PLANE GRAPH

no crossings
PLANE GRAPH
no crossings

PLANAR GRAPH
can redraw without crossings
Plane Graph

no crossings

Planar Graph

can redraw without crossings

Non-planar graphs

(can't redraw)
Plane Graph

- No crossings.

Planar Graph

- Can redraw without crossings.

Non-planar graphs

- (Can't redraw)

- $K_{3,3}$
- K_5
PLANE GRAPH
no crossings

PLANAR GRAPH
can redraw without crossings

Non-planar graphs
(can't redraw)

$K_{3,3}$
K_5
PLANE GRAPH
no crossings

PLANAR GRAPH
 can redraw
 without crossings

Non-planar graphs
(can't redraw)

$K_{3,3}$

K_5
PLANE GRAPH
no crossings

PLANAR GRAPH
can redraw without crossings

Non-planar graphs
(can't redraw)

\(K_{3,3} \)

\(K_5 \)
PLANE GRAPH
no crossings

PLANAR GRAPH
can redraw without crossings

Non-planar graphs (can't redraw)

$K_{3,3}$ K_5
Planes Graph: no crossings

Planar Graph: can redraw without crossings

Non-planar graphs:
- (can't redraw)
- $K_{3,3}$
- K_5
PLANE GRAPH
no crossings

PLANAR GRAPH
can redraw
without crossings

Non-planar graphs
(can't redraw)

$K_{3,3}$

K_5
Plane Graph

No crossings

Planar Graph

Can redraw without crossings

Non-planar graphs

(can't redraw)

- $K_{3,3}$
- K_5
PLANE GRAPH
no crossings

PLANAR GRAPH
can redraw without crossings

Non-planar graphs
(can't redraw)

$K_{3,3}$

K_5
PLANE GRAPH
no crossings

PLANAR GRAPH
can redraw without crossings

Non-planar graphs
(can't redraw)

$K_{3,3}$

K_5
Plane Graph

No crossings

Planar Graph

Can redraw without crossings

Non-planar graphs

(Can't redraw)

$K_{3,3}$

K_5
PLANE GRAPH
no crossings

PLANAR GRAPH
can redraw without crossings

Non-planar graphs
(can't redraw)

K_{3,3}
K_{5}
Plane Graph
- no crossings

Planar Graph
- can redraw without crossings

Non-planar graphs
- (can't redraw)

- obtained by successive contractions

A graph is non-planar if and only if it "contains" a $K_{3,3}$ or K_5
FYI

Every planar graph can be drawn without crossings. In fact the edges can be drawn straight as well.
\[G = (V, E) \]

\[V = 6 \]
\[E = 8 \]

\[F = \# \text{faces} = 4 \]

Disjoint regions, one of which is unbounded
Euler Formula for planar connected graphs: $V - E + F = 2$
EULER FORMULA for planar connected graphs: $V - E + F = 2$

Proof by induction on number of faces:

Base case $\rightarrow F = 1 \rightarrow ?$
Euler formula for planar connected graphs: \(V - E + F = 2 \)

Proof by induction on number of faces:

Base case \(F = 1 \) \(\rightarrow \) \(G \) is a tree \(\rightarrow ? \)
EULER FORMULA for planar connected graphs: \[V - E + F = 2 \]

Proof by induction on number of faces:

Base case \(F = 1 \) \(\rightarrow \) \(G \) is a tree \(\rightarrow \) \(V = E + 1 \)
Euler Formula for planar connected graphs: \(V - E + F = 2 \)

Proof by induction on number of faces:

Base case \(F = 1 \) → G is a tree → \(V = E + 1 \)

so \((E+1) - E + 1 = 2 \) \(\checkmark \)
EULER FORMULA for planar connected graphs: \[V - E + F = 2 \]

Proof by induction on number of faces:

Base case \(F = 1 \) \(\rightarrow \) \(G \) is a tree \(\rightarrow \) \(V = E + 1 \)

so \((E + 1) - E + 1 = 2 \) \(\checkmark \)

Given \(G = (V, E) \) w/ \(F > 1 \) faces, remove an edge \(e \) between 2 faces, \(f_1 \) & \(f_2 \).
EULER FORMULA for planar connected graphs: \(V - E + F = 2 \)

Proof by induction on number of faces:

Base case → \(F = 1 \) → \(G \) is a tree → \(V = E + 1 \)

so \((E+1)-E+1 = 2 \) ✓

Given \(G=(V,E) \) w/ \(F > 1 \) faces,
remove an edge \(e \) between 2 faces, \(f_1 \) & \(f_2 \).

