, 1).  There are also authors who use the term 
"topological order" only for the second type (Lu and Vishwanath 2012, 1). 
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2. Landau–Ginsburg order and 
emergence 
The central distinction in this essay is between condensed matter 
systems exhibiting order that is described by what various authors2 
generically call the Landau–Ginsburg theory, on the one hand, and 
condensed matter systems that exhibit topological order, on the other.  
This section offers a summary of the Landau–Ginsburg theory and 
motivations for attributing emergence to systems it describes. 

The Landau–Ginsburg theory is concerned with the order exhibited 
by a physical system that undergoes a continuous (second-order) phase 
transition from a disordered state to an ordered state.  At finite 
temperatures T, such a transition is characterized by a non-analyticity in 
the free energy density f given by: 

 f = �(1�E ) ln Z �Vspace ,      Z = ³ DIi exp^ �E ³ d dxh>Ii @ ` (1) 

where Vspace is the volume of d-dim space, and Z is the system’s partition 
function.  In the latter, h>Ii@ is the Hamiltonian density of the system and 

E = 1/kT, where k is Boltzmann’s constant and T is the temperature.  The 
Hamiltonian density is a functional of dynamical variables Ii (x), which in 

 
                                                             
2 See, e.g., Bernivig and Taylor (2013, 1), Hasan and Kane (2010, 3045), Qi and 
Zhang (2011, 1058), Wen (2004, 5–7, 335–6; 2013, 1–2).  By "Landau–Ginsburg 
theory" (alternatively "Landau paradigm", "Landau theory"), these authors 
mean the techniques associated with the statistical mechanical approach to 
continuous phase transitions initiated by Landau and Ginsburg (1950), and 
extensions of it (e.g., mean field theory, renormalization theory) that allow one 
to calculate the values of critical exponents. 
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(1) are considered field variables3, and the integral in Z is over all field 
configurations.  The order associated with such a transition is 
characterized by a local order parameter O>Ii@ that is a functional of the 

dynamical variables.  To say O is local is to say that it depends only on 
quantities in finite regions of space.  To say O is an order parameter is to 
say that it has a non-zero value in the ordered state, and averages to zero 
in the disordered state.  In the disordered state, while it’s average is zero, 
in general it will exhibit non-zero thermal fluctuations.4  As the critical 
point in parameter space that represents the phase transition is 
approached, spatial correlations in the order parameter fluctuations 
become long-ranged, and at the critical point, the correlation length [, 
which encodes the typical length of spatial correlations, diverges.5  This 
divergence of [ is an indication of universality:  at a critical point, the 
system becomes scale-independent insofar as the properties associated 
with the critical point are independent of the micro-scale properties of 
the system. Thus many microphysically distinct systems can all possess 
the same critical point properties. 

Another feature of the Landau–Ginsburg theory is its characterization 
of the ordered phase as breaking a continuous symmetry of the 
disordered phase.  Such symmetry breaking entails, via Goldstone’s 
theorem, the existence of gapless modes of the system, which 
 
                                                             
3 This assumes the system is near a critical point and hence can be modeled by a 
continuum theory. 
4 For classical phase transitions, thermal fluctuations in the order parameter 
dominate.  For quantum phase transitions, quantum fluctuations dominate, and 
phase transitions can occur at zero temperature.  This distinction will be 
discussed in slightly more detail in Section 4 below. 
5 This ultimately is a reflection of a non-analyticity in the partition function Z, 
since the correlation length can be defined in terms of a correlation function, 
derived from Z, for the relevant set of quantities. 
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subsequently allows the construction of a low-energy effective field 
theory (EFT) of the order parameter fluctuations in the vicinity of the 
critical point.6  From this EFT, one can derive values for various critical 
point properties (e.g., critical exponents).  This EFT is a local quantum 
field theory, insofar as its Lagrangian density is a functional of the order 
parameter fluctuations and their derivatives evaluated at the same 
point.7 

To recap so far, in the Landau–Ginsburg framework, phase transitions 
are characterized by non-analyticities in the free energy density, order 
is characterized by a local order parameter, a change in order is 
characterized by spontaneous symmetry breaking, and the low-energy 
behavior of the system in the vicinity of a critical point can be captured 
by a local effective field theory.  I now turn to the question of how 
emergence can be attributed to systems that exhibit these 
characteristics. 

2.1  Emergence in Landau–Ginsburg Systems  

For the purposes of this essay, emergence can be understood as 
descriptive of the ontology (i.e., entities or properties) associated with a 
physical system (the emergent system) with respect to another (the 
fundamental system).  It can be minimally characterized by two general 
criteria, what Crowther (2015) refers to as Dependence and Independence.  

 
                                                             
6 A gapless mode is a state of the system at energies very close to zero.  Such low-
energy, or "soft", modes can be considered fluctuations above the ground state 
energy. 
7 Again, this is a notion of locality as a requirement that the physical quantities 
of interest must be localized in finite regions of space.  The notion of a local order 
parameter associated with a local QFT in the Landau–Ginsburg theory will be 
contrasted with the notion of a non-local order parameter associated with a 
topological QFT in the context of topological order in Section 4.3 below.  
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Dependence requires the emergent system to be ontologically 
determined, in some sense, by the fundamental system (it should not 
“float free” of the latter).  Independence requires that the emergent 
system exhibit a robust sense of novelty with respect to the fundamental 
system. 

One way of motivating the claim that systems that undergo 
continuous phase transitions exhibit the sort of novelty appropriate for 
a notion of emergence is suggested by Callender (2001, 549), who 
considers the following claims: 

 
1. Real systems have a finite number N of degrees of freedom. 
2. Real systems display (continuous) phase transitions. 
3. Phase transitions occur when the partition function has a non-

analyticity. 
4. Phase transitions are described by classical or quantum statistical 

mechanics. 
 
