RANDOM VARIABLES
A quote from the Scheinerman textbook:

“A random variable is neither random nor variable”
We have been using random variables, implicitly.

ex: roll 2 dice, examine probability that sum = k, or = even.
We have been using random variables, implicitly.

Ex: roll 2 dice, examine probability that \(\text{sum} = k \), or \(= \text{even} \).

\[\rightarrow \text{define random variable } X : \text{sum of two dice rolls.} \]

So, \(X[(1,2)] = 3 \)
\[X[(5,5)] = 10 \]
We have been using random variables, implicitly.

Ex: roll 2 dice, examine probability that \(\text{sum} = k \), or \(\text{even} \).

\(\rightarrow \) define random variable \(X \) : sum of two dice rolls.

So,

\[
X[(1,2)] = 3 \\
X[(5,5)] = 10
\]

\(\rightarrow \) define random variable \(Y \) : parity of two dice rolls.
We have been using random variables, implicitly.

ex: roll 2 dice, examine probability that \(\text{sum} = k \), or = even.

\[\text{define random variable } X : \text{sum of two dice rolls.} \]

\[X[(1,2)] = 3 \]
\[X[(5,5)] = 10 \]

\[\text{define random variable } Y : \text{parity of two dice rolls.} \]

\[Y[(1,2)] = 1 \]
\[Y[(5,5)] = 0 \]
We have been using random variables, implicitly.

ex: roll 2 dice, examine probability that sum = k, or = even.

→ define random variable X: sum of two dice rolls.

So, $X[(1,2)] = 3$
 $X[(5,5)] = 10$

→ define random variable Y: parity of two dice rolls.

So, $Y[(1,2)] = 1$
 $Y[(5,5)] = 0$
Think of a r.v. as a function, mapping sample space to whatever you like, usually a number.
Think of a r.v. as a function, mapping sample space to whatever you like, usually a number.

Then we can express questions neatly:

\[
P(X < 3) = \frac{1}{36}
\]
\[
P(Y = 1) = \frac{1}{2}
\]

2 dice \< \text{sum} \< \text{parity}
Think of a r.v. as a function, mapping sample space to whatever you like, usually a number.

Then we can express questions neatly:

\[P(X < 3) = \frac{1}{36} \]
\[P(Y = 1) = \frac{1}{2} \]

We can also eliminate absurd events, e.g., \(P(X = 13) = 0 \).
EXPECTATION : the very basics
As mentioned, a r.v. X can have several values.

It is based on outcomes that result from a random process.
As mentioned, a r.v. X can have several values. It is based on outcomes that result from a random process. So we don't know what value it will have. But we can expect it to have some value
EXPERIMENT: the very basics

As mentioned, a r.v. X can have several values. It is based on outcomes that result from a random process. So we don't know what value it will have. But we can expect it to have some value.

Expected value = weighted average
Expected value = weighted average

\[E(X) = \sum y \cdot P(X=y) \]

over all possible values y, compatible with X.
Expected value = weighted average

\[E(X) = \sum y \cdot P(X = y) \]

*over all possible values \(y \), compatible with \(X \).

(However we only care about finitely many)
Expected value = weighted average

\[E(X) = \sum y \cdot P(X=y) \]

* over all possible values of \(y \), compatible with \(X \).

(However we only care about finitely many)

\[E(X) = \sum_{s \in S} [X(s) \cdot P(s)] \]

over all samples that define \(X \).
Expected value = weighted average

\[E(X) = \sum y \cdot P(X=y) \]

* over all possible values \(y \), compatible with \(X \). (however we only care about finitely many)

\[E(X) = \sum_{s \in S} [X(s) \cdot P(s)] \]

over all samples that define \(X \). \(\{ \) a finite number \(\} \)

\(\{ \) e.g. roll 1 die. \(X = \) number observed. \(\} \)
Expected value = weighted average

\[E(X) = \sum y \cdot P(X=y) \]

**over all possible values y, compatible with X.
(\textit{however we only care about \textcolor{red}{finitely many}})

\[E(X) = \sum_{s \in S} \left[X(s) \cdot P(s) \right] \]

\text{over all samples that define } X. \text{ \\{a finite number\}}

\[E(X) = \sum_{i=1}^{6} X(i) \cdot P(i) \]

\text{e.g. roll 1 die. } X = \text{number observed.}
Expected value = weighted average

\[E(X) = \sum y \cdot P(X=y) \]

*over all possible values \(y \), compatible with \(X \).