Either \(f_1 \) or \(f_2 \) is a bounded face
EULER FORMULA for planar connected graphs: \(V - E + F = 2 \)

Proof by induction on number of faces:

Base case \(F = 1 \) → G is a tree → \(V = E + 1 \)

so \((E+1) - E + 1 = 2 \) ✓

Given \(G = (V, E) \) w/ \(F > 1 \) faces,
remove an edge \(e \) between 2 faces, \(f_1 \) & \(f_2 \).
Either \(f_1 \) or \(f_2 \) is a bounded face, so \(e \) is on a cycle (\(e \) is not a cut edge).
EULER FORMULA for planar connected graphs: \(V - E + F = 2 \)

Proof by induction on number of faces:

Base case \(F = 1 \) \(\rightarrow \) \(G \) is a tree \(\rightarrow \) \(V = E + 1 \)

so \((E+1) - E + 1 = 2 \) \(\checkmark \)

Given \(G = (V,E) \) \(\omega \) \(F > 1 \) faces,
remove an edge \(e \) between 2 faces, \(f_1 \) & \(f_2 \).

Either \(f_1 \) or \(f_2 \) is a bounded face,
so \(e \) is on a cycle (\(e \) is not a cut edge)
\(\downarrow \) \(G - e \) is connected \& \(f_1, f_2 \) merge
EULER FORMULA for planar connected graphs: \[V - E + F = 2 \]

Proof by induction on number of faces:

Base case \(F = 1 \) \(\rightarrow \) \(G \) is a tree \(\rightarrow \) \(V = E + 1 \)

so \((E + 1) - E + 1 = 2 \)

Given \(G = (V, E) \) w/ \(F > 1 \) faces,
remove an edge \(e \) between 2 faces, \(f_1 \) & \(f_2 \).
Either \(f_1 \) or \(f_2 \) is a bounded face,
so \(e \) is on a cycle (\(e \) is not a cut edge)
\(\Rightarrow \) \(G - e \) is connected & \(f_1, f_2 \) merge:

\[
\begin{align*}
V - (E - 1) - (F - 1) & \geq 2 \\
G - e & \end{align*}
\]
EULER FORMULA for planar connected graphs: \[V - E + F = 2 \]

Proof by induction on number of faces:

Base case \(F = 1 \) \(\Rightarrow \) \(G \) is a tree \(\Rightarrow V = E + 1 \)

so \((E+1) - E + 1 = 2 \) \(\checkmark \)

Given \(G = (V, E) \) w/ \(F > 1 \) faces, remove an edge \(e \) between 2 faces, \(f_1 \) & \(f_2 \).

Either \(f_1 \) or \(f_2 \) is a bounded face, so \(e \) is on a cycle (\(e \) is not a cut edge)

\(\xrightarrow{\text{hypothesis}} (V - (E - 1) + (F - 1) = 2) \)
EULER FORMULA for planar connected graphs: \(V - E + F = 2 \)

Proof by induction on number of faces:

Base case \(F = 1 \) → G is a tree → \(V = E + 1 \)

so \((E+1) - E + 1 = 2 \)

Given \(G = (V,E) \) w/ \(F > 1 \) faces, remove an edge \(e \) between 2 faces, \(f_1 \) & \(f_2 \).
Either \(f_1 \) or \(f_2 \) is a bounded face,
so \(e \) is on a cycle (\(e \) is not a cut edge)
\(G - e \) is connected & \(f_1, f_2 \) merge:

Given \(G = (V,E) \) w/ \(F > 1 \) faces, remove an edge \(e \) between 2 faces, \(f_1 \) & \(f_2 \).
Either \(f_1 \) or \(f_2 \) is a bounded face,
so \(e \) is on a cycle (\(e \) is not a cut edge)
\(G - e \) is connected & \(f_1, f_2 \) merge:

\[V - (E-1) + (F-1) = 2 \]
\[\Rightarrow V - E + F = 2 \]

Note that this also holds for multigraphs.
Euler formula \(V - E + F = 2 \)

\(V - E + F = 2 \) applies to any connected planar graph (in fact, to convex polyhedra) by projection.

Induction on faces:

- \(F = 1 \) : tree. \(E = V - 1 \)

- \(F > 1 \):
 Remove an edge between 2 faces.
 Remains connected.

\(F \to F - 1 \quad E \to E - 1 \)
Euler formula: \(V - E + F = 2 \)

The formula applies to any connected planar graph (in fact, to convex polyhedra) by projection.