Callender observes that a problem with these claims is that a non-zero 
partition function for a finite system cannot display a non-analyticity.  In 
practice, this is addressed by taking the thermodynamic limit, which 
involves taking N o f, while holding V�N fixed, where V is the system’s 
volume.  One can then show that it is possible for systems with infinite N 
to display non-analyticities in their partition functions, and hence 
exhibit phase transitions; however, this conflicts with claims 1 and 2.  
Callender suggests that one way to reconcile claims 1–3 is by denying 4:  
“Statistical mechanics for finite N is incomplete, unable to describe phase 
transitions; therefore, they are in some sense emergent” (Callender 2001, 
549).  Thus to deny claim 4 is to say an ordered system that is the result 
of a phase transition from a disordered system, is novel with respect to 
the latter in the sense that the transition cannot be completely described 
within the statistical mechanical (viz., Landau–Ginsburg) framework. 
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Some authors adopt what I will call a mechanism-centric view of 
emergence.  This view attributes a mechanism to emergent phenomena 
which is supposed to provide the causal/mechanical explanation of how 
novelty arises, and thus how Dependence can be (causally/mechanically) 
reconciled with Independence.  Without such a mechanism, it is claimed, 
the notion of emergence risks becoming trivial:  “...emergent properties 
are not a panacea, to be appealed to whenever we are puzzled by the 
properties of large systems.  In each case, we must produce a detailed 
physical mechanism for emergence, which rigorously explains the 
qualitative difference that we see with the microphysical” (Mainwood 
2006, 284).  Mainwood (2006, 107) associates this appeal to a physical 
mechanism with the “new emergentism” of prominent condensed 
matter physicists (e.g., Anderson 1972; Laughlin and Pines 2000), and, in 
the context of the Landau–Ginsburg theory, identifies the mechanism of 
most interest as spontaneous symmetry breaking:  “The claim of the New 
Emergentists is that in the phenomenon of symmetry-breaking we have 
a mechanism by which the set of ‘good coordinates’ of the whole can be 
entirely different from the sets of good coordinates which apply to the 
constituent parts when in isolation or in other wholes”.  Morrison (2012, 
148) concurs:  “...understanding emergent phenomena in terms of 
symmetry breaking—a structural dynamical feature of physical 
systems...—clarifies both how and why emergent phenomena are 
independent of any specific configuration of their microphysical base.” 

The notion of a mechanism can be understood in two ways.  A 
microphysical mechanism can be thought of as a collection of entities 
and processes that realize a general principle or regularity (Weber et al. 
2013, 59).  Alternatively, a high-level mechanism can be thought of as a 
general physical process that can be realized by any number of concrete 
microphysical mechanisms.  Examples of the latter include Morrison’s 
(2012, 149) “structural/dynamical feature of physical systems” and 
Laughlin and Pine’s (2000, 28) “higher organizing principle”.  Advocates 
of high-level mechanisms point to multiple realizability as an essential 
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feature of emergence:  the instantiation of a high-level mechanism by 
many distinct microphysical mechanisms that all share the same general 
(viz., “universal”) features is taken as a sign that these features possess a 
robust sense of novelty and hence can be taken to be emergent. 

An alternative view of emergence is what I will call a law-centric view.  
According to this view, the novelty associated with an emergent system 
is underwritten, not by an appeal to an underlying mechanism, but 
rather by an appeal to distinct laws.  According to Bain (2013), this is 
exemplified by physical systems whose low-energy behavior can be 
described by an effective field theory (EFT).  Such a system is described, 

at high-energies, by a Lagrangian density $>I@ that is a functional of 

dynamical variables I.  At low-energies, the system can be described by 

an effective Lagrangian density $eff >T@ ≠ $>I@ that is a functional of a 

different set of dynamical variables T , and that is formally distinct from 

$.  Since  the low-energy behavior of the system is governed by laws, 

encoded in $eff >T@, and dynamical variables T that are formally distinct 

from the laws, encoded in $>I@, and dynamical variables I that govern 

its high-energy behavior, the low-energy behavior is dynamically 
independent of, and dynamically robust with respect to, the high-energy 
behavior, and hence is novel with respect to the latter.  In the context of 
the Landau–Ginsburg framework, this suggests that since a system in the 
vicinity of a critical point can be characterized by an EFT that is formally 
distinct (both in terms of laws and in terms of dynamical variables) from 
the theory that describes the system away from the critical point, the 
system near the critical point is dynamically independent of, and 
dynamically robust with respect to, the system away from the critical 
point; hence the former is emergent with respect to the latter. 

Thus, the claim that Landau–Ginsburg systems exhibit emergence can 
be underwritten by appealing to the following characteristics such 
systems display: 
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(a) Landau–Ginsburg systems exhibit  phase transitions; 
(b) Landau–Ginsburg systems exhibit a mechanism (spontaneous 

symmetry breaking) responsible for (a); and/or, 
(c) Landau–Ginsburg systems can be described by an effective field 

theory (EFT) that characterizes the system in the vicinity of a 
critical point, and that is distinct from the theory that characterizes 
the system away from the critical point 

3. Topological order 
As noted in Section 2, in the Landau–Ginsburg framework, a phase 
transition is characterized by a non-analyticity in the free energy 
density, order is characterized by a local order parameter, a change in 
order is characterized by a spontaneously broken symmetry, and the 
low-energy behavior of a system in the vicinity of a critical point is 
described by an effective field theory (EFT) that takes the form of a local 
quantum field theory.  In a topologically ordered system, a phase 
transition is characterized by a non-analyticity in the ground state 
energy density, order is characterized by a non-local order parameter (a 
topological invariant), a change in order is not characterized by a 
spontaneously broken symmetry, but rather a change in the topology of 
the state space, and the low-energy behavior of the system in the vicinity 
of a critical point is described by an EFT that takes the form of a 
topological quantum field theory.  In this section and the next I will 
attempt to explain these differences in slightly more detail.  This section 
reports on two distinct types of topological order:  symmetry-protected 
topological order, and intrinsic topological order.  Section 4 returns to 
the question of whether such systems can be said to exhibit emergence. 
 
