MAP COLORING
MAP COLORING
MAP COLORING

\[G = (V, \varepsilon) \]

COLORING \(G \) \(\rightarrow \) no adjacent vertices get same color
COLORING \(G \) \rightarrow no adjacent vertices get same color
MAP COLORING

$G = (V, E)$

COLORING $G \rightarrow$ no adjacent vertices get same color

G is k-colorable if we can use $\leq k$ colors
COLORING $G \rightarrow$ no adjacent vertices get same color

G is k-colorable if we can use $\leq k$ colors

$\chi(G) : \min \# \text{colors we can use to color } G$

Chromatic number

$\chi \rho \mu \alpha = \text{color}$
MAP COLORING

\[G = (V, E) \]

COLORING \(G \) → no adjacent vertices get same color

\(G \) is \(k \)-colorable if we can use \(\leq k \) colors

\(\chi(G) : \min \# \text{colors we can use to color } G \)

chromatic number

\(\chi \equiv \text{color} \)

Our map is 4-colorable \(\chi \leq 4 \)

etc
COLORING G \rightarrow no adjacent vertices get same color

G is k-colorable if we can use $\leq k$ colors

$\chi(G) : \min \# \text{colors we can use to color } G$

chromatic number $\chiρ\nu\mu\alpha = \text{color}$

Our map is 4-colorable $\Rightarrow \chi \leq 4$

...but not 3-colorable

subgraph K_4

so $\chi \geq 4$
Exam scheduling

Students: \(s_1, s_2, s_3, s_4, s_5 \)

Classes: \(c_1, c_2, c_3, c_4, c_5 \)
EXAM SCHEDULING

students: s_1, s_2, s_3, s_4, s_5

classes: c_1, c_2, c_3, c_4, c_5
EXAM SCHEDULING

students: S_1, S_2, S_3, S_4, S_5

classes: C_1, C_2, C_3, C_4, C_5

Can't schedule exam simultaneously for classes taken by S_i
Want to minimize exam slots.
EXAM SCHEDULING

students: S_1 S_2 S_3 S_4 S_5
classes: C_1 C_2 C_3 C_4 C_5

Can't schedule exam simultaneously for classes taken by S_i.
Want to minimize exam slots.

Make G: V = classes E = conflicts
EXAM SCHEDULING

students: S_1, S_2, S_3, S_4, S_5
classes: C_1, C_2, C_3, C_4, C_5

Can't schedule exam simultaneously for classes taken by S_i.
Want to minimize exam slots.

Make G: $V =$ classes $E =$ conflicts
EXAM SCHEDULING

students: \(S_1, S_2, S_3, S_4, S_5 \)

classes: \(C_1, C_2, C_3, C_4, C_5 \)

Can't schedule exam simultaneously for classes taken by \(S_i \).
Want to minimize exam slots.

Make \(G: \ V = \text{classes} \quad E = \text{conflicts} \)
EXAM SCHEDULING

Students: S_1, S_2, S_3, S_4, S_5

Classes: C_1, C_2, C_3, C_4, C_5

Can’t schedule exam simultaneously for classes taken by S_i.

Want to minimize exam slots.

Make G: $V =$ classes $E =$ conflicts
Exam Scheduling

Students: S_1, S_2, S_3, S_4, S_5

Classes: C_1, C_2, C_3, C_4, C_5

Can't schedule exam simultaneously for classes taken by S_i.

Want to minimize exam slots.

Make G: $V =$ classes $E =$ conflicts
EXAM SCHEDULING

students: S_1 S_2 S_3 S_4 S_5

classes: C_1 C_2 C_3 C_4 C_5

Can't schedule exam simultaneously for classes taken by S_i

Want to minimize exam slots.

Make G: $V =$ classes $E =$ conflicts
EXAM SCHEDULING

students: S₁ S₂ S₃ S₄ S₅
 C₁ C₂ C₃ C₁ C₄ C₅
 C₂ C₃ C₁ C₅ C₁ C₂ C₄
classes: C₁ C₂ C₃ C₄ C₅

Can’t schedule exam simultaneously for classes taken by Si
Want to minimize exam slots.

Make G: V = classes E = conflicts

Colors = slots (minimize colors)

If no edge has same color at endpoints,
then no 2 classes are in same slot
EXAM SCHEDULING

students: S_1, S_2, S_3, S_4, S_5

classes: C_1, C_2, C_3, C_4, C_5

Can't schedule exam simultaneously for classes taken by S_i

Want to minimize exam slots.