(However we only care about finitely many)

\[E(X) = \sum_{s \in S} [X(s) \cdot P(s)] \]

over all samples that define \(X \).

\[\{ \text{a finite number} \} \]

\[E(X) = \sum_{i=1}^{6} X(i) \cdot P(i) \]

\[= 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} \]

\[= \frac{1}{6} \left(1 + 2 + 3 + 4 + 5 + 6 \right) \]

\[= \frac{1}{6} \cdot 21 \]

\[= \frac{21}{6} \]

\[= \boxed{3.5} \]
Expected value = weighted average

\[
E(X) = \sum y \cdot P(X=y)
\]

* over all possible values \(y \), compatible with \(X \).

(however we only care about finitely many)

\[
E(X) = \sum_{s \in S} \left[X(s) \cdot P(s) \right]
\]

over all samples that define \(X \).

\[\\text{a finite number}\]

\[
e.g. \text{ roll 1 die. } X = \text{number observed.}
\]

\[
E(X) = \sum_{i=1}^{6} X(i) \cdot P(i)
\]

\[
= 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6}
\]

\[
= \frac{1}{6} \cdot (1 + 2 + 3 + 4 + 5 + 6) = 3.5
\]
Expected value = weighted average

\[E(X) = \sum_{y} y \cdot P(X=y) \]

*over all possible values \(y \), compatible with \(X \).

(however we only care about **finitely many**)

\[E(X) = \sum_{s \in S} [X(s) \cdot P(s)] \]

over all samples that define \(X \).

\[
E(X) = \sum_{i=1}^{6} X(i) \cdot P(i)
\]

\[
= 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6}
\]

\[
= \frac{1}{6} \cdot (1+2+3+4+5+6) = 3.5
\]
\[E(X) = \sum_{y} y \cdot P(X=y) \]
\[E(X) = \sum y \cdot P(X=y) \]

eample: roll 2 dice. \(X = |\text{difference between the 2}| \)
\[E(X) = \sum y \cdot P(X=y) \]

Example: roll 2 dice. \(X = |\text{difference between the 2}| \)

Possible values of \(X \rightarrow 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \)
\[E(X) = \sum y \cdot P(X=y) \]

Example: roll 2 dice. \(X = \) \(|\text{difference between the 2}| \)

possible values of \(X \) \(\rightarrow 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \)

\# outcomes supporting value \(\rightarrow 6 \quad ? \)
\[E(X) = \sum y \cdot P(X=y) \]

Example: roll 2 dice. \(X = |\text{difference between the 2}| \)

Possible values of \(X \rightarrow 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \)

outcomes supporting value \(\rightarrow 6 \quad 5 \quad 2 \quad ? \)
\[E(X) = \sum y \cdot P(X=y) \]

example: roll 2 dice. \(X = \vert \text{difference between the 2} \vert \)

possible values of \(X \rightarrow 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \)

\# outcomes supporting value \(\rightarrow 6 \quad 5.2 \quad 4.2 \quad ? \)
\[E(X) = \sum y \cdot P(X=y) \]

element: roll 2 dice. \(X = \left| \text{difference between the 2} \right| \)

possible values of \(X \) \(\rightarrow \) 0, 1, 2, 3, 4, 5

outcomes supporting value \(\rightarrow \) 6, 5, 2, 4, 2, 3, 2, 2

(for probability, divide by 36)
\[E(X) = \sum y \cdot P(X = y) \]

Example: roll 2 dice. \(X = |\text{difference between the 2}| \)

Possible values of \(X \rightarrow 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \)

\# outcomes supporting value \(\rightarrow 6 \quad 5 \quad 2 \quad 4 \quad 2 \quad 1 \quad 2 \)

(for probability, divide by 36)

\[E(x) = ? \]
\[E(X) = \sum y \cdot P(X=y) \]

example: roll 2 dice, \(X = |\text{difference between the 2}| \)

possible values of \(X \) → 0 1 2 3 4 5

outcomes supporting value → 6 5·2 4·2 3·2 2·2 1·2

(for probability, divide by 36)

\[E(x) = \frac{0 + 10 + 16 + 18 + 16 + 10}{36} \]