 
 



TOPOLOGICAL ORDER AND EMERGENCE 87 

 
 

3.1  Symmetry-Protected Topological (SPT) Order 

The first type of topological order is referred to in the physics literature 
as symmetry-protected topological order.  The nature of systems 
exhibiting it can be understood within the framework of the band theory 
of solids (see, e.g., Hasan and Kane 2010).  According to this theory, 
electrons in a 2-dim crystal are described by Bloch states _um�k�² 
characterized by energy levels m and periodic momenta k restricted to a 

closed unbounded region (the “Brillion zone”) in momentum space (.  An 

insulator is characterized by an energy gap that separates the occupied 
valence-band electron states from the empty conduction-band states.  
The state space for an insulator can be represented by a vector bundle, 

call it V, over the base space (, with typical fiber given by a Hilbert space 

  of Bloch states (the latter are then represented by sections of V).8  

Geometrically, V can be flat or curved, with curvature represented by the 

Berry curvature �m = � u Am, where Am = i¢um _�k _um² is a connection 

defined on V.9  As a vector bundle, V is locally isomorphic to the direct 

product space   u (.  Globally, however, V may be “non-trivial” in the 

sense that its fibers may be “twisted”.10  Such twisting can be encoded in 
a topological invariant called the first Chern number nm, defined by 
 
                                                             
8 A vector bundle consists of a set of vector spaces (the "fibers" of the bundle) 
that are parameterized by the points of a base space in such a way that the fibers 
are smoothly related to each other. 
9 The Berry curvature characterizes the behavior of a Bloch state upon parallel 

transport around a closed curve C in (.  A change in the state is reflected in a 

non-trivial Berry phase, defined by Jm = ³C Am dk. 
10 Recall that such twisting of fibers is one way to characterize a Möbius strip as 
a fiber bundle over the circle S1, with the unit interval [0, 1] as typical fiber. 
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 nm = (1/2S ) ³BZ �m d 2k  (2) 

where the integral is over all electron momenta in the Brillouin zone.11  
The total Chern number is then given by summing nm over all N occupied 
energy bands: 

 n = ¦N
m = 1

nm  (3) 

It now transpires that, while conventional insulators are characterized 
by a trivial (i.e., n = 0) state space bundle structure, there are insulating 
systems with a state space characterized by non-trivial total Chern 
numbers.  The paradigm case of this is the integer quantum Hall effect 
(IQHE).  This effect occurs when a 2-dim conductor is placed in an 
external magnetic field perpendicular to its surface.  At low temperatures 
and high magnetic fields, the transverse (or “Hall”) conductivity VH 
becomes quantized in units of e2�h, 

 VH = p�e2�h��� (4) 

for integer p.  Thouless, et al. (1982) showed that the Hall conductivity can 
be expressed by 

 VH = (e2�h) ¦N
m = 1

(1/2S ) ³BZ �m d 2k (5) 

thus identifying the integer p with the total Chern number of the state 
space.  Different values of p correspond to topologically distinct state 
spaces that cannot be transformed into each other by local deformations, 

 
                                                             
11 The first Chern number is an instance of the Gauss–Bonnet theorem FM = 
�1/2S� ³M KdS, where M is a 2-dim closed manifold without boundary, K is the 
local Gaussian curvature of M, and FM is an integer known as the Euler 
characteristic of M (Nakahara 2003, 462.)  It can also be expressed by FM = 2(1 � g), 
where the genus g of M is the number of its handles.�
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so long as the essential gapped structure of the energy spectrum is 
preserved.  This suggests that distinct values of p correspond to distinct 
IQHE phases.  Notably, such phases are not characterized by different 
symmetries, hence transitions between phases cannot be described by 
spontaneous symmetry breaking.  Each phase consists of a gapped bulk 
insulator state and gapless conducting edge states characterized by a 
given value of VH.  The conducting states are “topologically protected” in 
the sense that they are robust under local deformations of the state space 
that preserve its topology.  Such a system that is an insulator in the bulk 
but a topologically protected conductor at its edge is referred to as a 
“topological insulator”. 

In another type of topological insulator, the role played by the 
external magnetic field in the IQHE is played by spin-orbit coupling, and 
whereas IQHE systems are not time-reversal invariant (due to the 
external magnetic field), so-called quantum spin Hall effect (QSHE) 
systems are.  Kane and Mele (2005) demonstrated that such systems can 
be characterized by a Z2 topological invariant of their state spaces.  This 
characterization was subsequently extended to 3-dimensional QSHE 
systems.  Topological insulators that exhibit the QSHE differ from those 
that exhibit the IQHE insofar as the former have symmetries (typically 
time-reversal invariance), and the conducting states are robust only 

under local deformations of ( that preserve these symmetries.  They are 

thus referred to as exhibiting symmetry-protected topological (SPT) order. 
SPT order is similar to Landau–Ginsburg order insofar as both are 

characterized, in part, by symmetries; however, transitions between SPT 
orders are not characterized by a spontaneously broken symmetry; on 
the contrary, the relevant symmetry is preserved under an SPT 
transition.  Note finally, that IQHE systems are not characterized by 
symmetries, and hence, perhaps, should not be considered as possessing 
SPT order.  For the purposes of this essay, however, it is convenient to 
group both under the same category.  One might consider an IQHE system 
to be a trivial example of SPT order, for instance, where the relevant 
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symmetry is just the identity.  More importantly, both IQHE systems and 
SPT ordered systems are one-body “non-interacting” topological 
insulators, insofar as they are completely described by a one-body 
Hamiltonian in which electron–electron interactions are ignored.12  This 
is a fundamental feature that distinguishes these types of topologically 
ordered systems from the second type. 

3.2  Intrinsic Topological Order 

The second type of topological order is referred to as intrinsic topological 
order.13  Systems that exhibit this type of order have the characteristics 
of topological insulators; namely, they are gapped systems that possess a 
bulk insulating state and robust conducting edge states.14  This 
robustness is not the result of a one-body interaction with an external 
magnetic field, or internal spin-orbit coupling, as in SPT ordered systems; 

 
                                                             
12 Ryu et al. (2010) provide an exhaustive classification of non-interacting 
topological insulators (and related systems known as topological 
superconductors) in all spatial dimensions, based on whether they possess an 
integer (Z) topological invariant (like the IQHE), or a Z2 topological invariant, and 
on the type of symmetry (if any) that is topologically protected.  The latter 

include time-reversal ,, charge-conjugation �, and the product + = , �, referred 

to as a chiral, or sublattice, symmetry.  Since this "tenfold way" includes IQHE 
systems, it seems appropriate in this context to group the latter with SPT 
ordered systems in general. 
13 This terminology follows Chen et al. (2010).  Neupert et al. (2014, 1) report that 
this second type appears in the physics literature under various names, 
including "fractional topological insulators, long-range entangled phases, 
topologically ordered phases, or symmetry enriched topological phases". 
14 Bernevig and Taylor (2013, 3) report that there are exceptions. 
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rather, it is a many-body effect due to electron–electron interactions.15  
It turns out that there are two consequences of this more complex type 
of interaction.  First, unlike SPT ordered systems, intrinsic topologically 
ordered systems are characterized by degenerate ground states.  Second, 
unlike SPT ordered systems, intrinsic topologically ordered systems 
possess bulk excitations that take the form of quasiparticles and that 
obey fractional statistics. 