Induction on faces:
- \(F = 1 \):
 - Tree: \(F = 1 \), \(E = V - 1 \)
- \(F > 1 \):
 - Remove an edge between 2 faces.
 - Remains connected.
 - \(F \rightarrow F - 1 \), \(E \rightarrow E - 1 \)

Induction on vertices:
- \(V = 1 \):
 - Only loops: \(F = E + 1 \)
Euler formula \(V - E + F = 2 \)

Euler’s formula applies to any connected planar graph (in fact, to convex polyhedra) by projection.

Induction on faces:
- \(F = 1 \): tree, \(V = 2 \), \(E = V - 1 \)
- \(F > 1 \):
 - Remove an edge between 2 faces.
 - Remains connected.
 - \(F \rightarrow F - 1 \), \(E \rightarrow E - 1 \)

Induction on vertices
- \(V = 1 \): only loops, \(F = E + 1 \)
- \(V > 1 \):
 - Contract edge \(x \neq y \)
 - \(V \rightarrow V - 1 \), \(E \rightarrow E - 1 \)
Euler formula \(V - E + F = 2 \)

\[\begin{align*}
V - E + F &= 2 \\
\text{applies to any connected planar graph (in fact, to convex polyhedra)} \\
\text{by projection}
\end{align*} \]

Induction on faces:
- \(F = 1 \) : tree
 - \(E = V - 1 \)
- \(F > 1 \):
 - Remove an edge between 2 faces.
 - Remains connected.
 - \(F \to F - 1 \), \(E \to E - 1 \)

Induction on vertices:
- \(V = 1 \) : only loops
 - \(F = E + 1 \)
- \(V > 1 \):
 - Contract edge \(x \neq y \)
 - \(V \to V - 1 \), \(E \to E - 1 \)

Induction on edges:
- \(E = 0 \) : one vertex, one face
Euler formula \(V - E + F = 2 \)

\(V - E + F = 2 \) applies to any connected planar graph (in fact, to convex polyhedra) by projection.

Induction on faces:
- \(F = 1 \): tree, \(E = V - 1 \)
- \(F > 1 \):
 - Remove an edge between 2 faces.
 - Remains connected.
 - \(F \to F - 1 \), \(E \to E - 1 \)

Induction on vertices:
- \(V = 1 \):
 - Only loops, \(F = E + 1 \)
- \(V > 1 \):
 - Contract edge \(x \neq y \)
 - \(V \to V - 1 \), \(E \to E - 1 \)

Induction on edges:
- \(E = 0 \):
 - One vertex, one face
- \(E > 1 \):
 - If \(x \neq y \) contract as before
 - Else \(\bullet \) remove as before
 - \(E \to E - 1 \) & \(F \to F - 1 \)

\(V \to V - 1 \)
use the Euler formula $V - E + F = 2$

to show that a connected plane graph has $E \leq 3V - 6$ for $V \geq 3$

Not allowed: ☐
use the Euler formula \(V - E + F = 2 \)

to show that a connected plane graph has \(E \leq 3V - 6 \)

Every edge belongs to 1 or 2 faces \(\sum_e \leq 2E \) for all faces
use the Euler formula \(V - E + F = 2 \)

to show that a connected plane graph has \(E \leq 3V - 6 \)

Every edge belongs to 1 or 2 faces \(\sum_{\text{all faces}} e \leq 2E \)

Every face has \(\geq 3 \) edges (for \(V > 3 \)) \(\sum_{\text{all faces}} e \geq 3F \)
use the Euler formula \(V - E + F = 2 \) to show that a connected plane graph has \(E \leq 3V - 6 \)

Every edge belongs to 1 or 2 faces \[\sum_{\text{all faces}} e \leq 2E \]

Every face has \(\geq 3 \) edges (for \(V > 3 \)) \[\sum_{\text{all faces}} e \geq 3F \]
Use the Euler formula \(V - E + F = 2 \)

to show that a connected plane graph has \(E \leq 3V - 6 \)

Every edge belongs to 1 or 2 faces \[\sum_{\text{all faces}} e \leq 2E \]

Every face has \(\geq 3 \) edges (for \(V > 3 \)) \[\sum_{\text{all faces}} e \geq 3F \]

\[E - F = V - 2 \]
use the Euler formula $V - E + F = 2$

to show that a connected plane graph has $E \leq 3V - 6$

Every edge belongs to 1 or 2 faces

Every face has ≥ 3 edges (for $V \geq 3$)

$E - F = V - 2$

$E - \frac{2E}{3} \leq V - 2$

$E \leq 3V - 6$
use the Euler formula \[V - E + F = 2 \]

to show that a connected plane graph has \[E \leq 3V - 6 \]