\(\approx 1.944 \)
EXPECTATION : PROPERTIES
Expectation: Properties

\[E(X + Y) = E(X) + E(Y) \]
$c_1, c_2 \in \mathbb{R}$

$$E(c_1 X + c_2 Y) = c_1 \cdot E(X) + c_2 \cdot E(Y)$$
LINEARITY OF EXPECTATION (important)

\[c_1, c_2 \in \mathbb{R} \quad E(c_1X + c_2Y) = c_1 \cdot E(X) + c_2 \cdot E(Y) \]
LINEARITY OF EXPECTATION (important)

\[c_1, c_2 \in \mathbb{R} \quad \mathbb{E}(c_1X + c_2Y) = c_1 \cdot \mathbb{E}(X) + c_2 \cdot \mathbb{E}(Y) \]

Generally, \[\mathbb{E}(c_1X_1 + c_2X_2 + \cdots + c_nX_n) = c_1\mathbb{E}(X_1) + c_2\mathbb{E}(X_2) + \cdots + c_n\mathbb{E}(X_n) \]
Expectation: Properties

Linearity of Expectation (important)

\[c_1, c_2 \in \mathbb{R} \quad E(c_1 X + c_2 Y) = c_1 \cdot E(X) + c_2 \cdot E(Y) \]

Generally, \[E(c_1 X_1 + c_2 X_2 + \ldots + c_n X_n) = c_1 E(X_1) + c_2 E(X_2) + \ldots + c_n E(X_n) \]

\[E(\sum c_i X_i) = \sum c_i E(X_i) \quad \rightarrow \text{Does NOT assume independence} \]
Expectation: Properties

Linearity of Expectation (important)

\[E(c_1X + c_2Y) = c_1E(X) + c_2E(Y) \]

Generally, \(E(c_1X_1 + c_2X_2 + \cdots + c_nX_n) = c_1E(X_1) + c_2E(X_2) + \cdots c_nE(X_n) \)

\[E(\sum c_iX_i) = \sum c_iE(X_i) \rightarrow \text{Does NOT assume independence} \]

Independence: \(P(X=a \ & \ Y=b) = P(X=a) \cdot P(Y=b) \)

for all \(a,b \ldots \)
EXPECTATION : PROPERTIES

LINEARITY OF EXPECTATION (important)

\[
E(c_1 X + c_2 Y) = c_1 \cdot E(X) + c_2 \cdot E(Y)
\]

Generally, \(E(c_1 X_1 + c_2 X_2 + \cdots + c_n X_n) = c_1 E(X_1) + c_2 E(X_2) + \cdots + c_n E(X_n) \)

\[
E(\sum c_i X_i) = \sum c_i E(X_i) \rightarrow \text{Does NOT assume independence}
\]

Independence: \(P(X = a \ & \ Y = b) = P(X = a) \cdot P(Y = b) \)

for all \(a, b \) ...

2 dice, A, B. \(X = \) result of A. \(Y = \) result of B. \(Z = X + Y \)

\[
E(Z) = E(X + Y) = E(X) + E(Y) = 2 \cdot 3.5 = 7
\]
EXPECTATION: PROPERTIES

\[E(X+Y) = E(X) + E(Y) \]

Linearity of expectation doesn’t assume independence
\textbf{EXPECTATION : PROPERTIES}

\[E(X + Y) = E(X) + E(Y) \]

Linearity of expectation doesn't assume independence

but \[E(X \cdot Y) \neq E(X) \cdot E(Y) \] in general.
EXPECTATION : PROPERTIES

\[E(X+Y) = E(X) + E(Y) \]

Linearity of expectation doesn't assume independence

but \[E(X \cdot Y) \neq E(X) \cdot E(Y) \] in general.

If \(X \) & \(Y \) are independent, then \(E(X \cdot Y) = E(X) \cdot E(Y) \)
EXPECTATION : PROPERTIES

\[E(X+Y) = E(X) + E(Y) \]

Linearity of expectation doesn't assume independence

but \[E(X \cdot Y) \neq E(X) \cdot E(Y) \] in general.

If \(X \) & \(Y \) are independent, then \(E(X \cdot Y) = E(X) \cdot E(Y) \)

However, \(E(X \cdot Y) = E(X) \cdot E(Y) \) does **NOT** imply
\(X \) & \(Y \) are independent.

(see example 34.15) (Scheinerman)
- We are skipping the proofs of most statements in this section.

- You are not required to study these, but it would probably be beneficial.

- We are also skipping variance, which is an important concept to learn independently.