The “paradigm” of an intrinsic topologically ordered system is one 
that exhibits the fractional quantum Hall effect (FQHE).  The FQHE occurs 
for fractional values of p in equation (4).  Thus the identification of p with 
the (integer) first Chern number is no longer possible, and one has to look 
elsewhere for a topological invariant to explain robustness.  Wen (2013, 
1990) suggests that the topological nature of FQHE systems is encoded in 
the measures of the two features that distinguish them from IQHE 
systems (and other SPT ordered systems); namely: 
 
(i) The degeneracy of the ground state of such systems depends on the 

genus of the parameter space. 
(ii) The fractional statistics exhibited by the bulk excitations of such 

systems are encoded in non-Abelian Berry phases of the degenerate 
ground states. 

 

 
                                                             
15 This description in terms of a many-body effect of electrons is sufficient for 
the purpose of making an initial distinction between intrinsic topological order 
and SPT order; however, the former can also be described in terms of a one-body 
effect of composite particles (fermions or bosons), as Section 5 will briefly 
report. 
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Other systems that can be characterized by these measures include chiral 
spin liquids and Z2 spin liquids (Chen et al. 2010, 1–2).16 

4. Do topologically ordered systems 
exhibit emergence? 
Numerous authors have suggested that topologically ordered systems 
exhibit emergence.  With respect to intrinsic topologically ordered 
systems, Wen (2013, 6, 11) refers to a “principle of emergence” and the 
“emergence of fractional statistics and topological degeneracy on 
compact spaces”.  Elsewhere he claims “[t]opological order has many 
new emergent phenomena, such as emergent gauge theory, fractional 
charge, fractional statistics, non-Abelian statistics, and perfect 
conducting boundary” (2013, 16).  Moore (2010, 197) refers to “...the 
emergence of quasiparticles with modified charge and statistics” in FQHE 
states, and Hasan and Kane (2010, 3050) cite “...the emergence of 
Majorana fermions in [topological] superconducting systems”.  Similarly, 
Qi and Zhang (2011, 1104) refer to “...the emergence of the topological 
superconducting phase at a quantum Hall plateau transition.”  Finally, 
Lancaster and Pexton (2015, 343) seek to make sense of emergence in 
FQHE systems in terms of the mechanism of long-range entanglement, 
which they claim underwrites an “intrinsic holism”, and because of this, 
“...the FQHE bears serious consideration as an example of a 
metaphysically significant, ‘strongly’ emergent phenomenon”. 

Note that these claims attribute emergence to both types of 
topological order:  SPT order (which includes topological 

 
                                                             
16 It perhaps should be noted that the only types of intrinsic topologically 
ordered system that have been experimentally realized are FQHE systems 
(thanks to a referee for making this explicit). 
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superconductors), and intrinsic topological order (which includes 
phenomena, like the FQHE, associated with ground state degeneracies 
and bulk fractional statistics).  In assessing these claims, I will take my 
cue from the earlier discussion of emergence in Landau–Ginsburg 
systems.  While both types of topologically ordered system differ in 
fundamental respects from Landau–Ginsburg systems, the relevant 
question is whether or not they share those features of Landau–Ginsburg 
systems that have motivated the claim that the latter exhibit emergence.  
This question comes in three parts: 

 
(a) Can a topologically ordered system be described as the result of a 

phase transition? 
(b) Can a mechanism be identified that underwrites such a transition? 
(c) Can a topologically ordered system be characterized in the vicinity 

of a critical point by an effective field theory (EFT) that is distinct 
from the theory that describes the system away from the critical 
point? 

 
In anticipation of the subsequent discussion, the answers to all of these 
questions will be “yes”. 

4.1  Phase Transition 

In a Landau–Ginsburg ordered system, the transition that separates 
distinct phases can either be a classical or a quantum phase transition.  
In this context, a classical phase transition is one in which thermal 
fluctuations in the order parameter dominate, whereas a quantum phase 
transition is one in which quantum fluctuations dominate, with the 
result that a transition between phases can occur at zero temperature.  
Thus, while classical phase transitions are characterized by non-
analyticities in the free energy density f defined in equation (1), quantum 
phase transitions are characterized by non-analyticities in the ground 
state energy density UE.  The latter is given by 
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 UE = i(ln Z �Vspacetime) ,      Z = ³ DIi exp^ ³ d dxdW$>Ii ] ` (6) 

where Vspacetime is the volume of spacetime, and in the partition function Z, 

$>Ii @ is the Lagrangian density of the quantum system (see, e.g., Wen 

2004, 350; Vojta 2003, 2078).  In equation (6), the partition function Z for 
a quantum system in d dimensions has been identified with a Feynman 
integral in imaginary time W , in d + 1 spacetime dimensions (the latter, 
formally, can be regarded as the partition function for a classical system 
in d + 1 dimensions).17 

In a topologically ordered system, the expectation is that the 
transition between phases takes the form of a quantum phase transition.  
In this context, this is a transition that occurs at zero temperature and is 
characterized by a non-analyticity in the ground state energy density, 
but need not necessarily be thought of as dominated by quantum 
fluctuations in the order parameter (insofar as there may not be a readily 
identifiable local order parameter).  Another way to characterize 
quantum phase transitions that addresses this difference and that will be 
relevant in the subsequent discussion of mechanism is given by Chen et 
al. (2010, 3).  Let H(g) be a Hamiltonian with a smooth dependence on 
some parameter g.  This induces a dependence ¢O²(g) on the ground state 
expectation value of a local operator O.  The quantum system described 
by H(g) can be said to undergo a quantum phase transition at g = gc just 

 
                                                             
17 See Vojta (2003, 2076) for a discussion of this "quantum–classical mapping".  
One way to motivate it is by observing that the term exp^�H�kT`, with 
Hamiltonian H = ³ d dxh >I@  that appears in the classical partition function in 
equation (1) resembles a time evolution operator if one identifies the time 

parameter as 1�kT = W = �it/=, where t is a real time parameter.  At a zero 

temperature critical point, this imaginary time parameter acts like a spatial 
dimension insofar as it becomes infinite, signifying that the system is infinite. 
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when the function ¢O²(g) has a non-analyticity at gc in the 

thermodynamic limit.  A quantum phase can then be defined as an 
equivalence class of ground states _)(g)² of all Hamiltonians that can be 
connected by a smooth path in the associated parameter space.  In other 
words, two ground states _)(0)², _)(1)², of H(0) and H(1), respectively, 
belong to the same quantum phase just when there is a smooth path of 
Hamiltonians H(g), 0  g  1, that connects H(0) and H(1) and that does not 
contain a quantum phase transition. 