Make G: $V =$ classes $E =$ conflicts

Colors = slots (minimize colors)

If no edge has same color at endpoints, then no 2 classes are in same slot
EXAM SCHEDULING

students: S_1, S_2, S_3, S_4, S_5
classes C_1, C_2, C_3, C_4, C_5

Can’t schedule exam simultaneously for classes taken by S_i.
Want to minimize exam slots.

Make G: $V = $ classes $E = $ conflicts

Colors = slots (minimize colors)

If no edge has same color at endpoints,
then no 2 classes are in same slot.
What is χ for cycles?
What is χ for cycles?

\[
\chi = \begin{cases}
2 & \text{if } V \text{ even} \\
3 & \text{if } V \text{ odd}
\end{cases}
\]
What is χ for cycles?

$\chi = 2$ if V even
$= 3$ if V odd

For trees?
What is χ for cycles?

$\chi = 2$ if V even
$= 3$ if V odd

For trees?
Remove a leaf, v.
2-color the rest...

...
What is χ for cycles?

$\chi = 2$ if V even
$\chi = 3$ if V odd

For trees?
Remove a leaf, v.
2-color the rest.
Color v opposite of $p(v)$

$\chi = 2$
What is χ for cycles?

$\chi = 2$ if V even

$\chi = 3$ if V odd

For bipartite graphs?

For trees?

Remove a leaf, v.

2-color the rest.

Color v opposite of $p(v)$.

$\chi = 2$
What is χ for cycles?

$\chi = 2$ if $|V|$ even
$\chi = 3$ if $|V|$ odd

For bipartite graphs?

$\chi = 2$

For trees?

Remove a leaf, v. 2-color the rest. Color v opposite of $p(v)$

$\chi = 2$
What is χ for cycles?

$\chi = 2$ if V even

$\chi = 3$ if V odd

For bipartite graphs?

$\chi = 2$

In fact if $\chi(G) = 2$ then G is bipartite by definition

For trees?

Remove a leaf, v.

2-color the rest.

Color v opposite of $p(v)$

$\chi = 2$

(trees are bipartite)
What is χ for cycles?

$\chi = 2$ if V even

$\chi = 3$ if V odd

Claim: G is bipartite if and only if G contains no odd cycle.

For bipartite graphs?

$\chi = 2$

In fact, if $\chi(G) = 2$, then G is bipartite by definition.

For trees?

Remove a leaf, v. 2-color the rest. Color v opposite of $p(v)$.

$\chi = 2$

(trees are bipartite)
If G has $n > 1$ vertices, trivial bounds: $2 \leq \chi \leq n$ (for K_n)
If G has $n > 1$ vertices, trivial bounds: $2 \leq \chi \leq n$ (K_n)

What can χ be if max degree of $G = \Delta$?
If G has $n > 1$ vertices, trivial bounds: $2 \leq \chi \leq n$ \((K_n)\).

What can χ be if max degree of $G = \Delta$?

\[K_n \rightarrow \]
If G has $n > 1$ vertices, trivial bounds: $2 \leq \chi \leq n$ (Kn).

What can χ be if max degree of $G = \Delta$?

- $K_n \rightarrow \Delta = n-1 : \chi = \Delta + 1$
- $\Delta = n-1 : \chi = 2$
If G has $n > 1$ vertices, trivial bounds: $2 \leq \chi \leq n$ (K_n)

What can χ be if max degree of $G = \Delta$?

$K_n \rightarrow \Delta = n-1 : \chi = \Delta + 1$

$\Delta = n-1 : \chi = 2$

Can we have $\chi \gg \Delta$? (need $n \gg \Delta$)
If G has $n > 1$ vertices, trivial bounds: $2 \leq \chi \leq n$ (K_n)

What can χ be if max degree of $G = \Delta$?

$K_n \Rightarrow \Delta = n-1 : \chi = \Delta + 1$

$\Delta = n-1 : \chi = 2$

Can we have $\chi \gg \Delta$? (need $n \gg \Delta$)

Claim $\chi \leq \Delta + 1$
If G has $n>1$ vertices, trivial bounds: $2 \leq \chi \leq n$ (K_n)

What can χ be if max degree of $G = \Delta$?

$K_n \rightarrow \Delta=n-1 : \chi = \Delta+1$

Can we have $\chi \gg \Delta$? (need $n \gg \Delta$)

Claim $\chi \leq \Delta+1$

$\Delta=4$

$\Delta=n-1 : \chi=2$
If \(G \) has \(n > 1 \) vertices, trivial bounds: \(2 \leq \chi \leq n \) \((K_n)\).