Every edge belongs to 1 or 2 faces

Every face has \(\geq 3 \) edges (for \(V > 3 \))

\[
\begin{align*}
E - F &= V - 2 \\
E - \frac{2E}{3} &\leq V - 2 \\
E &\leq 3V - 6 \\
\sum e &\leq 2E \\
\sum e &\geq 3F \\
2E &\geq 3F
\end{align*}
\]
$E \leq 3v - 6$
$E \leq 3v - 6$

K_5
$E \leq 3V - 6$

10 \leq 15 - 6

Not planar
$E \leq 3v - 6$

$10 \leq 15 - 6$

K_5

$E \leq 3v - 6$

$K_{3,3}$
\[E \leq 3V - 6 \]
\[10 \leq 15 - 6 \]

!!!

\[K_5 \]

\[E \leq 3V - 6 \]
\[9 \leq 18 - 6 \quad \text{ok!} \]

\[K_{3,3} \]
$E \leq 3V - 6$

$10 \leq 15 - 6$

$9 \leq 18 - 6$ OK!

$E \leq 3V - 6$

K_5

not if

All planar graphs have $E \leq 3V - 6$

Some non-planar graphs can too
V - E + F = 2

What if G has no triangles?
\[V - E + F = 2 \]

What if \(G \) has no triangles?

Every edge belongs to 1 or 2 faces

\[\sum e \leq 2E \quad \text{all faces} \]

\[E \geq 2F \]

Every face has \(\geq 4 \) edges (for \(V > 4 \))

\[\sum e \geq 4F \quad \text{all faces} \]
$V - E + F = 2$

What if G has no triangles?

Every edge belongs to 1 or 2 faces

Every face has ≥ 4 edges (for $v > 4$)

$E - F = V - 2$

$E - \frac{E}{2} \leq V - 2$

$E \leq 2V - 4$

Instead of $\leq 3V - 6$

$\sum_{\text{faces}} e \leq 2E$

$\sum_{\text{faces}} e \geq 4F$

$E \geq 2F$
triangle free
for triangle free:

\[E \leq 2V - 4 \]

\[9 \leq 2 \cdot 6 - 4 \]

\[\text{!!!} \]

\[K_{3,3} \]

\[v = 6, \quad E = 9 \]

\[\text{NOT PLANAR} \]
It turns out that every non-planar graph "contains" one of these two shapes.

\[K_5 \quad \text{non-planar} \quad \Rightarrow \quad K_{3,3} \]
TRIANGULATIONS
triangulation

add edges while possible
E = 3V - 6

Why?

{ Assume outer face is a triangle }
\[E = 3V - 6 \]

Why?

Assume outer face is a triangle

Every edge belongs to 1 or 2 faces

\[\sum e \leq 2E \]

\[\sum e \geq 3F \]

Every face has \(\geq 3 \) edges (for \(v > 3 \))

\(2E \geq 3F \)
\[E = 3V - 6 \]

Why?

\{ \text{Assume outer face is a triangle} \}

Every edge belongs to 1 or 2 faces \[\sum e \leq 2E \] all faces

Every face has 3 edges (for \(V > 3 \)) \[\sum e \geq 3F \] all faces

\[2E \times 3F \]
E = 3V - 6

Why?

{ Assume outer face is a triangle

Every edge belongs to \(\times 2 \) faces

Every face has \(\times 3 \) edges (for \(V > 3 \))

\[
E - F = V - 2
\]

\[
\sum e = 2E \quad \sum e = 3F \quad \begin{cases} \sum e = 2E \\ \sum e = 3F \end{cases} \]

\[
V - E + F = 2
\]
\[E = 3V - 6 \]

\[\text{Why?} \]

\[\begin{array}{c}
\{ \\
\text{Assume outer face is a triangle} \\
\end{array} \]

\[\begin{align*}
\text{Every edge belongs to} & \quad 1 \times \text{or} \quad 2 \times \text{faces} \\
\text{Every face has} & \quad \not= \times 3 \text{ edges} \ (\text{for} \ V > 3) \\
\end{align*} \]

\[\sum e \not= \times 2E \quad \text{all faces} \]

\[\sum e \not= \times 3F \quad \text{all faces} \]

\[2E \times 3F \]

\[E - F = V - 2 \]

\[E - \frac{2E}{3} = V - 2 \]

\[E = 3V - 6 \]

\[V - E + F = 2 \]
What is the average degree of a triangulation?
What is the average degree of a triangulation?