4.2.   Mechanism 

The mechanism associated with transitions between Landau–Ginsburg 
phases is spontaneous symmetry breaking.  Chen et al. (2010, 4) suggest 
that the mechanism associated with transitions between intrinsic 
topologically ordered phases be identified with what they call long-range 
entanglement.18  This is defined in terms of the following: 
 

a state has only short-range entanglement [SRE] if and only if it 
can be transformed into an unentangled state (i.e., a direct-
product state) through a local unitary evolution.  If a state 
cannot be transformed into an unentangled state through a LU 
[local unitary] evolution, then the state has long-range 
entanglement (LRE).  (Chen et al. 2010, 4.) 

 

 
                                                             
18 Recall from Section 2 that advocates of a mechanism-centric view of 
emergence consider spontaneous symmetry breaking (SSB) as a high-level, as 
opposed to microphysical, mechanism and stress its multiple realizability as 
underwriting the type of novelty that can be associated with emergence.  The 
literature on long-range entanglement, on the other hand, when it makes this 
distinction, suggests that long-range entanglement is a microphysical 
mechanism (see, e.g., Wen 2013, 14). 
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A “local unitary evolution” is a unitary operation generated by a local 
Hamiltonian over a finite time.  Intuitively, an LRE state is a state that 
cannot be disentangled by local dynamical operations; i.e., operations 
encoded in a local Hamiltonian. 

There seem to be two motivations for identifying long-range 
entanglement as the mechanism for intrinsic topologically ordered 
phases.  The first is based on the claim that two gapped states belong to 
the same phase if and only if they are related by a local unitary evolution 
(Chen et al. 2010, 3).  In the jargon of the previous subsection, suppose the 
ground states _)(0)², _)(1)² of Hamiltonians H(0) and H(1) are gapped.  
The claim then is that there is an adiabatic path H(g) that connects H(0) 
and H(1) (i.e., the ground states belong to the same phase) if and only if 

 _)(1)²� �U)(0)²,     U = T ª¬exp^i ³
0

1
dgH�(g)`º¼ (7) 

where U is a local unitary evolution in which T is the path-ordering 

operator, and H�(g) = 6i Oi (g) is a sum of local operators (technically, H�(g) 
need not take the same form as the Hamiltonian H(g), but the intent is 
that it encode the same local information as the latter).  Thus SRE gapped 
states belong to phases associated with unentangled, direct-product 
states, whereas LRE gapped states do not. 

The second motivation for identifying LRE as the mechanism for 
intrinsic topologically ordered phases seeks to identify direct-product 
states with “trivial topology” (i.e., the trivial case of intrinsic topological 
order).  This motivation doesn’t appear explicitly in the literature.19  It 
can be reconstructed in terms of two steps: 

 
                                                             
19 Chen et al. (2010, 4), for instance, simply state:  "Since a direct-product state is 
a state with trivial topological order, we see that a state with a short-range 
entanglement also has a trivial topological order."  The motivation here 
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1. The first step is based on the fact that the bulk states of intrinsic 
topologically ordered phases obey fractional statistics.  Technically, 
this means that these states carry representations, of dim > 1, of the 
braid group BN on N elements; one says they obey “non-Abelian 
braiding statistics”.20 

 
The condition that the braid group BN acts on the Hilbert space of states 
says nothing about whether the states that carry representations of BN 
are entangled, let alone about whether the states that carry the “trivial” 
representation of BN are direct-product states.  An additional step seems 
to be necessary to support these inferences. 
 
2. The second step is based on an analogy between the non-locality of 

states that obey non-Abelian braiding statistics, on the one hand, and 
the non-locality of entangled states on the other.  Kauffman and 
Lomonaco (2002, 2) refer to the former as “topological 
entanglement” and suggest, “a topological entanglement is a non-

 
                                                             
apparently comes from fault-tolerant quantum computation, in which states 
that obey non-Abelian braiding statistics are proposed as the basis for a 
"topological" quantum computer.  In this context, Bravyi et al. (2006, 3) identify 
a concept of "topological quantum order" (TQO) as a property of a ground state 
just when it cannot be distinguished or mapped into another orthogonal ground 
state by means of local operations (intuitively, two such grounds states are 
distinct yet share the same local properties).  But there is no essential relation 
between this type of nonlocality and the nonlocality associated with non-
Abelian braiding statistics. 
20 See, e.g., Nayak et al. (2008, 1085).  Upon parallel transport around a closed 

curve, such a state picks up a nontrivial Berry phase _\² o eiT _\², 0 ≤ T < 2S.  The 
special cases T = 0, S correspond to Bose–Einstein and Fermi–Dirac statistics, 
respectively. 
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local structure of a topological system”, whereas “a quantum 
entanglement is a non-local structural feature of a quantum system”.  
They support this analogy with examples of non-trivial topologically 
entangled states that represent links and braids, on the one hand, 
and corresponding entangled states of quantum systems on the 
other:  for instance, cutting a component of a link removes its 
“topological entanglement”, just as measuring a quantum state 
removes its entanglement.21  Based on this analogy, an unentangled 
(direct-product) state is analogous to a state with trivial braiding 
topology.22 

 
Taken together, these two motivations suggest that all SRE gapped states 
belong to the same phase as a state with trivial topological order (no 
“topological entanglement”, or trivial non-Abelian braiding statistics).  
An LRE gapped state, on the other hand, belongs to a phase with non-
trivial topological order; and, in principle, not all LRE gapped states 
belong to the same such phase.  Different LRE states can belong to 
different phases, each distinguished by a particular topological order 
(viz., topological entanglement, or non-Abelian braiding statistics). 
This identification of LRE states with intrinsic topological order leaves 
unanswered the question of how SPT order should be characterized.  
Chen et al. (2010, 5–6) answer this question by distinguishing cases of 