What can \(\chi \) be if max degree of \(G = \Delta \)?

\[K_n \rightarrow \Delta = n - 1 : \chi = \Delta + 1 \]

Can we have \(\chi \gg \Delta \)? (need \(n \gg \Delta \))

Claim \(\chi \leq \Delta + 1 \)

- Remove any vertex \(v \).

\(\Delta = 4 \)
If G has $n > 1$ vertices, trivial bounds: $2 \leq \chi \leq n$ \hspace{1cm} (K_n)

What can χ be if max degree of $G = \Delta$?

- K_n \hspace{0.5cm} $\Delta = n - 1$: $\chi = \Delta + 1$

Can we have $\chi \gg \Delta$? \hspace{1cm} (need $n \gg \Delta$)

Claim $\chi \leq \Delta + 1$

- Remove any vertex v.
- Color $G - v$ by induction.

$\Delta = 4$
If G has $n > 1$ vertices, trivial bounds: $2 \leq \chi \leq n$ (K_n)

What can χ be if max degree of $G = \Delta$?

K_n \rightarrow \Delta = n-1 : \chi = \Delta + 1

Can we have $\chi \gg \Delta$? (need $n \gg \Delta$)

Claim $\chi \leq \Delta + 1$

- Remove any vertex v.
- Color $G - v$ by induction.
- Re-insert v.
If G has $n > 1$ vertices, trivial bounds: $2 \leq \chi \leq n$ (K_n)

What can χ be if max degree of $G = \Delta$?

$K_n \rightarrow \Delta = n-1 \implies \chi = \Delta + 1$

Can we have $\chi \gg \Delta$? (need $n \gg \Delta$)

Claim $\chi \leq \Delta + 1$

- Remove any vertex v.
- Color $G-v$ by induction.
- Re-insert v.
- v has $\leq \Delta$ neighbors.
If G has $n > 1$ vertices, trivial bounds: $2 \leq \chi \leq n$ \hfill (K\(_n\))

What can χ be if max degree of $G = \Delta$?

$K_n \rightarrow \Delta = n-1 : \chi = \Delta + 1$

Can we have $\chi \gg \Delta$? (need $n \gg \Delta$)

Claim $\chi \leq \Delta + 1$

- Remove any vertex v.
- Color $G - v$ by induction.
- Re-insert v.
- v has $\leq \Delta$ neighbors.
- Use color $\Delta + 1$ for v.
If G has $n > 1$ vertices, trivial bounds: $2 \leq \chi \leq n$ (Kn).

What can χ be if max degree of $G = \Delta$?

$K_n \rightarrow \Delta = n-1 : \chi = \Delta + 1$

Can we have $\chi \gg \Delta$? (need $n \gg \Delta$)

Claim $\chi \leq \Delta + 1$

- Incrementally "add" vertices.
- When adding vertex v,
 look at all neighboring colors.
- Always have > 1 color available.

- Remove any vertex v.
- Color $G - v$ by induction.
- Re-insert v.
- v has $< \Delta$ neighbors.
- Use color $\Delta + 1$ for v.
COLORING PLANAR GRAPHS (like map duals)
COLORING PLANAR GRAPHS

Claim: $\chi \leq 6$

... trivial if $V \leq 6$
COLORING PLANAR GRAPHS (like map duals)

Claim: $\chi \leq 6$... trivial if $V \leq 6$

We know planar graphs have a vertex w/ degree ≤ 5 (Euler)
COLORING PLANAR GRAPHS (like map duals)

Claim: $\chi \leq 6$... trivial if $V \leq 6$

We know planar graphs have a vertex w/ degree ≤ 5

Given planar G s.t. $V > 6$ & $u \in G$, $d(u) \leq 5$
COLORING PLANAR GRAPHS (like map duals)

Claim: $\chi \leq 6$... trivial if $V \leq 6$

We know planar graphs have a vertex w/ degree ≤ 5

Given planar G s.t. $V > 6$ & $u \in G$, $d(u) \leq 5$: look at $G-u$

still planar
COLORING PLANAR GRAPHS (like map duals)

Claim: $\chi \leq 6$... trivial if $V \leq 6$

We know planar graphs have a vertex w/ degree ≤ 5

Given planar G s.t. $V > 6$ & $u \in G$, $d(u) \leq 5$: look at $G-u$

Assume by induction that $G-u$ is 6-colorable
COLORING PLANAR GRAPHS (like map duals)