\[\frac{1}{V} \cdot \sum_{i=1}^{V} d(v_i) \]
What is the average degree of a triangulation?

\[
\frac{1}{V} \cdot \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E
\]
What is the average degree of a triangulation?

\[
\frac{1}{V} \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V - 12}{V} \leq 6
\]
What is the average degree of a triangulation?

\[\frac{1}{V} \cdot \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V - 12}{V} \leq 6 \]

Every triangulation has a vertex w/ degree \(\leq 5 \)
What is the average degree of a triangulation?

\[\frac{1}{V} \cdot \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V-12}{V} \leq 6 \]

\[\Rightarrow \text{Every triangulation has a vertex w/ degree} \leq 5 \]

\[\Rightarrow \text{Immediately applies to any planar graph (fewer edges)} \]
What is the average degree of a triangulation?

\[
\frac{1}{V} \cdot \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V-12}{V} \leq 6
\]

\[\Rightarrow\text{Every planar graph has a vertex with degree} \leq 5\]
What is the average degree of a triangulation?

$$\frac{1}{V} \cdot \frac{V}{i=1} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V - 12}{V} \leq 6$$

Every planar graph has a vertex with degree $$\leq 5$$

Can we find many low-degree vertices?
$E = 3V - 6$

What is the average degree of a triangulation?

$$\frac{1}{V} \cdot \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V - 12}{V} < 6$$

\Rightarrow Every planar graph has a vertex w/ degree ≤ 5

Can we find many low-degree vertices? \rightarrow not if "low" $= 5$. What if "low" $= 8$?
What is the average degree of a triangulation?

\[
\frac{1}{V} \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V-12}{V} \leq 6
\]

\[\implies\] Every planar graph has a vertex w/ degree \leq 5

Can we find many low-degree vertices? \[\rightarrow \text{not if "low" = 5. what if "low" = 8?}\]

\[\rightarrow \frac{V}{2}\] degree-8

Prove by contradiction
What is the average degree of a triangulation?

\[
\frac{1}{V} \cdot \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V-12}{V} \leq 6
\]

\[\Rightarrow\] Every planar graph has a vertex w/ degree \(\leq 5 \)

Can we find many low-degree vertices? \(\rightarrow \) not if "low" = 5.
what if "low" = 8?

Say you had \(\frac{V}{2} \) vertices w/ degree \(\geq 9 \)
What is the average degree of a triangulation?

\[\frac{1}{V} \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V-12}{V} \leq 6 \]

\[\Rightarrow \text{Every planar graph has a vertex w/ degree } \leq 5 \]

Can we find many low-degree vertices? \[\Rightarrow \text{not if } "low" = 5, \text{ what if } "low" = 8? \]

Say you had \(\frac{V}{2} \) vertices w/ degree \(\gg 9 \)

\[\sum_{i=9}^{\gg} d(v_i) \gg 9 \cdot \frac{V}{2} \]

sum degrees of \(\frac{V}{2} \) of them
What is the average degree of a triangulation?

\[\frac{1}{V} \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V-12}{V} \leq 6 \]

\(\iff \) Every planar graph has a vertex w/ degree \(\leq 5 \)

Can we find many low-degree vertices? → not if "low" = 5. What if "low" = 8?

Say you had \(\gg \frac{V}{2} \) vertices w/ degree \(\gg 9 \)

\[\Sigma d(v_i) \gg 9 \cdot \frac{V}{2} \]

\sum degrees of \(\frac{V}{2} \) of them \(\iff \) all other vertices have degree \(\gg 3 \)

\[\Sigma d(v_i) \gg 3 \cdot \frac{V}{2} \]
What is the average degree of a triangulation?

$$\frac{1}{V} \cdot \sum_{i=1}^{V} d(v_i) = \frac{1}{V} \cdot 2E = \frac{6V-12}{V} \leq 6$$

\Rightarrow Every planar graph has a vertex w/ degree ≤ 5

Can we find many low-degree vertices? \rightarrow not if "low" = 5.
what if "low" = 8?

Say you had $\frac{V}{2}$ vertices w/ degree ≥ 9

$\Rightarrow \sum_{d \geq 9} d(v_i) \geq 9 \cdot \frac{V}{2}$

sum degrees of $\frac{V}{2}$ of them $\Rightarrow \sum d(v_i) \geq 3 \cdot \frac{V}{2}$

all other vertices have degree ≥ 3

$\Rightarrow \Sigma + \Sigma \geq 6V$

contradiction

always have $\frac{V}{2}$ w/ $\deg \leq 8$