 
                                                             
21 Kauffman and Lomonaco (2002, 3) are careful to point out that the analogy is 
basis dependent:  a given entangled state decoheres in different ways, depending 
on the chosen basis; or, as they put it, "From a physical standpoint, seeing the 
[entangled] state as analogous to a link depends upon the choice of an 
observable". 
22 Kauffman and Lomonaco (2002, 7) caution that "...the question of the precise 
relationship between topological entanglement and quantum entanglement 
certainly awaits the arrival of more examples of unitary representations of the 
braid group". 
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local unitary evolutions (7) in which the Hamiltonian does not possess 
symmetries, from cases in which it does.  For the former cases, all SRE 
states belong to the same topologically trivial (viz., direct-product) phase.  
However, for the latter cases, equivalence classes of phases divide into 
two groups:  those generated by local unitary evolutions that break a 
relevant symmetry, and those that preserve a relevant symmetry:  

 
(i) SRE states of symmetric gapped systems related by a local unitary 

evolution that break a relevant symmetry can belong to different 
phases, depending on which symmetry is broken.  Chen et al. 
identify this type of SRE state as a Landau–Ginsburg phase. 

(ii) SRE states of symmetric gapped systems related by a local unitary 
evolution that preserves a relevant symmetry can belong to 
different phases, depending on which symmetry is preserved.  Chen 
et al. identify this type of SRE state as an SPT phase.23 

 
To summarize the discussion so far, Chen et al. (2010) suggest that the 
mechanism responsible for intrinsic topologically order is long-range 
entanglement (either symmetry-preserving or symmetry-breaking), 
whereas the mechanism responsible for SPT order is symmetry-
preserving short-range entanglement. 

4.3.   Effective Field Theory 

Recall that Landau–Ginsburg systems are characterized, in part, by an 
effective field theory (EFT) at a critical point that takes the form of a local 

 
                                                             
23 To be complete, there are also LRE states of symmetric gapped systems that 
can belong to different phases depending on which symmetry the defining local 
unitary evolution breaks or preserves.  Examples of the former are topological 
superconductors, and examples of the latter are Z2 symmetric spin liquids (Chen 
et al. 2010, 6). 
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quantum field theory.  A topologically ordered system can likewise be 
characterized by an EFT at a critical point, but the latter takes the form 
of a topological quantum field theory (TQFT).  This distinction can be made 
in the following way (after Labastida and Lozano 1997, 5).  In the Feynman 
integral approach, a local quantum field theory consists of a smooth 
(d+1)-dimensional manifold M (i.e., spacetime), a Lorentzian metric gPQ 

on M, a set of fields ^Ii (x)`, and a Lagrangian density $>Ii ]  that is a 

functional of the fields and their derivatives evaluated at the same point.  
The measureable observables are vacuum expectation values of products 
of local operators O>Ii @�constructed as functionals of the fields.  These are 

defined with respect to the Feynman path integral via: 

 ¢O1...On² = �1�Z� ³ DIi O1...On exp^ i ³ d d + 1x$>Ii ] ` ��� 

where Z is the integral in (6) (with real time replacing imaginary time).  
In this approach, a topological quantum field theory is a local quantum 
field theory in which 

 G�GgPQ ¢O1...On² = 0 ��� 

for some set of local operators.  In words:  The vacuum expectation value 
of these operators is invariant under variations of the metric.  One way 
to guarantee this is if the terms in the Lagrangian density involving these 
operators are independent of the metric.24  This independence can be 

 
                                                             
24 TQFTs with this property are referred to as Schwarz type (Labastida and 
Lozano 1997, 5).  Another way to secure (9) is what is called a cohomological 
TQFT, or a TQFT of Witten type (Labastida and Lozano 1997, 7).  It should also be 
noted that, in addition to the above approach to TQFTs, there is an axiomatic 
approach that defines a TQFT as a functor from the category nCob of n-
dimensional cobordisms to the category Hilb of finite-dimensional Hilbert 
spaces (Baez 2006, 248). 
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understood as a non-local property insofar as it indicates that the 
vacuum expectation value is a topological invariant of M.25   

The Lagrangian density that encodes a TQFT is local insofar as it is a 
functional of fields (and their derivatives) that are evaluated at a single 
spacetime point.  A TQFT is non-local insofar as it possesses observables 
that are metric-independent in the sense of (9).  The non-local order 
parameter that appears in the EFT for a topologically ordered system is 
such a non-local observable.  This should be contrasted with the local 
order parameter that appears in the EFT for a Landau–Ginsburg ordered 
system, which can be defined as a metric-dependent observable. 

An example of an EFT for an intrinsic topologically ordered system is 
the TQFT that describes a system that exhibits the FQHE.  This TQFT is 
encoded in the effective Lagrangian density, 

 ,          

 P, Q, O = 0, 1, 2  (10) 

where s is an odd integer, the first term encodes the dynamics of a Chern–
Simons potential gauge field aP, and the second and third terms encode 

the coupling of a magnetic potential AP and a source jP of quasiparticles 
to the Chern–Simons potential, respectively (see, e.g., Wen 2004, 298).  
Note that the first two terms in (10) are independent of a spacetime 
metric (contraction of indices is performed using the totally 
antisymmetric tensor 𝜖PQO). 

 
                                                             
25 Strictly speaking, this notion of "topological invariant" is weaker than the 
notion that appears in topology (see, e.g., Birmingham et al. 1991, 136).  In the 
latter, a topological invariant of a manifold M is a quantity that is constant on 
the space of homeomorphism equivalence classes of M.  A metric-independent 
quantity is constant on the smaller space of all metrics on M. 
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The effective Lagrangian density (10) is intended to describe the 
behavior of a system that exhibits the FQHE in the (low-energy) vicinity 
of a critical point.  The theory of the system away from the critical point 
is described by a formally distinct Lagrangian density: 

 ,          

  i = 1, 2                                                       (11) 

where \  is a second-quantized electron field, m is the electron mass, and 
the last term encodes the Coulomb interaction between electrons.  The 
Lagrangian density (11) is intended to describe the behavior of electrons 
in a 2-dim conductor in the presence of an external magnetic field at 
temperatures and magnetic field strengths away from the quantum 
critical point.  Note that (11) is a local quantum field theory that is not a 
TQFT; in particular, the terms in (11) all depend on spatial and temporal 
metrics (the Lagrangian (11) encodes a non-relativistic local quantum 

field theory).  In this case we have $eff >aP , AP , jP@ ≠ $>\, AP@, and the 

dynamical variables �aP , AP , jP� of the EFT are distinct from those �\, AP� 
of the high-energy theory. 