Claim: $\chi \leq 6$... trivial if $V \leq 6$

We know planar graphs have a vertex w/ degree ≤ 5

Given planar G s.t. $V > 6$ & $u \in G$, $d(u) \leq 5$: look at $G - u$

Assume by induction that $G - u$ is 6-colorable

re-insert u: give it a color not used by neighbors
Claim: $x \leq 5$... trivial if ???
Claim: $\chi \leq 5$... trivial if $V \leq 5$

Also trivial if neighbors use < 5 colors
Claim: $\chi \leq 5$... trivial if $V \leq 5$

Use induction & $d(u) \leq 5$ again

Also trivial if neighbors use < 5 colors

Consider any embedding of G

We need a neighbor of u to change color
Try to change \times from \bullet to \bullet

[specifically skipping 2 over in $\text{adj}(u)$]
Try to change \times from \circ to \circ

[specifically skipping 2 over in $\text{adj}(u)$]

This works if \times has no \circ neighbors
Try to change \times from \bullet to \bullet

[specifically skipping 2 over in $\text{adj}(u)$]

\Rightarrow This works if \times has no \bullet neighbors

\Rightarrow else, swap colors on the connected component of the subgraph of G that contains only colors $\bullet \bullet$ and \times.
Try to change x from \circ to \circ \\
[specifically skipping 2 over in $\text{adj}(u)$] \\
\Rightarrow This works if x has no \circ neighbors \\
\Rightarrow else, swap colors on the connected component of the subgraph of G that contains only colors $\circ \circ$ and x.
Try to change x from \bullet to \circ.

- Specifically skipping 2 over in $\text{adj}(u)$.
- This works if x has no \circ neighbors.
- Else, swap colors on the connected component of the subgraph of G that contains only colors $\circ \circ$ and x.

ONE PROBLEM?
Try to change \times from \bullet to \bullet.

[Specifically skipping 2 over in $\text{adj}(u)$]

→ This works if \times has no \bullet neighbors.

→ Else, swap colors on the connected component of the subgraph of G that contains only colors \bullet and \times.

One problem...
The only bad case involves a path from x to y that alternates $x \cdots y$.
The only bad case involves a path from x to y that alternates $x _ _ _ _ _ y$

Together with \odot, the path forms a cycle surrounding the \bullet^t-neighbor of u.

So \ldots ?
The only bad case involves a path from x to y that alternates $x$$0$$0$$0$$...$$y$

Together with u the path forms a cycle surrounding the \bullet neighbor of u.

Restart the entire procedure using s & t instead of x & y.
The only bad case involves a path from \(x \) to \(y \) that alternates \(x \circ \circ \circ \circ \circ \circ y \).

Together with \(u \) the path forms a cycle surrounding the \(\circ \) neighbor of \(u \).

Restart the entire procedure using \(s \& t \) instead of \(x \& y \).

The only way to fail is if there is a path \(s \circ \circ \circ \circ \circ \circ t \)
The only bad case involves a path from \(x \) to \(y \) that alternates \(x \ldots y \).

Together with \(u \) the path forms a cycle surrounding the \(\bullet \) neighbor of \(u \).

Restart the entire procedure using \(s \) & \(t \) instead of \(x \) & \(y \).

The only way to fail is if there is a path \(s \ldots t \) but this would have to cross \(x \ldots y \).
The only bad case involves a path from x to y that alternates $\cdot \cdot \cdot \cdot \cdot \cdot \cdot y$

Together with u the path forms a cycle surrounding the \bullet neighbor of u.

Restart the entire procedure using $s \& t$ instead of $x \& y$.

The only way to fail is if there is a path $s \cdot \cdot \cdot t$

but this would have to cross $\cdot \cdot \cdot \cdot \cdot \cdot \cdot y$

<Impossible: This is a plane drawing>
Planar graphs:

6-coloring: ~ trivial
5-coloring: short elegant proof
Planar graphs:

6-coloring: ~ trivial
5-coloring: short elegant proof

4-coloring: • unsolved from ≤1850 until 1977
• proof involved ~2000 cases solved by computer
Planar graphs:

6-coloring: ~ trivial
5-coloring: short elegant proof

4-coloring: • unsolved from ≤1850 until 1977
 • proof involved ~2000 cases solved by computer

3-coloring: • clearly not always possible
 • if triangle-free then 3-colorable
 (in fact if ≤3 triangles)