Qi et al. (2008) (see also Qi and Zhang 2011) show how effective TQFTs 
similar to (10) can be constructed for SPT ordered systems near critical 
points in all the relevant dimensions.  These systems can also be 
characterized by non-relativistic local quantum field theories similar to 
(11) away from critical points.  An example of an EFT for an SPT ordered 
system is the TQFT that describes a system that exhibits the integer 
quantum Hall effect (IQHE).  This TQFT is encoded in the (2+1)-
dimensional effective Lagrangian density, 

 ,                P, Q, O = 0, 1, 2   (12) 
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where C1 is an integer (identified as the first Chern number; Qi et al. 2008, 
3).  In (12), the low-energy degrees of freedom are encoded in a non-
interacting electromagnetic potential AP alone, as opposed to an 
additional Chern–Simons field aP.26  An extension of (12) exists for the 
IQHE in (4+1)-dimensions: 

 , 

 P, Q, U, V, W = 0, 1, 2, 3, 4  (13) 

where C2 is an integer (identified as the second Chern number; Qi et al. 
2008, 11).  The effective Lagrangian (13) was first written down by 
Bernevig et al. (2002) in their field-theoretic formulation of Zhang and 
Hu’s (2001) four spatial dimensional extension of the quantum Hall effect.  
Whereas a QHE system in two spatial dimensions breaks time-reversal 
symmetry (due to the external magnetic field), in four spatial 
dimensions, it turns out, the system is time-reversal invariant.  Qi et al. 
take (12) to be the general form of the Lagrangian density for a time-
reversal broken (TRB) SPT ordered system in (2+1)-dim, and obtain 
Lagrangian densities for TRB SPT ordered systems in (1+1)-dim and (0+1)-
dim via a process of dimensional reduction.  They take (13) to be the 
general form of the Lagrangian density for a time-reversal invariant (TRI) 

 
                                                             
26 Qi (2013, 95) calls the theory encoded in (12) a "topological response theory", 
which is used to describe perturbations of the system due to the external 
potential AP.  In contrast, Qi (2013, 96) calls the theory encoded in (10) a 
"dynamical topological field theory" insofar as it describes dynamical 
"topological" degrees of freedom of the system, as encoded in the Chern–Simons 
field aP, coupled to the external probe field AP.  One can show that the transverse 
(i.e., Hall) conductivity derived from (10) is given by VH = (1/s ) �e2�h�, whereas for 
(12), it is given by VH = C1e2�h.  (Note that a hierarchical extension of (10) can be 
constructed for fractional filling factors other than 1/s (Wen 2004, 301).) 
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SPT ordered system in (4+1)-dim, and obtain Lagrangian densities for TRI 
SPT ordered systems in (3+1)-dim and (2+1)-dim via dimensional 
reduction. 

The above discussion indicates that both SPT ordered systems and 
intrinsic topologically ordered systems exhibit phase transitions, and 
these phase transitions can be associated with mechanisms, as well as 
EFTs in the vicinity of critical points (where the latter are simply 
associated with the phase transitions expected to separate distinct 
phases of topologically ordered systems).  Thus, to the extent that 
emergence is ascribed to Landau–Ginsburg phases that possess these 
characteristics, it should also be ascribed to both types of topologically 
ordered system.  The question for the next section is, of the two views of 
emergence, mechanism-centric and law-centric, which suggests itself 
more in the context of topological order? 

5. Mechanism-centrism versus law-
centrism 
In general, the task of articulating a notion of emergence is to resolve the 
tension between the dependence of an emergent system on a 
fundamental system, and its independence from the latter.  A 
mechanism-centric view of emergence resolves this tension by positing 
a mechanism that is responsible for independence in the presence of 
dependence.  A law-centric view underwrites independence by an appeal 
to distinct laws.  In this section, I argue that a mechanism-centric view 
faces trouble in the context of topologically ordered systems. 

On the one hand, Section 4 argued that systems that exhibit SPT order 
and intrinsic topological order should be ascribed emergence, at least to 
the extent that emergence is ascribed to systems that exhibit Landau–
Ginsburg order.  On the other hand, if emergence requires an appeal to a 
physical mechanism, and if the mechanisms for both types of topological 
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order are identified with SRE and LRE, respectively, then potential 
trouble awaits.  Recall from Section 4.2 that a state is SRE if and only if it 
can be transformed into a direct-product state via a local unitary 
evolution.  A state is LRE if and only if it cannot be transformed into a 
direct-product state via a local unitary evolution, and hence if and only if 
it is not SRE.  Thus, naively, if LRE is a mechanism for emergence, then 
SRE cannot be a mechanism that produces the same type of emergence.  
A mechanism-centric advocate of emergence is thus faced with the 
following options: 

 
(a) Reconcile the two types of topological order and their contrasting 

mechanisms of SRE and LRE, on the one hand, with either a common 
notion of emergence, or at least with distinct notions that are 
compatible; or, 

(b) Deny that emergence occurs in one or the other (or both) types of 
topologically ordered system; or, 

(c) Deny that SRE and LRE are the appropriate mechanisms that 
underlie emergence in topologically ordered systems. 

 
An example of how these options play out is given by Lancaster and 
Pexton’s (2015) insightful analysis of emergence in systems exhibiting 
the FQHE.  According to these authors (2015, 343), “...the presence of 
topological order in the FQHE is indicative of an intrinsic holism to the 
FQH system...”.  This holism should be understood as a failure of 
mereological supervenience that is “...located in the long-range 
entanglements that characterize topological states of matter” (2015, 
353). 

One initial concern with this proposal stems from its suggestion that 
long-range entanglement underwrites holism.  Earman (2015, 305) 
observes that, in general, whether or not a state is entangled depends on 
the decomposition of its algebra of observables into subsystem algebras.  
Thus whether or not a physical system exhibits holism should be 
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addressed by focusing on its algebra of observables, as opposed to its 
state.  In particular, according to Earman, holism should be associated 
with a failure of additivity of a system’s algebra of observables, since 
“...this is a precise way of capturing in algebraic terms the idea that the 
whole is not greater than the sum of its parts”  (2015, 335).27 

This problem of ambiguity of entanglement can be addressed by 
arguing for the physicality of a particular subsystem decomposition over 
the others.  In the case of FQHE systems, one might argue that the effect 
is due to electron–electron interactions, and this privileges the 
decomposition of an FQHE state in the single-particle electron basis.  
Colloquially, one might claim that the emergent FQHE system arises 
when electron states become long-range entangled with each other:  “In 
the FQH state there are a vast number of electrons which become 
holistically tied together by long-range entanglements” (Lancaster and 
Pexton 2015, 354).  A complication with this is that an FQHE system can 
be understood as a many-body interacting system of electrons, or as a 
one-body non-interacting system of composite fermions or composite 
bosons; and, importantly, the observational evidence for the effect 
underdetermines these contrasting theoretical descriptions.28  Moreover, 

 
                                                             
27 Let R�'� be a local algebra of observables associated with spacetime region '.  

Additivity requires that R�'� be generated by the local algebras associated with 

any of ' 's open coverings:  R�'� = �iR�'i �, for ' = *i'i . 
28 See, e.g., Ezawa (2008, 227–8) for a discussion of the composite particle 
descriptions of the FQHE.  The composite fermion account involves the 
attachment of an even number of Chern–Simons fluxes to the electrons of the 
fundamental system, and this serves to preserve their statistics while reducing 
the external magnetic field to values associated with the IQHE:  in this account, 
the FQHE of interacting electrons is theoretically equivalent to the IQHE of non-
interacting composite fermions.  In the composite boson account, an odd 
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Shi (2004, 6814–16) demonstrates that a notion of “interaction-induced 
entanglement” can be defined in terms of the decomposition of a many-
particle state in the basis of eigenstates of a corresponding single-
particle Hamiltonian, and this yields different results when applied to the 
FQHE, depending on what single-particle Hamiltonian is adopted:  an 
FQHE state is interaction-induced entangled with respect to the single-
particle electron basis, whereas it is not interaction-induced entangled 
in either the composite fermion or the composite boson single-particle 
bases.  Thus if long-range entanglement is explicable as Shi’s interaction-
induced entanglement, then whether or not an FQHE state exhibits long-
range entanglement is underdetermined by the observational evidence. 

Setting aside the problem of ambiguity of entanglement, the larger 
concern with Lancaster and Pexton’s analysis just is, if LRE states exhibit 
holism because they cannot be disentangled by local unitary evolutions, 
then SRE states cannot be said to exhibit holism.  Hence if intrinsic 
topologically ordered systems, like the FQHE, exhibit emergence due to 
entanglement-induced holism, then SPT ordered systems, like the IQHE, 
do not.  This is Option (b) above, and the difficulty here is that, as Section 
4 argued, to the extent that both intrinsic topologically ordered systems 
and SPT ordered systems possess those characteristics of Landau–
Ginsburg ordered systems that motivate the ascription of emergence to 
the latter, both of the former should be ascribed emergence, too.  In 
principle, of course, one might attempt to refine these characteristics, or 
replace them with others, so that intrinsic topologically ordered systems 
and Landau–Ginsburg ordered systems share the relevant traits that 

 
                                                             
number of Chern–Simons fluxes is attached to electrons, resulting in a change 
of statistics and a cancellation of the external magnetic field, and the latter 
allows the bosons to condense at low temperatures:  in this account, the FQHE of 
interacting electrons is theoretically equivalent to a Bose–Einstein condensate 
of non-interacting composite bosons. 
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characterize emergence, while SPT ordered systems do not; but the onus 
is on the mechanism-centric advocate to articulate such traits. 

Alternatively, a mechanism-centric advocate could adopt Option (a); 
in this context, one would attempt to find an ontological underpinning 
for emergence, other than holism, that is applicable to both LRE states 
and SRE states; or different ontological underpinnings, one for LRE states 
and the other for SRE states, that are compatible with each other.  Again, 
the onus is on the mechanism-centric advocate to provide these 
interpretations.  Finally, a mechanism-centric advocate could adopt 
Option (c) and identify a mechanism, other than LRE and SRE, that is 
common to both intrinsic topologically ordered systems and SPT ordered 
systems; but what this mechanism is needs to be worked out. 

My point is not to say these options for a mechanism-centric view of 
emergence in topologically ordered systems are impossible to flesh out.  
Rather, the point is just that a law-centric view of emergence seems to 
fair better.  A law-centric advocate points out that both an intrinsic 
topologically ordered system and an SPT ordered system can be 
described by an effective topological quantum field theory (one example 
is equation 10) in the vicinity of a critical point, and by a non-relativistic 
local quantum field theory (e.g., equation 11) away from the critical point.  
The fact that these theories are formally distinct, not just in terms of the 
forms of their equations of motion (as encoded in formally distinct 
Lagrangian densities), but also in terms of the dynamical variables they 
use to encode the degrees of freedom of the system, suggests to a law-
centric advocate that the system at a critical point is dynamically 
independent of, and dynamically robust with respect to, the system away 
from the critical point.  And this suggests that the system at a critical 
point is emergent with respect to the system away from the critical point.  
No further appeal to a causal/mechanical description of the system need 
be made. 
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6. Conclusion 
If one claims that Landau–Ginsburg ordered systems exhibit emergence, 
then one should also claim that topologically ordered systems exhibit 
emergence, both intrinsic topologically ordered systems and symmetry-
protected topologically ordered systems.  Moreover, no appeal to a 
causal/mechanical mechanism is required to support these claims.  One 
need only note that Landau–Ginsburg ordered systems and topologically 
ordered systems are both characterized by effective field theories near 
their critical points, and these effective theories are distinct in relevant 
ways from the theories that describe the systems away from their critical 
points.  These relevant ways guarantee that the system near the critical 
point is sufficiently novel from the system away from the critical point 
to justify describing the former as emergent with respect to the latter. 
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